Effects of different phosphorus concentrations on soil physicochemical property, growth and medicinal materials quality of Saposhnikovia divaricata
-
摘要:目的
探讨不同磷浓度处理对土壤特性及防风Saposhnikovia divaricata生长状况、色原酮含量的影响,为防风人工栽培的技术策略制定以及防风对低磷胁迫响应机制的研究提供理论依据。
方法以2年生防风为材料,设置营养液磷 (NH4H2PO4) 浓度分别为1.0、0.1和0 (无磷) mmol/L,分别在30、60、90 d时测定土壤理化性质及防风生长特性和4种色原酮总含量,分析不同磷浓度处理防风各指标与4种色原酮总含量的关系。
结果无磷处理下,2年生防风根粗、根生物量在整个处理期间均低于1.0 mmol·L−1磷处理,根长在90 d 时显著高于1.0和0.1 mmol·L−1磷处理;土壤pH 在60 d 后表现为1.0 mmol·L−1磷处理显著高于0.1 mmol·L−1和无磷处理;土壤有机质含量在整个试验期表现为1.0和0.1 mmol·L−1磷处理显著低于无磷处理;90 d 时, 无磷处理的土壤碱解氮含量显著高于1.0和0.1 mmol·L−1磷处理,而土壤有效磷含量0.1 mmol·L−1处理显著高于无磷处理,4 种色原酮总含量0.1 mmol·L−1和无磷处理显著高于1.0 mmol·L−1磷处理。防风根系土壤中酸性磷酸酶活性在30 d 时,3种磷处理间存在显著差异。1.0 mmol·L−1磷处理下,根长、根鲜生物量与4 种色原酮总含量呈正相关;0.1 mmol·L−1磷处理下,碱解氮、有效磷含量和根鲜生物量均与4 种色原酮总含量呈正相关;无磷处理下pH、碱解氮含量、酸性磷酸酶活性均与4种色原酮总含量呈正相关。
结论防风面对磷胁迫有一系列响应机制,有效成分4种色原酮总含量显著增加,pH、有机质、碱解氮等与酸性磷酸酶协同作用,保证防风对养分的吸收利用。
Abstract:ObjectiveTo discuss the effects of different phosphorus concentrations on soil characteristics, growth status and chromone content of Saposhnikovia divaricata, and provide theoretical basis for technical strategy formulation of S. divaricata artificial cultivation and responding mechanism research of S. divaricata to low phosphorus stress.
MethodTwo-year-old S. divaricata was used as material, and three phosphorus treatments with NH4H2PO4 concentration of 1.0, 0.1 and 0 (no phosphorus) mmol/L respectively were set up. The soil physical and chemical properties, and the growth characteristics and total contents of four kinds of chromones inS. divaricata were determined on the 30th, 60th, and 90th day to analyze the correlativity between the various indicators and total chromone content under different phosphorus concentrations.
ResultThe root diameter and weight of 2-year-old S. divaricata in no phosphorus treatment were lower than those of 1.0 mmol·L−1 phosphorus treatment during the whole treatment period, and the root length after 90 d of treatment was significantly higher than those of 1.0 and 0.1 mmol·L−1 phosphorus treatments. After 60 d of treatment, the soil pH of 1.0 mmol·L−1 phosphorus treatment was significantly higher than those of 0.1 mmol·L−1 and no phosphorus treatments. The contents of soil organic matter in 1.0 and 0.1 mmol·L−1 phosphorus treatments were significantly lower than that in no phosphorus treatment during the whole treatment period. After 90 d of treatment, the alkali-hydrolyzable nitrogen content in soil of no phosphorus treatment was significantly higher than those of 1.0 and 0.1 mmol·L−1 phosphorus treatments, whereas the available phosphorus content in soil of 0.1 mmol·L−1 phosphorus treatment was significantly higher than that of no phosphorus treatment, the total content of four chromones of 0.1 mmol·L−1 and no phosphorus treatments were significantly higher than that of 1.0 mmol·L−1 phosphorus treatment. On the 30 th day of treatment, the activities of acid phosphatase in soil among three treatments were significantly different. There were positive correlations between root diameter/root fresh biomass and chromone content in 1.0 mmol·L−1 phosphorus treatment, between alkali-hydrolyzable nitrogen content/available phosphorus content/root fresh biomass and chromone content in 0.1 mmol·L−1 phosphorus treatment, between pH/alkali-hydrolyzable nitrogen content /acid phosphate activity and chromone content in no phosphorus treatment, respectively.
ConclusionS. divaricata has a series of response mechanisms to phosphorus stress, including chromone content significantly increasing, synergistic interaction of pH, organic matter, alkali-hydrolyzable nitrogen and acid phosphatase, which ensures the absorption and utilization of nutrients by S. divaricata.
-
图 1 不同磷浓度对防风土壤理化性质的影响
各图中,相同处理时间柱子上方的不同小写字母表示不同磷浓度间差异显著(P<0.05,Duncan’s法)
Figure 1. Effects of different phosphorus concentrations on physicochemical properties of soil in which Saposhnikovia divaricata was grown
In each figure, different lowercase letters on the columns of the same treatment time indicate significant differences among different phosphorus concentrations (P<0.05, Duncan’s method)
图 2 不同磷浓度对防风土壤酸性磷酸酶活性的影响
相同处理时间柱子上方的不同小写字母表示不同磷浓度间差异显著(P<0.05,Duncan’s法)
Figure 2. Effects of different phosphorus concentrations on acid phosphatase activity of soil in which Saposhnikovia divaricata was grown
Different lowercase letters on the columns of the same treatment time indicate significant differences among different phosphorus concentrations (P<0.05, Duncan’s method)
图 3 不同磷浓度对防风生长的影响
各图中,相同处理时间柱子上方的不同小写字母表示不同磷浓度间差异显著(P<0.05,Duncan’s法)
Figure 3. Effects of different phosphorus concentrations on growth of Saposhnikovia divaricata
In each figure, different lowercase letters on the columns of the same treatment time indicate significant differences among different phosphorus concentrations (P<0.05, Duncan’s method)
图 4 不同磷浓度下防风4种色原酮总含量变化
相同处理时间柱子上方的不同小写字母表示不同磷浓度间差异显著(P<0.05,Duncan’s法)
Figure 4. Changes in total content of four chromones of Saposhnikovia divaricata in different phosphorus concentrations
Different lowercase letters on the columns of the same treatment indicate significant differences among different phosphorus concentrations (P<0.05, Duncan’s method)
图 5 不同磷浓度下的土壤理化性质、防风生长指标与4种色原酮总含量的相关关系
1:根长,2:根粗,3:根鲜生物量,4:根干生物量,5:pH,6:电导率,7:有机质含量,8:碱解氮含量,9:有效磷含量,10:速效钾含量,11:酸性磷酸酶活性,12:4种色原酮总含量;“*”和“**”分别表示2个指标间显著(P<0.05)和极显著(P<0.01)相关(Pearson检验)
Figure 5. Correlation between soil physicochemical property, growth index with total content of four chromones of Saposhnikovia divaricataunder different phosphorus concentrations
1: Root length, 2: Root diameter, 3: Root fresh biomass, 4: Root dry biomass, 5: pH, 6: Conductivity, 7: Organic matter content, 8: Alkali-hydrolyzale nitrogen content, 9: Available phosphorus content, 10: Available potassium content, 11: Acid phosphatase activity, 12: Total content of four chromones; “*” and “**” indicate significant correlations at 0.05 and 0.01 levels, respectively(Pearson test)
表 1 不同磷浓度下的土壤因子、防风生长指标与4种色原酮总含量的灰色关联度分析
Table 1 Grey correlation analysis between soil factors, growth index with total content of four chromones of Saposhnikovia divaricataunder different phosphorus concentrations
因子 Factor 关联系数 Correlation coefficient 1.0 mmol·L−1 0.1 mmol·L−1 0 mmol·L−1 根长Root length 0.496 0.447 0.500 根粗 Root diameter 0.386 0.447 0.444 根鲜生物量 Root fresh biomass 0.406 0.423 0.396 根干生物量 Root dry biomass 0.413 0.351 0.423 pH 0.445 0.448 0.524 电导率 Conductivity 0.334 0.332 0.320 有机质含量 Organic matter content 0.295 0.334 0.486 碱解氮含量 Alkali-hydrolyzale nitrogen content 0.274 0.451 0.442 速效磷含量 Available phosphorus content 0.323 0.297 0.292 速效钾含量 Available potassium content 0.270 0.355 0.328 酸性磷酸酶活性 Acid phosphatase activity 0.394 0.459 0.460 表 2 不同磷浓度下的土壤理化性质、防风生长指标与4种色原酮总含量的通径系数1)
Table 2 Path coefficient between soil factors, growth index with total content of four chromones of Saposhnikovia divaricata under different phosphorus concentrations
c(P)/
(mmol·L−1)变量
Variate直接系数
Direct coefficient间接系数 Indirect coefficient x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 1.0 x1 −0.085 −0.012 0.037 0.003 0.082 −0.079 0.001 0.367 0.270 −0.017 −0.090 x2 0.087 0.012 0.111 −0.014 −0.024 0.251 −0.023 −0.235 −0.116 −0.271 −0.035 x3 0.173 −0.018 0.056 −0.018 0.012 −0.002 0.025 −0.002 0.029 −0.091 0.141 x4 −0.041 0.005 0.029 0.076 0.010 0.210 0.007 −0.209 −0.044 −0.115 0.058 x5 −0.174 0.040 0.012 −0.012 0.002 −0.114 0.049 −0.317 −0.391 0.230 0.249 x6 0.585 0.012 0.037 −0.001 −0.015 0.034 −0.057 −0.102 0.031 −0.308 −0.313 x7 −0.099 0.000 0.020 −0.044 0.003 0.086 0.333 0.052 0.143 −0.306 −0.397 x8 −0.595 0.053 0.035 0.001 −0.014 −0.093 0.100 0.009 −0.365 0.052 0.099 x9 −0.489 0.047 0.021 −0.010 −0.004 −0.139 −0.037 0.029 −0.444 0.178 0.237 x10 −0.497 −0.003 0.048 0.032 −0.009 0.080 0.362 −0.061 0.062 0.175 −0.202 x11 −0.523 −0.015 0.006 −0.047 0.005 0.083 0.350 −0.075 0.112 0.222 −0.192 0.1 x1 −0.229 0.032 −0.081 0.007 −0.226 0.150 0.002 0.000 0.004 0.057 0.007 x2 −0.103 0.071 0.140 −0.042 0.256 −0.195 −0.005 −0.027 −0.040 −0.073 −0.008 x3 0.233 0.079 −0.062 −0.048 0.203 −0.144 −0.002 −0.006 −0.032 −0.043 −0.017 x4 −0.061 0.027 −0.070 0.181 0.149 −0.144 −0.002 −0.013 −0.037 −0.059 −0.013 x5 −0.505 −0.102 0.052 −0.094 0.018 0.390 0.003 0.005 −0.030 0.132 0.018 x6 −0.534 0.064 −0.037 0.063 −0.017 0.369 −0.005 0.012 0.056 −0.162 −0.032 x7 −0.008 0.042 −0.063 0.044 −0.016 0.150 −0.315 −0.008 −0.006 −0.091 −0.020 x8 −0.060 0.000 −0.046 0.023 −0.013 0.041 0.106 −0.001 −0.059 0.021 0.013 x9 −0.113 0.007 −0.037 0.067 −0.020 −0.134 0.266 0.000 −0.032 0.081 0.017 x10 −0.171 0.077 −0.044 0.059 −0.021 0.391 −0.507 −0.004 0.008 0.053 −0.025 x11 −0.045 0.037 −0.018 0.087 −0.018 0.206 −0.380 −0.004 0.017 0.042 −0.093 0 x1 0.157 −0.509 0.277 −0.013 0.647 −0.151 0.003 0.051 −0.544 −0.043 0.036 x2 −1.214 0.066 0.298 −0.023 1.011 −0.237 0.008 0.050 −0.177 −0.077 0.059 x3 0.616 0.071 −0.588 −0.030 0.339 −0.136 −0.009 −0.048 −0.146 −0.022 −0.122 x4 −0.038 0.054 −0.710 0.487 0.397 −0.104 −0.008 −0.007 −0.026 −0.025 −0.105 x5 −1.234 −0.082 0.994 −0.169 0.012 0.346 −0.013 −0.110 0.412 0.112 −0.048 x6 −0.508 0.047 −0.567 0.165 −0.008 0.840 0.013 −0.250 0.540 −0.166 −0.175 x7 0.026 0.020 −0.366 −0.225 0.012 0.642 −0.260 −0.016 0.131 −0.088 0.068 x8 0.914 0.009 −0.066 −0.033 0.000 0.148 0.139 −0.001 −1.225 0.076 0.160 x9 −1.664 0.051 −0.129 0.054 −0.001 0.306 0.165 −0.002 0.673 0.078 0.200 x10 −0.192 0.035 −0.484 0.070 −0.005 0.717 −0.438 0.012 −0.360 0.673 −0.191 x11 −0.354 −0.016 0.203 0.213 −0.011 −0.168 −0.250 −0.005 −0.413 0.942 −0.104 1) x1:根长;x2:根粗;x3:根鲜生物量;x4:根干生物量;x5:pH;x6:电导率;x7:有机质含量;x8:碱解氮含量;x9:有效磷含量;x10:速效钾含量;x11:酸性磷酸酶活性
1) x1: Root length; x2: Root diameter; x3: Root fresh biomass; x4: Root dry biomass; x5: pH; x6: Conductivity; x7: Organic matter content; x8: Alkali-hydrolyzale nitrogen content; x9: Available phosphorus content; x10: Available potassium content; x11: Acid phosphatase activity -
[1] 陈敏旺. 吉林省农田耕层土壤速效氮磷钾养分的时空变化特征[D]. 长春: 吉林农业大学, 2018. [2] 张智猛, 戴良香, 张电学, 等. 施磷对土壤有效磷含量、吸磷特性及小麦产量的影响[J]. 河北农业技术师范学院学报, 1999, 1(1): 12-16. [3] 裴洲洋, 陈油鸿, 江春, 等. 不同施肥结构对土壤理化性质及烤烟氮、磷、钾含量的影响[J]. 安徽农学通报, 2016, 22(21): 35-37. doi: 10.3969/j.issn.1007-7731.2016.21.014 [4] 张烨. 低磷胁迫诱导植物酸性磷酸酶的分子调控机制[D]. 北京: 清华大学, 2014. [5] 国家药典委员会. 中华人民共和国药典: Ⅰ部[M]. 北京: 中国医药科技出版社, 2020: 156. [6] 韩忠明, 王云贺, 胥苗苗, 等. 干旱胁迫对防风生理特性及品质的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(11): 100-106. [7] 孙晖, 曹玲, 王喜军. 防风药效物质基础季节积累规律的研究[J]. 中国中医药科技, 2003, 10(6): 355-356. doi: 10.3969/j.issn.1005-7072.2003.06.019 [8] 韩忠明, 胥苗苗, 王云贺, 等. 干旱胁迫对防风叶片保护酶活性、渗透调节物质含量及药材品质的影响[J]. 华南农业大学学报, 2016, 37(6): 91-97. doi: 10.7671/j.issn.1001-411X.2016.06.014 [9] 胥苗苗. 水分胁迫对防风质量、生理生态特性及关键酶活性影响[D]. 长春: 吉林农业大学, 2016. [10] 黄艳茹, 任晓蕾, 霍金海, 等. 影响防风质量因素的研究概况[J]. 中医药信息, 2017, 34(6): 134-138. doi: 10.3969/j.issn.1002-2406.2017.06.038 [11] 郭旭, 田新, 郝佳, 等. 不同产地防风色原酮含量与土壤因子的关系[J]. 华南农业大学学报, 2020, 41(4): 30-37. doi: 10.7671/j.issn.1001-411X.201912004 [12] 邵畅畅, 韦小丽, 周紫晶, 等. 供磷水平对棕榈幼苗生长及根系形态的影响[J]. 东北林业大学学报, 2021, 49(1): 12-15. [13] 张文献, 李增强, 胡亚丽, 等. 不同浓度磷胁迫对大豆幼苗生长及根系DNA甲基化水平的影响[J]. 中国农业大学学报, 2020, 25(12): 9-18. doi: 10.11841/j.issn.1007-4333.2020.12.02 [14] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [15] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. [16] 韩忠明, 王云贺, 李轶雯, 等. 防风色原酮微波辅助提取及含量动态变化研究[J]. 中药材, 2011, 34(3): 465-468. [17] 梁霞, 刘爱琴, 马祥庆, 等. 磷胁迫对不同杉木无性系酸性磷酸酶活性的影响[J]. 植物生态学报, 2005, 29(1): 54-59. doi: 10.3321/j.issn:1005-264X.2005.01.008 [18] 唐荣莉, 王春萍, 王红娟, 等. 低磷胁迫对辣椒苗期生长和生理特性的影响[J]. 西南农业学报, 2020, 33(9): 1933-1942. [19] 王斐. 有机结合态磷对土壤微生物、玉米生长及磷素利用率的影响[D]. 哈尔滨: 东北农业大学, 2013. [20] 余健. 磷胁迫下林木分泌的有机酸及对土壤磷的活化[D]. 南京: 南京林业大学, 2005. [21] 王庆仁, 李继云, 李振声. 植物高效利用土壤难溶态磷研究动态及展望[J]. 植物营养与肥料学报, 1998, 4(2): 107-116. doi: 10.3321/j.issn:1008-505X.1998.02.003 [22] 刘晓霞. 苹果园土壤磷库特征及土壤磷含量和磷源对磷吸收的影响[D]. 泰安: 山东农业大学, 2018. [23] 谢安强, 洪伟, 吴承祯, 等. 内生真菌对低磷胁迫下尾巨桉生理及土壤特性的影响[J]. 西南林业大学学报, 2013, 33(3): 1-7. doi: 10.3969/j.issn.2095-1914.2013.03.001 [24] CHEN H, LI D, XIAO K, et al. Soil microbial processes and resource limitation in karst and non‐karst forests[J]. Functional Ecology, 2018, 32(5): 1400-1409. doi: 10.1111/1365-2435.13069
[25] 李荣坦. 低磷胁迫对番茄根系生长及根际土壤微生物多样性的影响[D]. 南宁: 广西大学, 2016. [26] 徐静, 张锡洲, 李廷轩, 等. 野生大麦对土壤磷吸收及其酸性磷酸酶活性的基因型差异[J]. 草业学报, 2015, 24(1): 88-98. doi: 10.11686/cyxb20150112 [27] 郭轶敏, 文亦芾, 史亮涛, 等. 土壤磷水平对柱花草株高、根长及生物量的影响[J]. 草业与畜牧, 2014(1): 1-4. [28] LIU Y, MI G, CHEN F, et al. Rhizosphere effect and root growth of two maize ( Zea mays L. ) genotypes with contrasting P efficiency at low P availability[J]. Plant Science, 2004, 167(2): 217-223. doi: 10.1016/j.plantsci.2004.02.026
[29] 王鑫, 郭平毅, 原向阳, 等. 2, 4−D丁酯对罂粟(Papaver somniferum L.)保护酶活性及脂质过氧化作用的影响[J]. 生态学报, 2008, 28(3): 1098-1103. doi: 10.3321/j.issn:1000-0933.2008.03.024