Effects of drip fertigation under shade on soil quality and water use of Coffea arabica
-
摘要:目的
探究遮阴下不同水肥耦合模式对小粒种咖啡根区土壤质量及水分利用的影响。
方法以小粒种咖啡为研究对象,在30%遮阴度下,试验设2因素(灌水和施肥)3水平完全设计,共9个处理。3个灌水水平:高水(WH:1.2 Ep)、中水(WM:1.0 Ep)和低水(WL:0.8 Ep);3个施肥水平:高肥(FH:530.00 kg·hm−2)、中肥(FM:353.33 kg·hm−2)和低肥(FL:176.67 kg·hm−2)。分析小粒种咖啡根区土壤养分、微生物数量、酶活性、干物质量及灌溉水分利用效率对水肥调控的响应规律,通过隶属函数和因子分析相结合对土壤质量进行综合评价,再以TOPSIS法综合分析,找出小粒种咖啡最佳水肥耦合模式。
结果灌水水平和施肥水平对小粒种咖啡根区土壤养分、微生物数量、酶活性(除秋季过氧化氢酶)、根干物质量、树干干物质量、总干物质量和灌溉水分利用效率影响显著。FHWL处理的硝态氮、速效磷和速效钾含量季均值最高;FMWH处理的土壤微生物数量和酶活性季均值最高。与FLWL处理相比,FHWL处理的土壤硝态氮、速效磷和速效钾含量季均值分别增加72.61%、154.01%和7.37%,FMWH处理的土壤细菌、真菌和放线菌数量季均值分别增加121.81%、61.73%和41.43%,且脲酶、过氧化氢酶和磷酸酶活性季均值分别增加46.67%、42.74%和22.55%。土壤硝态氮含量与过氧化氢酶活性存在显著正相关;土壤细菌、真菌和放线菌数量分别与脲酶、过氧化氢酶和磷酸酶活性存在显著正相关。隶属函数和因子分析相结合的方法表明,FMWH处理土壤质量指数最高(0.75)。FMWH处理的总干物质量(38011.50 kg·hm−2)最大,FMWL处理的灌溉水分利用效率(7.88 kg·m−3)最大。TOPSIS法表明,FMWM处理的土壤质量、干物质和灌溉水分利用效率综合效益排名第1,其次是FMWH处理。
结论在30%遮阴度下,FMWM处理为改善土壤质量且促进小粒种咖啡高效生产的最佳水肥耦合模式。
Abstract:ObjectiveTo explore the effects of different coupling modes of water-fertilizer on root zone soil quality and water use of Coffea arabica under shade.
MethodC. arabica was chosen as test material, under 30% shading degree, three irrigation levels (WH: 1.2 Ep, WM: 1.0 Ep, WL: 0.8 Ep) and three fertilization levels (FH: 530.00 kg·hm−2, FM: 353.33 kg·hm−2, FL: 176.67 kg·hm−2) were completely designed with a total of nine treatments. The response laws of soil nutrient, microbial quantity, enzyme activities, dry mass and irrigation water use efficiency in root zone of C. arabica to water-fertilizer regulation were analyzed, and soil quality was comprehensively evaluated by combining membership function with factor analysis, and then the optimal water-fertilizer coupling mode of C. arabica was found by TOPSIS comprehensive analysis.
ResultIrrigation level and fertilization level had significant effects on soil nutrient, microbial quantity, enzyme activities (except catalase in autumn), root dry mass, stem dry mass, total dry mass and irrigation water use efficiency of C. arabica root zone. The average seasonal values of nitrate nitrogen, available phosphorus and available potassium contents in FHWL treatment were the highest. The average seasonal values of soil microorganism quantity and enzyme activities were the highest in FMWH treatment. Compared with FLWL treatment, FHWL treatment increased the average seasonal values of soil nitrate-nitrogen, available phosphorus and available potassium contents by 72.61%, 154.01% and 7.37%, respectively; FMWH treatment increased the average seasonal values of soil bacteria, fungi and actinomycetes number by 121.81%, 61.73% and 41.43%, respectively, and increased the average seasonal values of urease, catalase and phosphatase activities by 46.67%, 42.74% and 22.55%, respectively. There was a significant positive correlation between soil nitrate nitrogen content and catalase activity. The number of soil bacteria, fungi and actinomycetes were significantly positively correlated with the activities of urease, catalase and phosphatase, respectively. The combination of membership function and factor analysis showed that soil quality index of FMWH treatment was the highest (0.75). The total dry mass (38 011.50 kg·hm−2) of FMWH treatment was the highest, and the irrigation water use efficiency (7.88 kg·m−3) of FMWL treatment was the highest. However, TOPSIS method showed that the comprehensive benefit (soil quality, dry matter and irrigation water use efficiency) of FMWM treatment ranked the first, followed by FMWH treatment.
ConclusionUnder 30% shading degree, FMWM treatment was the best coupling mode of water-fertilizer for improving soil quality and promoting efficient production of C. arabica .
-
Keywords:
- Coffea arabica /
- Drip fertigation /
- Soil quality /
- Dry mass /
- Irrigation water use efficiency
-
-
表 1 滴灌施肥下小粒种咖啡根区土壤养分的季节变化1)
Table 1 Seasonal changes of soil nutrients in root zone of Coffea arabica under drip fertigation
w/(mg·kg−1) 施肥水平
Fertilizer
level灌水水平
Irrigation
level硝态氮 Nitrate nitrogen 速效磷 Available phosphorus 速效钾 Available potassium 春季
Spring夏季
Summer秋季
Autumn季均值
Season average春季
Spring夏季
Summer秋季
Autumn季均值
Season average春季
Spring夏季
Summer秋季
Autumn季均值
Season averageFL WL 54.63±2.48e 37.85±3.11f 44.76±2.59f 45.75±8.43b 15.88±1.57cd 11.05±0.83d 12.33±1.46de 13.09±2.50c 120.92±4.53d 122.32±3.07c 137.98±2.18c 127.07±9.47c WM 50.87±4.91e 38.85±2.43f 41.08±2.03g 43.60±6.39b 13.61±0.98e 9.15±0.71d 10.55±0.96e 11.10±2.28cde 99.96±3.55ef 83.88±2.90f 93.17±2.22f 92.34±8.07e WH 43.62±4.07f 39.85±1.91h 36.08±1.69h 39.85±3.77b 9.79±1.03f 6.06±0.38e 7.85±0.81f 7.90±1.87de 73.52±2.88g 67.89±1.43g 80.02±5.09g 73.81±6.07f FM WL 77.45±1.81c 40.85±3.06c 67.67±2.63cd 61.99±18.95ab 17.50±0.58c 11.28±0.53d 13.56±1.65d 14.11±3.15c 158.39±5.90b 145.97±3.01b 162.21±2.73b 155.52±8.49b WM 75.74±4.01c 41.85±1.40d 64.24±1.67d 60.61±17.23ab 14.25±1.16de 10.06±0.71d 11.28±0.78de 11.86±2.16cd 129.10±3.09c 111.65±2.43d 125.05±2.39d 121.93±9.13c WH 63.97±3.76d 42.85±3.56e 54.41±2.06e 53.74±10.58ab 8.64±0.44f 5.61±0.36e 7.42±0.63f 7.22±1.52e 96.56±1.99f 82.54±1.32f 92.55±4.08f 90.55±7.22e FH WL 99.13±5.33a 43.85±2.58a 93.92±2.53a 78.97±30.52a 35.03±1.53a 31.60±2.53a 33.12±1.88a 33.25±1.72a 175.65±6.09a 167.45±7.38a 180.54±3.66a 174.55±6.61a WM 88.88±2.56b 44.85±3.60b 78.98±1.98b 70.90±23.1ab 32.41±1.45b 28.50±1.55b 30.29±1.62b 30.40±1.96ab 135.44±4.35c 125.54±3.75c 136.58±1.59c 132.52±6.07c WH 75.27±3.13c 45.85±1.34cd 68.34±1.76c 63.15±15.38ab 30.91±1.63b 25.83±1.84c 27.66±1.10c 28.13±2.57b 106.54±3.37e 102.54±2.25e 115.25±3.33e 108.11±6.50d P F <0.01** <0.01** <0.01** <0.01** <0.01** <0.01** <0.01** <0.01** <0.01** <0.01** <0.01** <0.01** W <0.01** <0.01** <0.01** 0.47 <0.01** <0.01** <0.01** <0.01** <0.01** <0.01** <0.01** <0.01** F×W 0.06 <0.01** <0.01** 0.99 0.03* 0.66 0.78 0.90 <0.01** 0.02* 0.01* 0.44 1)同列数据后的不同小写字母表示处理间差异显著(P<0.05, Duncan’s法);“*”和“**”分别表示在P<0.05和P<0.01水平差异显著(单因素方差分析方法)
1)Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05, Duncan’s method); “*” and “**” indicate significant differences atP<0.05 andP<0.01 levels respectively (One-way ANOVA test)表 2 滴灌施肥下小粒种咖啡根区土壤微生物数量的季节变化1)
Table 2 Seasonal changes of soil microbial quantity in root zone of Coffea arabica under drip fertigation
施肥水平
Fertilizer
level灌水水平
Irrigation
level细菌/(×107 CFU·g−1) Bacteria 真菌/(×103 CFU·g−1) Fungi 放线菌/(×105 CFU·g−1) Actinomycetes 春季
Spring夏季
Summer秋季
Autumn季均值
Season average春季
Spring夏季
Summer秋季
Autumn季均值
Season average春季
Spring夏季
Summer秋季
Autumn季均值
Season averageFL WL 3.64±0.44e 4.27±0.29g 1.72±0.35e 3.21±1.33c 5.61±0.30e 4.49±0.26e 9.35±0.27e 6.48±2.54a 9.57±0.08f 11.38±0.42e 7.57±0.17e 9.51±1.91b WM 4.65±0.10d 5.46±0.34d 2.55±0.33d 4.22±1.50bc 6.42±0.33d 5.46±0.39d 10.49±0.18d 7.46±2.67a 10.77±0.15d 12.51±0.21d 8.51±0.23d 10.60±2.01ab WH 5.55±0.11c 6.52±0.45c 3.59±0.22c 5.22±1.49abc 7.52±0.28c 6.47±0.48c 11.49±0.45c 8.49±2.65a 11.56±0.20c 13.53±0.36c 9.38±0.21c 11.49±2.07ab FM WL 5.35±0.09c 6.45±0.32c 3.52±0.22c 5.11±1.48abc 7.32±0.30c 6.31±0.15c 11.42±0.13c 8.35±2.71a 11.36±0.24c 13.37±0.41c 9.73±0.33c 11.49±1.82ab WM 6.89±0.05b 7.41±0.35b 4.69±0.18b 6.33±1.44ab 8.32±0.12b 7.52±0.44b 12.49±0.25b 9.44±2.67a 12.71±0.25b 14.37±0.42b 10.56±0.25b 12.55±1.91ab WH 7.42±0.36a 8.50±0.35a 5.45±0.30a 7.12±1.55a 9.47±0.17a 8.50±0.28a 13.47±0.14a 10.48±2.63a 13.48±0.24a 15.30±0.15a 11.57±0.20a 13.45±1.87a FH WL 4.48±0.13d 5.63±0.41d 2.44±0.20d 4.18±1.62bc 6.26±0.12d 5.44±0.25d 10.61±0.20d 7.44±2.78a 10.50±0.15de 12.62±0.22d 8.58±0.27d 10.57±2.02ab WM 5.30±0.10c 6.35±0.38c 3.64±0.12c 5.10±1.37abc 7.63±0.17c 6.55±0.24c 11.38±0.31c 8.52±2.53a 11.57±0.40c 13.66±0.27c 9.64±0.27c 11.62±2.01ab WH 6.69±0.27b 7.62±0.18b 4.57±0.34b 6.29±1.56ab 8.55±0.12b 7.33±0.27b 12.53±0.20b 9.47±2.72a 12.72±0.27b 14.50±0.33a 10.60±0.20b 12.61±1.95ab P F <0.01** <0.01** <0.01** 0.04* <0.01** <0.01** <0.01** 0.32 <0.01** <0.01** <0.01** 0.13 W <0.01** <0.01** <0.01** 0.03* <0.01** <0.01** <0.01** 0.28 <0.01** <0.01** <0.01** 0.12 F×W 0.03* 0.84 0.67 1.00 0.32 0.89 0.78 1.00 0.60 0.96 0.91 1.00 1)同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法);“*”和“**”分别表示在P<0.05和P<0.01水平差异显著(单因素方差分析方法)
1)Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05, Duncan’s method); “*” and “**” indicate significant differences atP<0.05 andP<0.01 levels respectively (One-way ANOVA test)表 3 滴灌施肥下小粒种咖啡根区土壤酶活性季节变化1)
Table 3 Seasonal changes of soil enzyme activity in root zone of Coffea arabica under drip fertigation
mg·g−1·d−1 施肥水平
Fertilizer
level灌水水平
Irrigation
level脲酶 Urease 过氧化氢酶 Catalase 春季
Spring夏季
Summer秋季
Autumn季均值
Season average春季
Spring夏季
SummerFL WL 0.30±0.02g 0.29±0.01e 0.32±0.01g 0.30±0.02f 1.37±0.03e 1.12±0.02g WM 0.33±0.01f 0.32±0.01d 0.35±0.01f 0.33±0.02e 1.38±0.01e 1.16±0.01f WH 0.36±0.01e 0.34±0.01c 0.37±0.01e 0.36±0.02de 1.39±0.02e 1.19±0.01e FM WL 0.39±0.01cd 0.36±0.01c 0.39±0.01d 0.38±0.02cd 1.94±0.02b 1.74±0.01b WM 0.41±0.01b 0.40±0.01ab 0.42±0.01b 0.41±0.01ab 1.96±0.02ab 1.77±0.01a WH 0.44±0.01a 0.42±0.02a 0.45±0.02a 0.44±0.02a 1.98±0.02a 1.79±0.02a FH WL 0.37±0.02de 0.36±0.02c 0.39±0.01de 0.37±0.02d 1.63±0.03d 1.44±0.02d WM 0.39±0.01cd 0.36±0.03c 0.40±0.01cd 0.38±0.02bcd 1.67±0.01c 1.46±0.02d WH 0.40±0.02bc 0.39±0.01b 0.42±0.01bc 0.40±0.02bc 1.68±0.01c 1.49±0.02c P F <0.01** <0.01** <0.01** <0.01** <0.01** <0.01** W <0.01** <0.01** <0.01** <0.01** <0.01** <0.01** F×W 0.41 0.25 0.12 0.59 0.59 0.42 施肥水平
Fertilizer
level灌水水平
Irrigation
level过氧化氢酶 Catalase 磷酸酶 Phosphatase 秋季
Autumn季均值
Season average春季
Spring夏季
Summer秋季
Autumn季均值
Season averageFL WL 1.24±0.01c 1.24±0.13b 75.73±2.15g 56.33±4.90f 84.56±2.42e 72.21±14.44a WM 1.26±0.01c 1.27±0.11b 80.04±2.26f 59.04±2.72ef 88.88±3.89de 75.99±15.33a WH 1.28±0.02c 1.29±0.10b 83.52±0.91de 62.39±1.21cde 92.39±1.82cd 79.43±15.41a FM WL 1.55±0.01b 1.74±0.20a 84.81±1.04cde 63.44±1.29cde 93.16±3.11cd 80.47±15.33a WM 1.56±0.01b 1.76±0.20a 88.17±0.41b 67.20±2.49bc 99.78±3.37ab 85.05±16.51a WH 1.55±0.14b 1.77±0.22a 91.53±0.89a 72.70±2.21a 101.25±4.22a 88.49±14.52a FH WL 1.83±0.02a 1.63±0.20a 82.76±2.33ef 61.77±2.81de 91.77±1.99cd 78.77±15.39a WM 1.86±0.02a 1.66±0.20a 85.92±2.54bcd 65.26±1.30bcd 94.90±1.63bc 82.03±15.20a WH 1.89±0.01a 1.69±0.20a 87.68±1.08bc 68.28±2.46ab 98.42±1.55ab 84.79±15.28a P F <0.01** <0.01** <0.01** <0.01** <0.01** 0.474 W 0.35 0.88 <0.01** <0.01** <0.01** 0.620 F×W 0.87 1.00 0.67 0.82 0.86 1.00 1)同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法);“*”和“**”分别表示在P<0.05和P<0.01水平差异显著(单因素方差分析方法)
1)Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05, Duncan’s method); “*” and “**” indicate significant differences atP<0.05 andP<0.01 levels respectively (One-way ANOVA test)表 4 土壤养分含量、微生物数量和酶活性的相关性分析1)
Table 4 Correlation analysis of soil nutrient content and microbial quantity and enzyme activity
项目
Item硝态氮
Nitrate
nitrogen速效磷
Available
phosphorus速效钾
Available
potassium细菌
Bacteria真菌
Fungi放线菌
Actinomycetes脲酶
Urease过氧化
氢酶
Catalase磷酸酶
Phosphatase硝态氮 Nitrate nitrogen 1.00 速效磷 Available phosphorus 0.84** 1.00 速效钾 Available potassium 0.79* 0.63 1.00 细菌 Bacteria 0.12 −0.17 −0.36 1.00 真菌 Fungi 0.13 −0.16 −0.37 0.99** 1.00 放线菌 Actinomycetes 0.16 −0.13 −0.34 0.99** 0.99** 1.00 脲酶 Urease 0.40 0.04 −0.07 0.94** 0.95** 0.95** 1.00 过氧化氢酶 Catalase 0.71* 0.31 0.38 0.71* 0.71* 0.73* 0.87** 1.00 磷酸酶 Phosphatase 0.33 0.02 −0.19 0.97** 0.98** 0.98** 0.99** 0.83** 1.00 1)“*”和“**”分别表示达0.05和0.01水平的显著相关(双尾检测)
1) “*”and“**”indicate significant correlation at 0.05 and 0.01 levels, respectively (Double tail detection)表 5 滴灌施肥对小粒种咖啡干物质累积及灌溉水分利用效率的影响1)
Table 5 Effects of drip fertigation on dry mass accumulation and irrigation water use efficiency of Coffea arabica
施肥水平
Fertilizer
level灌水水平
Irrigation
level干物质量/(kg·hm−2) Dry mass 灌溉水分利用效率/(kg·m−3)
Irrigation water
use efficiency根
Root枝
Branch叶
Leaf树干
Trunk总干物质量
Total dry massFL WL 8083.33±
159.00d3733.67±
882.33b10884.17±
1 886.17a6022.17±
570.17d28723.33±
2 532.67d3.83±0.10c WM 8461.00±
547.83cd4207.83±
797.00ab11658.83±
2 495.33a6533.50±
540.33cd30861.17±
2 201.00cd3.29±0.09d WH 8917.17±
557.00bcd4822.00±
1694.33ab11960.67±
2 049.83a6667.00±
606.17cd32366.83±
434.33bcd2.88±0.10e FM WL 9411.50±
885.67abc5210.17±
390.67ab12471.83±
1 042.50a7000.83±
687.33bc34094.33±
2 868.67abc4.55±0.09a WM 9822.33±
497.83abc5510.00±
698.00ab13067.00±
2 035.67a7768.00±
404.17ab36167.33±
2 203.67ab3.86±0.10bc WH 10228.00±
621.50a5960.83±
1131.33a13583.33±
2 441.67a8239.33±
178.17a38011.50±
3 031.83a3.38±0.17d FH WL 8501.17±
682.5cd4922.50±
516.83ab11254.83±
2 224.17a6038.50±
550.33d30717.00±
2 658.33cd4.10±0.12b WM 8884.17±
732.83bcd5217.00±
1 020.83ab11616.67±
1 696.67a6438.00±
305.67cd32155.83±
1265.33bcd3.43±0.15d WH 9087.83±
315.00bcd5672.33±
1350.00ab12138.33±
1274.83a6773.50±
419.50cd33672.00±
2 029.83bc2.99±0.11e P F <0.01** 0.04* 0.22 <0.01** <0.01** <0.01** W 0.05* 0.22 0.55 <0.01** 0.02* <0.01** F×W 0.99 1.00 1.00 0.85 1.00 0.69 1)同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法);“*”和“**”分别表示在P<0.05和P<0.01水平差异显著(单因素方差分析方法)
1)Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05, Duncan’s method); “*” and “**” indicate significant differences atP<0.05 andP<0.01 levels respectively (One-way ANOVA test)表 6 小粒种咖啡不同滴灌施肥方案的TOPSIS综合分析
Table 6 TOPSIS comprehensive analysis of different drip fertigation schemes for Coffea arabica
施肥水平
Fertilizer
level灌水水平
Irrigation
level评价指标加权归一化
Weighted normalization
of evaluation index正负理想解距离
Positive and negative
ideal solution distance接近度
Proximity
(Ci)排名
Ranking土壤质量
Soil quality干物质量
Dry matter灌溉水分利用效率
Irrigation water use efficiencyDi+ Di− FL WL 0.016 0.102 0.121 0.125 0.027 0.176 9 WM 0.034 0.110 0.108 0.109 0.024 0.180 8 WH 0.052 0.115 0.095 0.098 0.038 0.281 7 FM WL 0.102 0.121 0.144 0.035 0.100 0.742 3 WM 0.123 0.128 0.127 0.022 0.114 0.841 1 WH 0.134 0.135 0.111 0.033 0.124 0.790 2 FH WL 0.104 0.109 0.130 0.042 0.095 0.691 6 WM 0.113 0.114 0.113 0.043 0.099 0.698 5 WH 0.127 0.119 0.098 0.049 0.113 0.699 4 权重
Weight0.2958 0.3522 0.3520 正理想解
Positive ideal solution0.134 0.135 0.144 负理想解
Negative ideal solution0.016 0.102 0.095 -
[1] 郝琨, 费良军, 刘小刚, 等. 香蕉树中度荫蔽下充分灌水提高干热区咖啡产量及品质[J]. 农业工程学报, 2019, 35(12): 72-80. doi: 10.11975/j.issn.1002-6819.2019.12.009 [2] 彭有亮, 刘小刚, 韩志慧, 等. 不同蓖麻荫蔽模式下亏缺灌溉对小粒咖啡生长及土壤微生物数量的影响[J]. 生态学杂志, 2019, 38(10): 2968-2974. [3] CAO X, YANG P, ENGEL B A, et al. The effects of rainfall and irrigation on cherry root water uptake under drip irrigation[J]. Agricultural Water Management, 2018, 197: 9-18. doi: 10.1016/j.agwat.2017.10.021
[4] 刘小刚, 张岩, 程金焕, 等. 水氮耦合下小粒咖啡幼树生理特性与水氮利用效率[J]. 农业机械学报, 2014, 45(8): 160-166. doi: 10.6041/j.issn.1000-1298.2014.08.025 [5] 李欢欢, 刘浩, 庞婕, 等. 水氮互作对盆栽番茄生长发育和养分累积的影响[J]. 农业机械学报, 2019, 50(9): 272-279. doi: 10.6041/j.issn.1000-1298.2019.09.032 [6] NISHA S K, SREELATHAKUMARY I. Growth and yield of watermelon Citrullus lanatus (Thunb.) with different levels of fertigation and drip irrigation[J]. Journal of Krishi Vigyan, 2020, 8(2): 157. doi: 10.5958/2349-4433.2020.00033.1
[7] 王同顺, 孙保平, 冯磊, 等. 不同水分处理对甘蒙柽柳幼苗根系生长特性的影响[J]. 生态学杂志, 2013, 32(3): 591-596. [8] 王伟华, 刘毅, 唐海明, 等. 长期施肥对稻田土壤微生物量、群落结构和活性的影响[J]. 环境科学, 2018, 39(1): 430-437. [9] 陆太伟, 蔡岸冬, 徐明岗, 等. 施用有机肥提升不同土壤团聚体有机碳含量的差异性[J]. 农业环境科学学报, 2018, 37(10): 2183-2193. doi: 10.11654/jaes.2017-1767 [10] SAINJU U M. Improving nitrogen balance with irrigation practice and cropping system[J]. Journal of Soil & Water Conservation, 2019, 74(16): 622-631.
[11] TIAN Z, LIU X, GU S, et al. Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat[J]. Journal of Integrative Agriculture, 2018, 17(12): 2648-2661. doi: 10.1016/S2095-3119(18)62086-6
[12] 赵青云, 邢诒彰, 林兴军, 等. 施用咖啡果皮对咖啡幼苗生长及土壤理化性状的影响[J]. 热带农业科学, 2017, 37(8): 54-59. [13] 赵青云, 邢诒彰, 孙燕, 等. 施用土壤调节剂对咖啡苗生长及连作酸化土壤酶活性的影响[J]. 热带作物学报, 2017, 38(10): 1868-1873. doi: 10.3969/j.issn.1000-2561.2017.10.016 [14] MARJERISON R D, MELKONIAN J, HUTSON J L, et al. Drainage and nitrate leaching from artificially drained maize fields simulated by the precision nitrogen management model[J]. Journal of Environmental Quality, 2016, 45(6): 2044-2052. doi: 10.2134/jeq2016.04.0129
[15] 章宇阳, 刘小刚, 余宁, 等. 不同遮荫条件下施肥量对西南干热区小粒咖啡产量和肥料利用的影响[J]. 应用生态学报, 2020, 31(2): 515-523. [16] 刘小刚, 郝琨, 韩志慧, 等. 水氮耦合对干热区小粒咖啡产量和品质的影响[J]. 农业机械学报, 2016, 47(2): 143-150. doi: 10.6041/j.issn.1000-1298.2016.02.019 [17] 郝琨, 刘小刚, 张岩, 等. 干旱胁迫−复水与氮肥耦合对小粒咖啡生长和水氮生产力的影响[J]. 应用生态学报, 2017, 28(12): 4034-4042. [18] 郝琨, 刘小刚, 韩志慧, 等. 周期性亏缺复水灌溉与氮肥耦合对小粒咖啡生长及光合特性的影响[J]. 排灌机械工程学报, 2017, 35(7): 616-626. doi: 10.3969/j.issn.1674-8530.16.0271 [19] 刘小刚, 李义林, 齐韵涛, 等. 干热区小粒咖啡提质增产的灌水和遮荫耦合模式[J]. 应用生态学报, 2018, 29(4): 1140-1146. [20] LIU X, LI F, ZHANG Y, et al. Effects of deficit irrigation on yield and nutritional quality of Arabica coffee (Coffea arabica) under different N rates in dry and hot region of southwest China[J]. Agricultural Water Management, 2016, 172: 1-8. doi: 10.1016/j.agwat.2016.04.007
[21] 张鲁鲁, 蔡焕杰, 王健, 等. 不同灌水量对温室甜瓜生长和生理特性的影响[J]. 干旱地区农业研究, 2009, 27(6): 58-62. [22] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [23] 李志刚, 谢应忠. 翻埋与覆盖林木枝条改善宁夏沙化土壤性质[J]. 农业工程学报, 2015, 31(10): 174-181. doi: 10.11975/j.issn.1002-6819.2015.10.023 [24] 张义, 谢永生, 郝明德, 等. 不同地表覆盖方式对苹果园土壤性状及果树生长和产量的影响[J]. 应用生态学报, 2010, 21(2): 279-286. [25] 赵彩衣, 王媛媛, 董青君, 等. 不同水肥处理对苕子和后茬玉米生长及土壤肥力的影响[J]. 水土保持学报, 2019, 33(4): 161-166. [26] YANG W, JIAO Y, YANG M, et al. Minimizing soil nitrogen leaching by changing furrow irrigation into sprinkler fertigation in potato fields in the Northwestern China plain[J]. Water, 2020, 12(8): 2229. doi: 10.3390/w12082229
[27] 关焱, 宇万太, 李建东. 长期施肥对土壤养分库的影响[J]. 生态学杂志, 2004, 23(6): 131-137. doi: 10.3321/j.issn:1000-4890.2004.06.028 [28] 王涛, 杨怡钧, 邓琳, 等. 不同固体微生物菌剂对砒砂岩土壤性质和紫花苜蓿生长的影响[J]. 农业工程学报, 2020, 36(8): 96-102. doi: 10.11975/j.issn.1002-6819.2020.08.012 [29] 张凯煜, 谷洁, 王小娟, 等. 微生物有机肥对樱桃园土壤细菌群落的影响[J]. 中国环境科学, 2019, 39(3): 1245-1252. doi: 10.3969/j.issn.1000-6923.2019.03.042 [30] 蒋朝晖, 曾清如, 皮荷杰, 等. 不同品种尿素施入土壤后pH值的变化和氨气释放差异[J]. 环境化学, 2009, 28(2): 177-180. doi: 10.3321/j.issn:0254-6108.2009.02.004 [31] 李艳鹏, 贺同鑫, 王清奎. 施肥对杉木林土壤酶和活性有机碳的影响[J]. 生态学杂志, 2016, 35(10): 2722-2731. [32] YANG L, LI T, LI F, et al. Fertilization regulates soil enzymatic activity and fertility dynamics in a cucumber field[J]. Scientia Horticulturae, 2008, 116(1): 21-26. doi: 10.1016/j.scienta.2007.11.001
[33] GUAN S Y. Soil enzyme and its research methods[M]. Beijing: Agriculture Press, 1986.
[34] GRAMSS G, VOIGT K D, KIRSCHE B. Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material[J]. Chemosphere, 1999, 38(7): 1481-1494. doi: 10.1016/S0045-6535(98)00369-5
[35] 侯湖平, 王琛, 李金融, 等. 煤矸石充填不同复垦年限土壤细菌群落结构及其酶活性[J]. 中国环境科学, 2017, 37(11): 4230-4240. doi: 10.3969/j.issn.1000-6923.2017.11.028 [36] 邓浩亮, 张恒嘉, 李福强, 等. 河西绿洲菘蓝生长、光合特性及品质对膜下滴灌调亏的响应[J]. 水土保持学报, 2018, 32(3): 321-327. [37] HE Y, XI B, LI G, et al. Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) plantations[J]. Agricultural Water Management, 2021, 243: 106460. doi: 10.1016/j.agwat.2020.106460
[38] 张学林, 徐钧, 安婷婷, 等. 不同氮肥水平下玉米根际土壤特性与产量的关系[J]. 中国农业科学, 2016, 49(14): 2687-2699. doi: 10.3864/j.issn.0578-1752.2016.14.004 [39] 丁少男, 薛萐, 刘国彬. 施肥处理对黄土丘陵区农田土壤酶活性和水溶性有机碳、氮的影响[J]. 农业环境科学学报, 2015, 34(11): 2146-2154. doi: 10.11654/jaes.2015.11.016