• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

不同磷浓度对土壤理化性质及防风生长和药材品质的影响

郝佳, 刘宇航, 殷洁, 刘晶, 田新, 韩忠明, 王云贺, 韩梅, 杨利民

郝佳, 刘宇航, 殷洁, 等. 不同磷浓度对土壤理化性质及防风生长和药材品质的影响[J]. 华南农业大学学报, 2022, 43(3): 59-67. DOI: 10.7671/j.issn.1001-411X.202104024
引用本文: 郝佳, 刘宇航, 殷洁, 等. 不同磷浓度对土壤理化性质及防风生长和药材品质的影响[J]. 华南农业大学学报, 2022, 43(3): 59-67. DOI: 10.7671/j.issn.1001-411X.202104024
HAO Jia, LIU Yuhang, YIN Jie, et al. Effects of different phosphorus concentrations on soil physicochemical property, growth and medicinal materials quality of Saposhnikovia divaricata[J]. Journal of South China Agricultural University, 2022, 43(3): 59-67. DOI: 10.7671/j.issn.1001-411X.202104024
Citation: HAO Jia, LIU Yuhang, YIN Jie, et al. Effects of different phosphorus concentrations on soil physicochemical property, growth and medicinal materials quality of Saposhnikovia divaricata[J]. Journal of South China Agricultural University, 2022, 43(3): 59-67. DOI: 10.7671/j.issn.1001-411X.202104024

不同磷浓度对土壤理化性质及防风生长和药材品质的影响

基金项目: 国家重点研发计划(2019YFC1710700, 2019YFC1710702);吉林省科技发展计划(20200404010YY, 20210204011YY);中央财政林业科技推广示范项目(JLT2020-22, JLT2021-03); 财政部和农业农村部:国家现代农业产业技术体系资助(CARS-21); 吉林省教育厅“十三五”科学技术研究(JJKH20190936KJ)
详细信息
    作者简介:

    郝佳,硕士研究生,主要从事野生动植物保护与利用研究,E-mail: 1719809814@qq.com

    通讯作者:

    韩忠明,教授,博士,主要从事中药资源生态学研究,E-mail: hanzm2008@126.com

  • 中图分类号: R282.2

Effects of different phosphorus concentrations on soil physicochemical property, growth and medicinal materials quality of Saposhnikovia divaricata

  • 摘要:
    目的 

    探讨不同磷浓度处理对土壤特性及防风Saposhnikovia divaricata生长状况、色原酮含量的影响,为防风人工栽培的技术策略制定以及防风对低磷胁迫响应机制的研究提供理论依据。

    方法 

    以2年生防风为材料,设置营养液磷 (NH4H2PO4) 浓度分别为1.0、0.1和0 (无磷) mmol/L,分别在30、60、90 d时测定土壤理化性质及防风生长特性和4种色原酮总含量,分析不同磷浓度处理防风各指标与4种色原酮总含量的关系。

    结果 

    无磷处理下,2年生防风根粗、根生物量在整个处理期间均低于1.0 mmol·L−1磷处理,根长在90 d 时显著高于1.0和0.1 mmol·L−1磷处理;土壤pH 在60 d 后表现为1.0 mmol·L−1磷处理显著高于0.1 mmol·L−1和无磷处理;土壤有机质含量在整个试验期表现为1.0和0.1 mmol·L−1磷处理显著低于无磷处理;90 d 时, 无磷处理的土壤碱解氮含量显著高于1.0和0.1 mmol·L−1磷处理,而土壤有效磷含量0.1 mmol·L−1处理显著高于无磷处理,4 种色原酮总含量0.1 mmol·L−1和无磷处理显著高于1.0 mmol·L−1磷处理。防风根系土壤中酸性磷酸酶活性在30 d 时,3种磷处理间存在显著差异。1.0 mmol·L−1磷处理下,根长、根鲜生物量与4 种色原酮总含量呈正相关;0.1 mmol·L−1磷处理下,碱解氮、有效磷含量和根鲜生物量均与4 种色原酮总含量呈正相关;无磷处理下pH、碱解氮含量、酸性磷酸酶活性均与4种色原酮总含量呈正相关。

    结论 

    防风面对磷胁迫有一系列响应机制,有效成分4种色原酮总含量显著增加,pH、有机质、碱解氮等与酸性磷酸酶协同作用,保证防风对养分的吸收利用。

    Abstract:
    Objective 

    To discuss the effects of different phosphorus concentrations on soil characteristics, growth status and chromone content of Saposhnikovia divaricata, and provide theoretical basis for technical strategy formulation of S. divaricata artificial cultivation and responding mechanism research of S. divaricata to low phosphorus stress.

    Method 

    Two-year-old S. divaricata was used as material, and three phosphorus treatments with NH4H2PO4 concentration of 1.0, 0.1 and 0 (no phosphorus) mmol/L respectively were set up. The soil physical and chemical properties, and the growth characteristics and total contents of four kinds of chromones inS. divaricata were determined on the 30th, 60th, and 90th day to analyze the correlativity between the various indicators and total chromone content under different phosphorus concentrations.

    Result 

    The root diameter and weight of 2-year-old S. divaricata in no phosphorus treatment were lower than those of 1.0 mmol·L−1 phosphorus treatment during the whole treatment period, and the root length after 90 d of treatment was significantly higher than those of 1.0 and 0.1 mmol·L−1 phosphorus treatments. After 60 d of treatment, the soil pH of 1.0 mmol·L−1 phosphorus treatment was significantly higher than those of 0.1 mmol·L−1 and no phosphorus treatments. The contents of soil organic matter in 1.0 and 0.1 mmol·L−1 phosphorus treatments were significantly lower than that in no phosphorus treatment during the whole treatment period. After 90 d of treatment, the alkali-hydrolyzable nitrogen content in soil of no phosphorus treatment was significantly higher than those of 1.0 and 0.1 mmol·L−1 phosphorus treatments, whereas the available phosphorus content in soil of 0.1 mmol·L−1 phosphorus treatment was significantly higher than that of no phosphorus treatment, the total content of four chromones of 0.1 mmol·L−1 and no phosphorus treatments were significantly higher than that of 1.0 mmol·L−1 phosphorus treatment. On the 30 th day of treatment, the activities of acid phosphatase in soil among three treatments were significantly different. There were positive correlations between root diameter/root fresh biomass and chromone content in 1.0 mmol·L−1 phosphorus treatment, between alkali-hydrolyzable nitrogen content/available phosphorus content/root fresh biomass and chromone content in 0.1 mmol·L−1 phosphorus treatment, between pH/alkali-hydrolyzable nitrogen content /acid phosphate activity and chromone content in no phosphorus treatment, respectively.

    Conclusion 

    S. divaricata has a series of response mechanisms to phosphorus stress, including chromone content significantly increasing, synergistic interaction of pH, organic matter, alkali-hydrolyzable nitrogen and acid phosphatase, which ensures the absorption and utilization of nutrients by S. divaricata.

  • 图  1   不同磷浓度对防风土壤理化性质的影响

    各图中,相同处理时间柱子上方的不同小写字母表示不同磷浓度间差异显著(P<0.05,Duncan’s法)

    Figure  1.   Effects of different phosphorus concentrations on physicochemical properties of soil in which Saposhnikovia divaricata was grown

    In each figure, different lowercase letters on the columns of the same treatment time indicate significant differences among different phosphorus concentrations (P<0.05, Duncan’s method)

    图  2   不同磷浓度对防风土壤酸性磷酸酶活性的影响

    相同处理时间柱子上方的不同小写字母表示不同磷浓度间差异显著(P<0.05,Duncan’s法)

    Figure  2.   Effects of different phosphorus concentrations on acid phosphatase activity of soil in which Saposhnikovia divaricata was grown

    Different lowercase letters on the columns of the same treatment time indicate significant differences among different phosphorus concentrations (P<0.05, Duncan’s method)

    图  3   不同磷浓度对防风生长的影响

    各图中,相同处理时间柱子上方的不同小写字母表示不同磷浓度间差异显著(P<0.05,Duncan’s法)

    Figure  3.   Effects of different phosphorus concentrations on growth of Saposhnikovia divaricata

    In each figure, different lowercase letters on the columns of the same treatment time indicate significant differences among different phosphorus concentrations (P<0.05, Duncan’s method)

    图  4   不同磷浓度下防风4种色原酮总含量变化

    相同处理时间柱子上方的不同小写字母表示不同磷浓度间差异显著(P<0.05,Duncan’s法)

    Figure  4.   Changes in total content of four chromones of Saposhnikovia divaricata in different phosphorus concentrations

    Different lowercase letters on the columns of the same treatment indicate significant differences among different phosphorus concentrations (P<0.05, Duncan’s method)

    图  5   不同磷浓度下的土壤理化性质、防风生长指标与4种色原酮总含量的相关关系

    1:根长,2:根粗,3:根鲜生物量,4:根干生物量,5:pH,6:电导率,7:有机质含量,8:碱解氮含量,9:有效磷含量,10:速效钾含量,11:酸性磷酸酶活性,12:4种色原酮总含量;“*”和“**”分别表示2个指标间显著(P<0.05)和极显著(P<0.01)相关(Pearson检验)

    Figure  5.   Correlation between soil physicochemical property, growth index with total content of four chromones of Saposhnikovia divaricataunder different phosphorus concentrations

    1: Root length, 2: Root diameter, 3: Root fresh biomass, 4: Root dry biomass, 5: pH, 6: Conductivity, 7: Organic matter content, 8: Alkali-hydrolyzale nitrogen content, 9: Available phosphorus content, 10: Available potassium content, 11: Acid phosphatase activity, 12: Total content of four chromones; “*” and “**” indicate significant correlations at 0.05 and 0.01 levels, respectively(Pearson test)

    表  1   不同磷浓度下的土壤因子、防风生长指标与4种色原酮总含量的灰色关联度分析

    Table  1   Grey correlation analysis between soil factors, growth index with total content of four chromones of Saposhnikovia divaricataunder different phosphorus concentrations

    因子 Factor 关联系数 Correlation coefficient
    1.0 mmol·L−1 0.1 mmol·L−1 0 mmol·L−1
    根长Root length 0.496 0.447 0.500
    根粗 Root diameter 0.386 0.447 0.444
    根鲜生物量 Root fresh biomass 0.406 0.423 0.396
    根干生物量 Root dry biomass 0.413 0.351 0.423
    pH 0.445 0.448 0.524
    电导率 Conductivity 0.334 0.332 0.320
    有机质含量 Organic matter content 0.295 0.334 0.486
    碱解氮含量 Alkali-hydrolyzale nitrogen content 0.274 0.451 0.442
    速效磷含量 Available phosphorus content 0.323 0.297 0.292
    速效钾含量 Available potassium content 0.270 0.355 0.328
    酸性磷酸酶活性 Acid phosphatase activity 0.394 0.459 0.460
    下载: 导出CSV

    表  2   不同磷浓度下的土壤理化性质、防风生长指标与4种色原酮总含量的通径系数1)

    Table  2   Path coefficient between soil factors, growth index with total content of four chromones of Saposhnikovia divaricata under different phosphorus concentrations

    c(P)/
    (mmol·L−1)
    变量
    Variate
    直接系数
    Direct coefficient
    间接系数 Indirect coefficient
    x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
    1.0 x1 −0.085 −0.012 0.037 0.003 0.082 −0.079 0.001 0.367 0.270 −0.017 −0.090
    x2 0.087 0.012 0.111 −0.014 −0.024 0.251 −0.023 −0.235 −0.116 −0.271 −0.035
    x3 0.173 −0.018 0.056 −0.018 0.012 −0.002 0.025 −0.002 0.029 −0.091 0.141
    x4 −0.041 0.005 0.029 0.076 0.010 0.210 0.007 −0.209 −0.044 −0.115 0.058
    x5 −0.174 0.040 0.012 −0.012 0.002 −0.114 0.049 −0.317 −0.391 0.230 0.249
    x6 0.585 0.012 0.037 −0.001 −0.015 0.034 −0.057 −0.102 0.031 −0.308 −0.313
    x7 −0.099 0.000 0.020 −0.044 0.003 0.086 0.333 0.052 0.143 −0.306 −0.397
    x8 −0.595 0.053 0.035 0.001 −0.014 −0.093 0.100 0.009 −0.365 0.052 0.099
    x9 −0.489 0.047 0.021 −0.010 −0.004 −0.139 −0.037 0.029 −0.444 0.178 0.237
    x10 −0.497 −0.003 0.048 0.032 −0.009 0.080 0.362 −0.061 0.062 0.175 −0.202
    x11 −0.523 −0.015 0.006 −0.047 0.005 0.083 0.350 −0.075 0.112 0.222 −0.192
    0.1 x1 −0.229 0.032 −0.081 0.007 −0.226 0.150 0.002 0.000 0.004 0.057 0.007
    x2 −0.103 0.071 0.140 −0.042 0.256 −0.195 −0.005 −0.027 −0.040 −0.073 −0.008
    x3 0.233 0.079 −0.062 −0.048 0.203 −0.144 −0.002 −0.006 −0.032 −0.043 −0.017
    x4 −0.061 0.027 −0.070 0.181 0.149 −0.144 −0.002 −0.013 −0.037 −0.059 −0.013
    x5 −0.505 −0.102 0.052 −0.094 0.018 0.390 0.003 0.005 −0.030 0.132 0.018
    x6 −0.534 0.064 −0.037 0.063 −0.017 0.369 −0.005 0.012 0.056 −0.162 −0.032
    x7 −0.008 0.042 −0.063 0.044 −0.016 0.150 −0.315 −0.008 −0.006 −0.091 −0.020
    x8 −0.060 0.000 −0.046 0.023 −0.013 0.041 0.106 −0.001 −0.059 0.021 0.013
    x9 −0.113 0.007 −0.037 0.067 −0.020 −0.134 0.266 0.000 −0.032 0.081 0.017
    x10 −0.171 0.077 −0.044 0.059 −0.021 0.391 −0.507 −0.004 0.008 0.053 −0.025
    x11 −0.045 0.037 −0.018 0.087 −0.018 0.206 −0.380 −0.004 0.017 0.042 −0.093
    0 x1 0.157 −0.509 0.277 −0.013 0.647 −0.151 0.003 0.051 −0.544 −0.043 0.036
    x2 −1.214 0.066 0.298 −0.023 1.011 −0.237 0.008 0.050 −0.177 −0.077 0.059
    x3 0.616 0.071 −0.588 −0.030 0.339 −0.136 −0.009 −0.048 −0.146 −0.022 −0.122
    x4 −0.038 0.054 −0.710 0.487 0.397 −0.104 −0.008 −0.007 −0.026 −0.025 −0.105
    x5 −1.234 −0.082 0.994 −0.169 0.012 0.346 −0.013 −0.110 0.412 0.112 −0.048
    x6 −0.508 0.047 −0.567 0.165 −0.008 0.840 0.013 −0.250 0.540 −0.166 −0.175
    x7 0.026 0.020 −0.366 −0.225 0.012 0.642 −0.260 −0.016 0.131 −0.088 0.068
    x8 0.914 0.009 −0.066 −0.033 0.000 0.148 0.139 −0.001 −1.225 0.076 0.160
    x9 −1.664 0.051 −0.129 0.054 −0.001 0.306 0.165 −0.002 0.673 0.078 0.200
    x10 −0.192 0.035 −0.484 0.070 −0.005 0.717 −0.438 0.012 −0.360 0.673 −0.191
    x11 −0.354 −0.016 0.203 0.213 −0.011 −0.168 −0.250 −0.005 −0.413 0.942 −0.104
     1) x1:根长;x2:根粗;x3:根鲜生物量;x4:根干生物量;x5:pH;x6:电导率;x7:有机质含量;x8:碱解氮含量;x9:有效磷含量;x10:速效钾含量;x11:酸性磷酸酶活性
     1) x1: Root length; x2: Root diameter; x3: Root fresh biomass; x4: Root dry biomass; x5: pH; x6: Conductivity; x7: Organic matter content; x8: Alkali-hydrolyzale nitrogen content; x9: Available phosphorus content; x10: Available potassium content; x11: Acid phosphatase activity
    下载: 导出CSV
  • [1] 陈敏旺. 吉林省农田耕层土壤速效氮磷钾养分的时空变化特征[D]. 长春: 吉林农业大学, 2018.
    [2] 张智猛, 戴良香, 张电学, 等. 施磷对土壤有效磷含量、吸磷特性及小麦产量的影响[J]. 河北农业技术师范学院学报, 1999, 1(1): 12-16.
    [3] 裴洲洋, 陈油鸿, 江春, 等. 不同施肥结构对土壤理化性质及烤烟氮、磷、钾含量的影响[J]. 安徽农学通报, 2016, 22(21): 35-37. doi: 10.3969/j.issn.1007-7731.2016.21.014
    [4] 张烨. 低磷胁迫诱导植物酸性磷酸酶的分子调控机制[D]. 北京: 清华大学, 2014.
    [5] 国家药典委员会. 中华人民共和国药典: Ⅰ部[M]. 北京: 中国医药科技出版社, 2020: 156.
    [6] 韩忠明, 王云贺, 胥苗苗, 等. 干旱胁迫对防风生理特性及品质的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(11): 100-106.
    [7] 孙晖, 曹玲, 王喜军. 防风药效物质基础季节积累规律的研究[J]. 中国中医药科技, 2003, 10(6): 355-356. doi: 10.3969/j.issn.1005-7072.2003.06.019
    [8] 韩忠明, 胥苗苗, 王云贺, 等. 干旱胁迫对防风叶片保护酶活性、渗透调节物质含量及药材品质的影响[J]. 华南农业大学学报, 2016, 37(6): 91-97. doi: 10.7671/j.issn.1001-411X.2016.06.014
    [9] 胥苗苗. 水分胁迫对防风质量、生理生态特性及关键酶活性影响[D]. 长春: 吉林农业大学, 2016.
    [10] 黄艳茹, 任晓蕾, 霍金海, 等. 影响防风质量因素的研究概况[J]. 中医药信息, 2017, 34(6): 134-138. doi: 10.3969/j.issn.1002-2406.2017.06.038
    [11] 郭旭, 田新, 郝佳, 等. 不同产地防风色原酮含量与土壤因子的关系[J]. 华南农业大学学报, 2020, 41(4): 30-37. doi: 10.7671/j.issn.1001-411X.201912004
    [12] 邵畅畅, 韦小丽, 周紫晶, 等. 供磷水平对棕榈幼苗生长及根系形态的影响[J]. 东北林业大学学报, 2021, 49(1): 12-15.
    [13] 张文献, 李增强, 胡亚丽, 等. 不同浓度磷胁迫对大豆幼苗生长及根系DNA甲基化水平的影响[J]. 中国农业大学学报, 2020, 25(12): 9-18. doi: 10.11841/j.issn.1007-4333.2020.12.02
    [14] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
    [15] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
    [16] 韩忠明, 王云贺, 李轶雯, 等. 防风色原酮微波辅助提取及含量动态变化研究[J]. 中药材, 2011, 34(3): 465-468.
    [17] 梁霞, 刘爱琴, 马祥庆, 等. 磷胁迫对不同杉木无性系酸性磷酸酶活性的影响[J]. 植物生态学报, 2005, 29(1): 54-59. doi: 10.3321/j.issn:1005-264X.2005.01.008
    [18] 唐荣莉, 王春萍, 王红娟, 等. 低磷胁迫对辣椒苗期生长和生理特性的影响[J]. 西南农业学报, 2020, 33(9): 1933-1942.
    [19] 王斐. 有机结合态磷对土壤微生物、玉米生长及磷素利用率的影响[D]. 哈尔滨: 东北农业大学, 2013.
    [20] 余健. 磷胁迫下林木分泌的有机酸及对土壤磷的活化[D]. 南京: 南京林业大学, 2005.
    [21] 王庆仁, 李继云, 李振声. 植物高效利用土壤难溶态磷研究动态及展望[J]. 植物营养与肥料学报, 1998, 4(2): 107-116. doi: 10.3321/j.issn:1008-505X.1998.02.003
    [22] 刘晓霞. 苹果园土壤磷库特征及土壤磷含量和磷源对磷吸收的影响[D]. 泰安: 山东农业大学, 2018.
    [23] 谢安强, 洪伟, 吴承祯, 等. 内生真菌对低磷胁迫下尾巨桉生理及土壤特性的影响[J]. 西南林业大学学报, 2013, 33(3): 1-7. doi: 10.3969/j.issn.2095-1914.2013.03.001
    [24]

    CHEN H, LI D, XIAO K, et al. Soil microbial processes and resource limitation in karst and non‐karst forests[J]. Functional Ecology, 2018, 32(5): 1400-1409. doi: 10.1111/1365-2435.13069

    [25] 李荣坦. 低磷胁迫对番茄根系生长及根际土壤微生物多样性的影响[D]. 南宁: 广西大学, 2016.
    [26] 徐静, 张锡洲, 李廷轩, 等. 野生大麦对土壤磷吸收及其酸性磷酸酶活性的基因型差异[J]. 草业学报, 2015, 24(1): 88-98. doi: 10.11686/cyxb20150112
    [27] 郭轶敏, 文亦芾, 史亮涛, 等. 土壤磷水平对柱花草株高、根长及生物量的影响[J]. 草业与畜牧, 2014(1): 1-4.
    [28]

    LIU Y, MI G, CHEN F, et al. Rhizosphere effect and root growth of two maize ( Zea mays L. ) genotypes with contrasting P efficiency at low P availability[J]. Plant Science, 2004, 167(2): 217-223. doi: 10.1016/j.plantsci.2004.02.026

    [29] 王鑫, 郭平毅, 原向阳, 等. 2, 4−D丁酯对罂粟(Papaver somniferum L.)保护酶活性及脂质过氧化作用的影响[J]. 生态学报, 2008, 28(3): 1098-1103. doi: 10.3321/j.issn:1000-0933.2008.03.024
图(5)  /  表(2)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  18
  • PDF下载量:  556
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-05-09

目录

    YANG Limin

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回