• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

环境因子对入侵植物空心莲子草生长−防御生理特性的影响

吴昊, 王晓冉, 陈彦冰, 章甜甜

吴昊, 王晓冉, 陈彦冰, 等. 环境因子对入侵植物空心莲子草生长−防御生理特性的影响[J]. 华南农业大学学报, 2022, 43(2): 68-77. DOI: 10.7671/j.issn.1001-411X.202102013
引用本文: 吴昊, 王晓冉, 陈彦冰, 等. 环境因子对入侵植物空心莲子草生长−防御生理特性的影响[J]. 华南农业大学学报, 2022, 43(2): 68-77. DOI: 10.7671/j.issn.1001-411X.202102013
WU Hao, WANG Xiaoran, CHEN Yanbing, et al. Impacts of environmental factors on growth-defense physiological traits of invasive plant Alternanthera philoxeroides[J]. Journal of South China Agricultural University, 2022, 43(2): 68-77. DOI: 10.7671/j.issn.1001-411X.202102013
Citation: WU Hao, WANG Xiaoran, CHEN Yanbing, et al. Impacts of environmental factors on growth-defense physiological traits of invasive plant Alternanthera philoxeroides[J]. Journal of South China Agricultural University, 2022, 43(2): 68-77. DOI: 10.7671/j.issn.1001-411X.202102013

环境因子对入侵植物空心莲子草生长−防御生理特性的影响

基金项目: 国家自然科学基金(31800460);信阳师范学院“南湖学者奖励计划”青年项目(2018B051)
详细信息
    作者简介:

    吴昊,讲师,博士,主要从事外来入侵植物生态学研究,E-mail: wuhao86868686@163.com

  • 中图分类号: S45; Q948.15

Impacts of environmental factors on growth-defense physiological traits of invasive plant Alternanthera philoxeroides

  • 摘要:
    目的 

    探讨大空间尺度上生物及非生物因子对入侵植物空心莲子草Alternanthera philoxeroides生长−防御生理特性的影响,为全球环境变化下的入侵群落动态预测及入侵防治提供理论依据。

    方法 

    在中国21°N~37°N范围内分别设置72个面积为10 m×10 m的空心莲子草入侵样地(水、陆生境各36个),测定样地中空心莲子草的氮平衡指数(Nitrogen balance index, NBI)、叶绿素指数(Chlorophyll index, Chla)、类黄酮指数(Flavonoid index, Flav)和花青素指数(Anthocyanin index, Anth),并利用回归分析和典范对应分析(Canonical correspondence analysis, CCA)探讨地理、气候、氮素营养、植物多样性和昆虫发生量等因素对这4项生理指标的影响。

    结果 

    回归分析及CCA均表明,水、陆2种生境空心莲子草的Flav与纬度呈显著正向关系、与降雨量呈显著负向关系。回归分析中,陆生和水生型空心莲子草的Chla分别与经度、硝态氮含量呈显著正向关系;水生型空心莲子草的Anth与纬度呈显著负向关系、与年均气温呈显著正向关系。CCA中,水生型空心莲子草的NBI与Pielou均匀度指数、昆虫丰富度和莲草直胸跳甲数量之间具有强烈负向关系,与Patrick丰富度指数和Shannon-Wiener多样性指数具有较大正向关系,而Flav表现出与NBI完全相反的分布格局。

    结论 

    经度、氮素影响空心莲子草的生理生长特性,纬度、气候和植物多样性影响空心莲子草的化学防御特性,而植物多样性和昆虫发生量使得水生型空心莲子草的生长与防御之间具有明显权衡关系。

    Abstract:
    Objective 

    To explore the impacts of biotic and abiotic factors on the growth-defense physiological traits of invasive plant Alternanthera philoxeroides at large spatial scales, and provide a theoretical basis for dynamic prediction of invaded communities and bio-control under the global environmental change.

    Method 

    We totally set up 72 plots invaded by A. philoxeroides with the area of 10 m×10 m per plot across 21°N−37°N in mainland China (36 terrestrial and 36 aquatic), and measured the nitrogen balance index (NBI), chlorophyll index (Chla), flavonoid index (Flav) and anthocyanin index (Anth) of A. philoxeroides in each plot. We then used the methods of regression analysis and canonical correspondence analysis (CCA) for examining the impacts of geography, climate, nitrogen nutrition, plant diversity and insect occurrence on these four physiological indexes.

    Result 

    Regression analysis and CCA all showed that the Flav had significant positive relationship with latitude and significant negative relationship with rainfall. In regression analysis, the Chla for terrestrial and aquatic A. philoxeroides had significant positive relationship with longitude and nitrate nitrogen content, respectively, while the Anth for aquatic A. philoxeroides had significant negative relationship with latitude but positive relationship with annual mean air temperature. In CCA, the NBI for aquatic A. philoxeroides had strong negative relationships with Pielou evenness index, insect richness and the abundance of Agasicles hygrophila, but had strong positive relationships with Patrick richness index and Shannon-Wiener diversity index, while the Flav for aquatic A. philoxeroides showed the opposite distribution pattern with NBI in CCA ordination chart.

    Conclusion 

    The longitude and nitrogen nutrition mainly affect the physiological growth traits of A. philoxeroides, while the latitude, climate and plant diversity mainly affect its chemical defense traits. Plant diversity and insect occurrence promot the ‘growth-defense’ tradeoff of aquatic A. philoxeroides.

  • 自噬是真核生物体内一种重要的分解代谢过程。错误折叠的蛋白或受损的细胞器被自噬体包裹运输至液泡,在液泡腔中被水解酶降解[1]。分解产物会被储存于液泡,或被运输回细胞质中重复利用[2]。在模式植物拟南芥Arabidopsis thaliana中,现已鉴定到大约40个自噬相关基因ATGs(Autophagy-related genes),且大部分ATGs对自噬体的形成是必需的[3-4]

    研究发现,过表达ATGs可以增强植物的环境适应性。自噬作为物质循环途径之一,对氮素的再利用和营养饥饿的抵抗至关重要。过表达AtATG8aAtATG8eAtATG8fAtATG8g的拟南芥植株氮素再活化能力增强,转基因植株中有更多的氮素从衰老叶片中活化并运输到种子中,从而使种子的蛋白质含量显著提高[5]。拟南芥中异源过表达水稻OsATG8b或苹果MdATG18a均可以增强拟南芥对氮饥饿或碳饥饿的耐受性[6-8]。自噬过程也是植物抗旱、抗盐的关键途径之一。在干旱条件下,过表达MdATG18aMdATG8i的苹果植株,以及异源过表达香蕉MaATG8f的拟南芥植株,都表现出更强的耐干旱能力,而且在这些过表达植株中,光合效率提高,可溶性糖和氨基酸的积累量明显增加[9-11]。在高盐环境下,过表达MdATG10苹果植株的根系具有更强的水分吸收能力,植株能够保持较高的光合效率从而维持生长[12]。除此之外,过表达MdATG18a的苹果植株不仅对碱性和高温等不良环境的耐受力增强,而且对斑褐病的免疫力也明显提高[13-15]

    自噬相关蛋白ATG7通过催化ATG8-ATG3偶联物的形成激活ATG8的脂化作用,被认为是自噬过程中的关键限速因子之一[16]atg7缺失突变体不能形成自噬体,在碳/氮饥饿条件下生长受阻,叶片早衰,繁殖能力下降[2, 17]。过表达AtATG7的拟南芥植株自噬活性显著提高,转基因植株不仅具有衰老延缓、生物量和产量提高、种子含油量增加等优势,而且对病原菌的抗性也明显增强[16]

    苜蓿Medicago spp.是一种广泛种植的饲料作物,同时也是豆科模式植物之一[18]。通过过表达苜蓿ATGs使自噬活性水平提高,是改善苜蓿农艺性状的一种潜在手段。然而苜蓿ATGs的生物学功能是否保守,以及其对植物的抗逆能力是否有促进作用在很大程度上仍然未知。本文以蒺藜苜蓿Medicago truncatula中关键的自噬相关基因MtATG7为研究对象,构建拟南芥异源过表达MtATG7的稳定遗传植株,并在碳/氮饥饿条件下进行表型分析。本研究旨在为利用MtATG7基因改良苜蓿和其他植物的农艺性状提供理论依据。

    拟南芥生态型为Columbia,拟南芥T-DNA插入的自噬功能缺陷突变体atg7-3(SAIL_11_H07)和GFP-ATG8e植株为Chen等保存[19],通过杂交得到atg7-3×GFP-ATG8e纯和植株,构建35S::MtATG7-NOS过表达载体,通过农杆菌Agrobacterium tumefaciens介导侵染Col、atg7-3atg7-3×GFP-ATG8e的过表达株系获得MtATG7-oxatg7/MtATG7MtATG7/atg7-3/GFP-ATG8e转基因植株。

    蒺藜苜蓿生态型为A17。

    培养条件:光暗周期为16 h光照/8 h黑暗,温度为22 ℃,光照强度为120 µmol·m−2·s−1

    以蒺藜苜蓿cDNA为模板,利用常规PCR方法扩增MtATG7基因的编码序列(2097 bp)。分别在上、下游引物中引入BamHI和PstI的酶切位点,通过BamHI/PstI双酶切插入到双元表达载体pCambia1300,使用无缝克隆试剂盒(金沙生物,SC612)进行连接,完成携带35S::MtATG7的植物表达载体构建。使用农杆菌GV3101介导的花序浸泡法[20]转化拟南芥Col-0、atg7-3atg7-3×GFP-ATG8e植株。将转基因拟南芥T0代种子在含有25 mg/L潮霉素的筛选培养基上经过3代筛选获得6个纯合株系,选取2个代表株系用于后续试验。所有构建均经测序验证正确,构建引物信息见表1

    表  1  PCR特异性引物序列
    Table  1.  Specific primers used for PCR
    引物类型
    Primer type
    引物名称
    Primer name
    引物序列(5′→3′)
    Primer sequence
    目的基因引物
    Target gene primer
    MtATG7-F gaacacgggggactGGATCCATGGCTTTGCTCCAATTTAT
    MtATG7-R AATGTTTGAACGATCTGCAGTCATATTTCAAAACAATCTT
    自噬突变体鉴定引物
    Autophagy mutant identification primer
    atg7-F TCTCTTGTTGGTCAAGCCTC
    atg7-R CATTGTTGGTCTAGAGTTCG
    LB1 GCCTTTTCAGAAATGGATAAATAGCCTTGCTT
    下载: 导出CSV 
    | 显示表格

    通过Phytozomev13网站(https://phytozome-next.jgi.doe.gov/)查询不同物种中ATG7基因的氨基酸序列,利用Pfam数据库(http://pfam.xfam.org/search/sequence)分析不同物种ATG7基因的保守基序;利用MEGA11软件构建系统发育树。

    缺碳处理:将在1/2MS培养基平板上生长11 d的拟南芥幼苗,转移至无糖1/2MS培养基平板上,并放置于黑暗环境下培养使植物不能进行光合作用,继续培养9 d后进行表型观察和拍照。缺碳存活率的测定:将土中生长3周的拟南芥植株转移至黑暗条件下培养7 d,随后转移到正常生长条件下恢复8 d,统计植株存活率。试验经3次生物学重复。

    拟南芥幼苗在正常1/2MS培养基平板上生长11 d后,转移至缺氮1/2MS培养基平板上,继续培养7 d后进行表型观察和拍照。

    取适量拟南芥幼苗称量鲜质量,加入2 mL N,N−二甲基甲酰胺(N,N-Dimethylformamide, DMF),4 ℃遮光提取2 d,每个样品设3个生物学重复。按以下公式计算叶绿素含量:叶绿素浓度= 20.21×D645 nm+8.02×D663 nm,叶绿素含量=叶绿素浓度×提取液体积×稀释倍数/样品鲜质量。

    取适量2周龄的拟南芥幼苗,整株取样至2 mL离心管中,经液氮速冻后,用均质破碎仪研磨样品。加入200 μL RIPA Buffer并充分振荡混匀,4 ℃放置10 min;4 ℃、12000 r·min−1离心 30 min,吸取上清。蛋白溶液经95 ℃加热5 min后,使用变性聚丙烯酰胺凝胶(SDS-PAGE)进行电泳分离。使用PVDF膜,在4 ℃条件下恒电流200 mA转膜120 min。将膜置于质量分数为5%的脱脂奶粉中封闭1 h,然后使用Anti-GFP(Invitrogen A11122)抗体4 ℃孵育过夜。1×TBST洗膜3次后孵育二抗2 h。1×TBST溶液重复洗膜3次,将PVDF膜放至干净的培养皿中,用显色液试剂盒进行显色后,使用化学发光成像仪拍照保存。

    试验所得数据使用统计软件SPSS 19.0进行分析,其中叶绿素含量测定数据n=8,存活率数据n=3,样品之间差异采用单因素方差分析和LSD多重比较方法进行统计检验,P<0.05视为差异显著,数据用平均值±标准差表示。

    为了解蒺藜苜蓿MtATG7的进化特征和生物学功能,本研究对MtATG7的氨基酸序列与拟南芥等其他植物的同源基因构建了系统发育树,并分析了MtATG7及其同源基因的序列相似性。结果表明,在分析的15种植物中,蒺藜苜蓿的ATG7与红车轴草Trifolium pratense、鹰嘴豆Cicer arietinumATG7亲缘关系最近,与模式植物拟南芥的亲缘关系相对较远。利用Pfam数据库中对ATG7的氨基酸序列进行结构域分析,发现在所有15种植物中都具有典型的ATG7特征结构域,说明ATG7的功能很可能是高度保守的(图1)。

    图  1  不同植物ATG7基因的系统发育树分析和保守结构域预测
    Figure  1.  Phylogenetic tree analysis and domain prediction of ATG7 gene from different species

    根据MtATG7的DNA序列设计PCR引物,以蒺藜苜蓿的cDNA为模板进行PCR扩增(表1)。PCR产物经琼脂糖凝胶电泳后得到约2000 bp的特异条带,与2097 bp的MtATG7编码序列长度吻合,说明MtATG7基因扩增成功(图2A)。进一步使用无缝克隆方法,将MtATG7序列连接到表达载体上,构建了35S::MtATG7双元过表达载体(图2B)。在农杆菌介导下,通过花序浸泡法分别侵染拟南芥野生型(Col)、atg7-3atg7-3/GFP-ATG8e植株,获得了多个独立的过表达株系,包括MtATG7-OXatg7/MtATG7atg7-3/MtATG7/GFP-ATG8e植株。每个基因型植株挑选两个纯合的株系进行后续试验。

    图  2  MtATG7过表达载体的构建
    A:苜蓿MtATG7基因的克隆;B:35S::MtATG7过表达载体的菌落PCR结果,M:Trans2K Plus II DNA Marker,1~10:菌落;目标条带大小为2097 bp左右
    Figure  2.  Construction of MtATG7 overexpression vector
    A: Cloning of MtATG7 gene in Medicago; B: Colony PCR results of 35S::MtATG7 overexpression vector, M: Trans2KPlus II DNA Marker, 1−10: Colony; The target band size is about 2097 bp

    将苗龄11 d的转基因植株转移至无糖培养基上,并放置在黑暗环境下培养,使植物光合作用停止并产生碳饥饿。在缺碳胁迫条件下,atg7幼苗的叶片明显变黄并伴随白化现象,但野生型Col与互补植株atg7/MtATG7#1,atg7/MtATG7#2的叶片仍呈现绿色,说明MtATG7能够挽救atg7突变体的生长缺陷表型(图3A、3B)。过表达植株MtATG7-OX#1和MtATG7-OX#2和野生型的叶片一样都保持相对嫩绿。对缺碳胁迫前后的幼苗进行叶绿素含量的测定,结果显示缺碳胁迫后,atg7突变体的叶绿素含量和野生型相比显著下降,但异源转基因的atg7/MtATG7植株和atg7突变体相比叶绿素含量明显提高(图4)。该结果表明MtATG7能够互补AtATG7抵抗碳饥饿胁迫的生物学功能。

    图  3  MtATG7促进转基因拟南芥抵抗碳胁迫
    A:将苗龄11 d的野生型Col、自噬突变体atg7以及转基因atg7/MtATG7#1、atg7/MtATG#2、MtATG7-OX#1、MtATG7-OX#2拟南芥幼苗移到不含糖的1/2MS培养基中,黑暗条件下培养9 d后的表型;B:在碳胁迫9 d后分别对每个株系取2株幼苗拍照;比例尺=5 mm
    Figure  3.  MtATG7 promotes resistance to carbon starvation in transgenic Arabidopsis
    A: Phenotypes for 11-day-old wild-type Col, autophagy mutant atg7, and transgenic atg7/MtATG7#1, atg7/MtATG#2, MtATG7-OX#1, MtATG7-OX#2 Arabidopsis seedlings after transferred to sugar-free 1/2MS medium and cultured under dark conditions for 9 days; B: After 9 days of carbon starvation stress, two seedlings from each line were photographed; Scale bar = 5 mm
    图  4  碳胁迫前后的拟南芥幼苗叶绿素含量
    数据为平均值±标准差, n=8;相同处理柱子上方的不同小写字母表示各株系之间差异显著(P<0.05,LSD法)
    Figure  4.  Chlorophyll content of Arabidopsis seedling before and after carbon stress
    Data are means ± SDs, n=8; Different lowercase letters on bars of the same treatment indicate significant differences among strains (P<0.05,LSD test)

    将苗龄3周的拟南芥转移到黑暗条件下处理7 d,探究过表达MtATG7对拟南芥碳饥饿胁迫存活率的影响。研究发现,在碳饥饿胁迫下,atg7因自噬功能缺陷导致生长受到抑制,即使恢复光照也无法存活,但自噬功能正常的植株都有一定比例植株能够存活下来(图5)。值得注意的是,多个过表达MtATG7的植株,包括atg7/MtATG7#1、MtATG7-OX#1和MtATG7-OX#2,存活率和野生型Col相比都明显提高(图6)。上述结果表明过表达MtATG7基因可以提高拟南芥对碳饥饿胁迫的耐受能力。

    图  5  MtATG7促进转基因拟南芥在碳胁迫下的生存
    图中为将苗龄3周的野生型Col、自噬突变体atg7以及转基因atg7/MtATG7#1、atg7/MtATG#2、MtATG7-OX#1、MtATG7-OX#2拟南芥植株黑暗处理7 d,恢复光照8 d后的表型;比例尺=1 cm
    Figure  5.  MtATG7 promotes survival of transgenic Arabidopsis under carbon starvation
    3-week-old Arabidopsis seedlings of wild type Col, autophagy mutant atg7, and transgenic lines atg7/MtATG7#1, atg7/MtATG#2, MtATG7-OX#1, and MtATG7-OX#2 were treated in the dark for 7 days,and the phenotypes after 8 days of recovery under light are shown in the figure; Scale bar = 1 cm
    图  6  碳胁迫后的拟南芥幼苗的存活率
    统计各株系在恢复光照8 d后的存活率;柱子上方的不同小写字母表示各株系之间差异显著(P<0.05,LSD法)
    Figure  6.  Survival of Arabidopsis seedlings after carbon stress
    The survival rate of each strain after 8 days of light recovery are calculated; Different lowercase letters on bars indicate significant differences among strains (P<0.05,LSD test)

    GFP-ATG8e重组蛋白能够被自噬体降解,并释放游离的GFP,因此GFP/GFP-ATG8e比值是植物自噬活性的重要指标之一。为了探究MtATG7过表达植株是否通过自噬途径增强碳饥饿胁迫耐受性,将GFP-ATG8eatg7/GFP-ATG8e以及转基因的atg7/MtATG7/GFP-ATG8e置于碳饥饿胁迫下,并检测GFP-ATG8e蛋白的剪切活性。结果显示atg7突变体在碳饥饿胁迫下,不能产生正常的游离的GFP条带,而转基因的atg7/MtATG7/GFP-ATG8e植株的GFP-ATG8剪切活性能够恢复到接近Col的水平(图7)。以上结果表明,MtATG7能够互补拟南芥内源AtATG7的功能,自噬活性的恢复很可能是碳饥饿胁迫耐受性提高的原因。

    图  7  MtATG7使拟南芥atg7突变体的自噬活性恢复
    免疫印迹试验检测拟南芥GFP-ATG8e、atg7-3/GFP-ATG8e以及转基因MtATG7/atg7-3/GFP-ATG8e的GFP剪切活性;上样量对照为丽春红染色的Rubisco蛋白
    Figure  7.  MtATG7 restores autophagy activity of atg7 mutant in Arabidopsis
    Western blot was used to detect the GFP cleavage activities of GFP-ATG8e, atg7-3/ ATG8e and MtATG7/atg7-3/ATG8e; Rubisco protein with ponceau staining was used as the loading control

    将苗龄11 d的MtATG7过表达植株转移至缺氮培养基上培养,结果表明,在缺氮处理后atg7和野生型相比叶片明显变黄,叶绿素含量下降(图89)。而互补植株atg7/MtATG7的叶绿素含量和野生型相近,说明MtATG7能够挽救atg7突变体的缺陷表型(图9)。其中atg7/MtATG7#1和MtATG7-OX#1两个株系在缺氮处理后,几乎所有植株的叶片仍然保持绿色,而野生型已有少量植株开始发紫(图8A、8B)。叶绿素测量结果也表明,atg7/MtATG7#1和MtATG7-OX#1两个株系的叶绿素含量和野生型相比有轻微增加(图9)。

    图  8  MtATG7促进转基因拟南芥抵抗氮胁迫
    A:将苗龄11 d的野生型Col、自噬突变体atg7以及转基因atg7/MtATG7#1、atg7/MtATG#2、MtATG7-OX#1、MtATG7-OX#2拟南芥幼苗移入缺氮的1/2MS培养基中培养7 d后的表型;B:在氮胁迫7 d后分别对每个株系取2株幼苗拍照;比例尺=5 mm
    Figure  8.  MtATG7 promotes resistance to nitrogen starvation in transgenic Arabidopsis
    A: Phenotypes for 11-day-old wild-type Col, autophagy mutant atg7, and transgenic atg7/MtATG7#1, atg7/MtATG#2, MtATG7-OX#1, MtATG7-OX#2 Arabidopsis seedlings after transferred to nitrogen-deficient 1/2MS medium and cultured for 7 days; B: After 7 days of nitrogen starvation stress, two seedlings from each line were photographed; Scale bar = 5 mm
    图  9  氮胁迫前后的拟南芥幼苗叶绿素含量
    数据为平均值±标准差, n=8;相同处理柱子上方的不同小写字母表示各株系之间差异显著(P<0.05,LSD法)
    Figure  9.  Chlorophyll content of Arabidopsis seedlings before and after N stress
    Data are means ± SDs, n=8; Different lowercase letters on bars of the same treatment indicate significant differences among strains (P<0.05,LSD test)

    碳元素是糖类物质和蛋白质分子的基础,对植物体内能量和物质的稳态至关重要。一方面,植物遭受短期碳饥饿时,细胞自噬能够降解储存于叶片中的瞬时淀粉,为细胞提供额外的能量以渡过逆境[21];另一方面,在长期碳饥饿时,细胞自噬能够降解叶绿体及其中的蛋白质,维持重要组织的氨基酸供应,从而提高植物的生存能力[22]。氮元素是氨基酸、核苷酸、叶绿素的重要组成成分,也是植物生存所必需的元素之一。在低氮条件下,细胞自噬能够将衰老叶片中的氮素分解再活化,使之能够被运输至新生叶片,实现生长发育效率的最大化;同时氮素的再活化也是种子成熟的关键步骤之一[23]

    本研究发现MtATG7蛋白具有保守的ATG7特征结构域,异源过表达MtATG7能够改善atg7突变体在碳/氮饥饿条件下的叶片早衰性状,而且在缺碳胁迫下MtATG7过表达植株的存活率显著提高,从野生型的55.5%提高至85.2%~92.6%。缺碳条件下,MtATG7能够使atg7突变体的自噬剪切活性恢复,说明MtATG7能够参与拟南芥自噬途径的调控。ATG7是植物自噬过程的限速酶之一,在自噬过程中分别和ATG12、ATG8结合,激活ATG8的脂化过程[24],因此MtATG7很可能通过提高植物自噬水平,使碳/氮饥饿的耐受能力提高。在拟南芥中,ATG7和许多叶片衰老标记基因,例如MYB2NAPSAG12NYE1的表达存在明显关联性,表明ATG7也是植物叶片衰老调控的枢纽之一[25]。在碳/氮饥饿条件下,MtATG7过表达植株叶绿素含量下降的速度减慢,该结果暗示MtATG7还可能通过抑制衰老相关基因的表达,使植物叶片的衰老延迟。

    虽然MtATG7基因在参与自噬过程当中具有保守性,但是在不同植物中,自噬途径所影响的生理过程仍然存在特殊性。例如在正常生长条件下,自噬途径的缺失对拟南芥生长和繁殖几乎没有影响;但是在水稻和烟草中,自噬途径受阻会导致其育性明显降低,结实率下降,同时水稻的抽穗时间明显延迟[26-27]。因此过表达MtATG7基因在苜蓿和拟南芥中对抗逆性状的影响是否存在差异,是今后值得探究的课题。

  • 图  1   研究区样地所属城市的纬度−气温和纬度−降雨量拟合关系

    Figure  1.   Fitting relationships between the latitude and temperature, precipitation of sampling cities

    图  2   陆生型空心莲子草生理指标与环境因子的回归拟合

    Figure  2.   Regression fittings between physiological indexes of terrestrial Alternanthera philoxeroides and environmental factors

    图  3   水生型空心莲子草生理指标与环境因子的回归拟合

    Figure  3.   Regression fittings between physiological indexes of aquatic Alternanthera philoxeroides and environmental factors

    图  4   陆生型空心莲子草生理指标与环境因子的CCA排序

    环境矢量箭头的方向代表其与排序轴的正负相关性;环境矢量连线越长、与排序轴间的夹角越小,则说明该环境因子的主导性越强;表征各生理指标的圆圈与环境矢量连线的垂直距离越短,表示两者相关性越大

    Figure  4.   CCA ordination of physiological indexes of terrestrial Alternanthera philoxeroides and environmental factors

    Direction of environment vector arrow represents its positive or negative correlation with CCA axis; The longer the environment vector and the smaller angle between vector and axis, the stronger the dominance of environment factor; The shorter the vertical distance between the circle and vector, the greater the correlation between certain plant physiological index and environment factor

    图  5   水生型空心莲子草生理指标与环境因子的CCA排序

    Figure  5.   CCA ordination of physiological indexes of aquatic Alternanthera philoxeroides and environmental factors

    表  1   陆生环境因子与CCA排序轴的相关性分析1)

    Table  1   Correlation analysis of terrestrial environmental factors and CCA axis

    环境因子 Environmental factor CCA第1轴 CCA axis 1 CCA第2轴 CCA axis 2
    纬度 Latitude −0.161 −0.667**
    经度 Longitude 0.148 −0.787**
    海拔 Elevation 0.503** 0.516**
    铵态氮含量 Ammonium nitrogen content −0.255 −0.047
    硝态氮含量 Nitrate nitrogen content −0.041 0.494**
    年均气温 Annual mean air temperature 0.087 0.595**
    年均降雨量 Annual mean precipitation 0.010 0.745**
    莲草直胸跳甲数量 Abundance of Agasicles hygrophila 0.041 −0.037
    昆虫丰富度 Insect richness −0.671** 0.396*
    Patrick丰富度指数 Patrick richness index −0.214 −0.607**
    Shannon-Wiener多样性指数 Shannon-Wiener diversity index 0.225 −0.405*
    Simpson多样性指数 Simpson diversity index 0.405* −0.013
    Pielou均匀度指数 Pielou evenness index 0.705** 0.107
     1) “*”“**”分别表示在0.05,0.01水平显著相关
     1) “*” and “**” represent significant correlations at 0.05 and 0.01 levels, respectively
    下载: 导出CSV

    表  2   水生环境因子与CCA排序轴的相关性分析1)

    Table  2   Correlation analysis of aquatic environmental factors and CCA axis

    环境因子 Environmental factor CCA第1轴 CCA axis 1 CCA第2轴 CCA axis 2
    纬度 Latitude −0.071 −0.713**
    经度 Longitude −0.296 −0.170
    海拔 Elevation −0.363* 0.003
    铵态氮含量 Ammonium content −0.102 −0.104
    硝态氮含量 Nitrate nitrogen content −0.193 0.223
    年均气温 Annual mean air temperature −0.040 0.684**
    年均降雨量 Annual mean precipitation 0.095 0.595**
    莲草直胸跳甲数量 Abundance of Agasicles hygrophila −0.443** 0.140
    昆虫丰富度 Insect richness −0.471** 0.172
    Patrick丰富度指数 Patrick richness index 0.298 −0.618**
    Shannon-Wiener多样性指数 Shannon-Wiener diversity index 0.050 −0.479**
    Simpson多样性指数 Simpson diversity index −0.334* −0.496**
    Pielou均匀度指数 Pielou evenness index −0.349* 0.270
     1) “*”“**”分别表示在0.05和0.01水平显著相关
     1) “*” and “**” represent significant correlations at 0.05 and 0.01 levels, respectively
    下载: 导出CSV
  • [1]

    VITT P, HAVENS K, KRAMER A T, et al. Assisted migration of plants: Changes in latitudes, changes in attitudes[J]. Biodiversity and Conservation, 2012, 143(1): 18-27.

    [2] 吴昊, 丁建清. 入侵生态学最新研究动态[J]. 科学通报, 2014, 59(6): 438-448.
    [3]

    WINDER M, JASSBY A D, NALLY R M. Synergies between climate anomalies and hydrological modifications facilitate estuarine biotic invasions[J]. Ecology Letters, 2011, 14(8): 749-757. doi: 10.1111/j.1461-0248.2011.01635.x

    [4]

    SORTE C J B, IBANEZ I, BLUMENTHAL D M. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance[J]. Ecology Letters, 2013, 16(2): 261-270. doi: 10.1111/ele.12017

    [5] 张桥英, 彭少麟. 增温对入侵植物马缨丹生物量分配和异速生长的影响[J]. 生态学报, 2018, 38(18): 6670-6676.
    [6] 薛晨阳, 许玉凤, 曲波. 不同氮水平下瘤突苍耳、苍耳及其杂交种形态、光合及生长特征比较[J]. 生物多样性, 2018, 26(6): 554-563. doi: 10.17520/biods.2018002
    [7] 周晓慧, 彭培好, 李景吉. 模拟气候变暖和氮沉降对两种来源加拿大一枝黄花叶性状和性状谱的影响[J]. 生态学报, 2019, 39(5): 1605-1615.
    [8]

    YOU W H, YU D, LIU C H, et al. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability[J]. Hydrobiologia, 2013, 718(1): 27-39. doi: 10.1007/s10750-013-1596-4

    [9]

    AGATI G, TATTINI M. Multiple functional roles of flavonoids in photo protection[J]. New Phytologist, 2010, 186(4): 786-793. doi: 10.1111/j.1469-8137.2010.03269.x

    [10]

    PAUL-VICTOR C, ZÜST T, REES M, et al. A new methods for measuring relative growth rate can uncover the costs of defensive compounds in Arabidopsis thaliana[J]. New Phytologist, 2010, 187(4): 1102-1111. doi: 10.1111/j.1469-8137.2010.03325.x

    [11] 沈文燕, 陆长梅, 周长芳. 互花米草和芦苇抗氧化系统在抵御硫胁迫过程中的响应差异[J]. 复旦学报(自然科学版), 2011, 50(5): 653-661.
    [12] 朱慧, 马瑞君, 吴双桃, 等. 自然生境中五爪金龙总黄酮含量的比较[J]. 生态环境, 2008, 17(3): 1193-1197.
    [13]

    XIAO L, HERVE M R, CARRILLO J, et al. Latitudinal trends in growth, reproduction and defense of an invasive plant[J]. Biological Invasions, 2019, 21(1): 189-201. doi: 10.1007/s10530-018-1816-y

    [14]

    XIAO L, DING J Q, ZHANG J L, et al. Chemical responses of an invasive plant to herbivory and abiotic environments reveal a novel invasion mechanism[J]. Science of the Total Environment, 2020, 741: 140-452.

    [15]

    HUANG W, SIEMANN E, XIAO L, et al. Species-specific defence responses facilitate conspecifics and inhibit heterospecifics in above-belowground herbivore interactions[J]. Nature Communications, 2014, 5(1): 4851. doi: 10.1038/ncomms5851

    [16] 吴昊, 张辰, 代文魁. 气候变暖和物种多样性交互效应对空心莲子草入侵的影响[J]. 草业学报, 2020, 29(3): 38-48. doi: 10.11686/cyxb2019277
    [17]

    WU H, ISMAIL M, DING J Q. Global warming increases the interspecific competitiveness of the invasive plant alligator weed, Alternanthera philoxeroides[J]. Science of the Total Environment, 2017, 575: 1415-1422. doi: 10.1016/j.scitotenv.2016.09.226

    [18]

    LU X M, HE M Y, DING J Q, et al. Latitudinal variation in soil biota: Testing the biotic interaction hypothesis with an invasive plant and a native congener[J]. ISME Journal, 2018, 12: 2811-2822. doi: 10.1038/s41396-018-0219-5

    [19] 高芳磊, 郭素民, 闫明, 等. 不同生境下空心莲子草响应模拟昆虫采食的生长和化学防御策略[J]. 生态学报, 2018, 38(7): 2344-2352.
    [20] 张强, 陈雄伟, 陈军文, 等. 两种入侵能力不同的莲子草光合系统稳定性的比较研究[J]. 广西植物, 2014, 34(3): 348-354.
    [21] 郭素民, 李钧敏, 李永慧, 等. 空心莲子草响应南方菟丝子寄生的生长−防御权衡[J]. 生态学报, 2014, 34(17): 4866-4873.
    [22] 吴昊, 杜奎, 李万通, 等. 空心莲子草入侵对豫南草本植物群落多样性及稳定性的影响[J]. 草业科学, 2019, 36(2): 382-393.
    [23] 倪广艳, 朱丽薇, 牛俊峰, 等. 三种菊科入侵植物的生长与化学防御的关系研究[J]. 生态环境学报, 2014, 23(1): 1-6. doi: 10.3969/j.issn.1674-5906.2014.01.001
    [24] 王开金, 陈列忠, 李宁, 等. 加拿大一枝黄花黄酮类成分及抗氧化与自由基消除活性的研究[J]. 中国药学杂志, 2006, 41(7): 493-497. doi: 10.3321/j.issn:1001-2494.2006.07.004
    [25]

    MARTZ F, PELTOLA R, FONTANAY S, et al. Effect of latitude and altitude on the terpenoid and soluble phenolic composition of Juniper (Juniperus communis) needles and evaluation of their antibacterial activity in the boreal zone[J]. Journal of Agricultural and Food Chemistry, 2009, 57(20): 9575-9584. doi: 10.1021/jf902423k

    [26]

    LÄTTI A K, JAAKOLA L, RIIHINEN K R, et al. Anthocyanin and flavonol variation in bog bilberries (Vaccinium uliginosum L.) in Finland[J]. Journal of Agricultural and Food Chemistry, 2010, 58: 427-433. doi: 10.1021/jf903033m

    [27] 张诗行, 刘艳红. 东北红豆杉幼苗黄酮类化合物含量变化及其对气候因子的响应[J]. 生态学杂志, 2020, 39(1): 73-81.
    [28]

    DU Y, LU R L, XIA J Y. Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants[J]. Functional Ecology, 2020, 34(8): 1-12.

    [29] 朱慧, 彭媛媛, 王德利. 植物对昆虫多样性的影响[J]. 生态学杂志, 2008b, 27(12): 2215-2221.
    [30]

    WU H, DING J Q. Abiotic and biotic determinants of plant diversity in aquatic communities invaded by Water Hyacinth [Eichhornia crassipes (Mart.) Solms][J]. Frontiers in Plant Science, 2020, 11: 1306. doi: 10.3389/fpls.2020.01306

    [31] 马瑞燕, 王韧. 不同生态型的喜旱莲子草对莲草直胸跳甲化蛹能力的影响[J]. 植物生态学报, 2004, 28(1): 24-30. doi: 10.3321/j.issn:1005-264X.2004.01.004
    [32]

    FENG Y L, LEI Y B, WANG R F, et al. Evolutionary tradeoffs for nitrogen allocation to photosynthesis cell walls in an invasion plant[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1853-1856. doi: 10.1073/pnas.0808434106

    [33] 胡小京, 刘玉彩, 裴芸, 等. 水分胁迫对野百合幼苗生理特性的影响[J]. 河南农业科学, 2020, 49(1): 111-117.
    [34]

    VAN DEN BERG L J, PETERS C J, ASHMORE M R, et al. Reduced nitrogen has a greater effect than oxidised nitrogen on dry heathland vegetation[J]. Environmental Pollution, 2008, 154(3): 359-369. doi: 10.1016/j.envpol.2007.11.027

    [35]

    GAO L, LI B, LIU W Y, et al. Inhibition effects of daughter ramets on parent of clonal plant Eichhornia crassipes[J]. Aquatic Botany, 2013, 107: 47-53. doi: 10.1016/j.aquabot.2013.01.010

    [36] 李德文, 李美兰, 于景华, 等. 外源NO对UV-B胁迫下红豆杉抗氧化系统的影响[J]. 生态学杂志, 2012, 31(9): 2203-2208.
    [37] 王小菲, 高文强, 刘建锋, 等. 植物防御策略及其环境驱动机制[J]. 生态学杂志, 2015, 34(12): 3542-3552.
    [38] 胡可, 韩科厅, 戴思兰. 环境因子调控植物花青素苷合成及呈色的机理[J]. 植物学报, 2010, 45(3): 307-317. doi: 10.3969/j.issn.1674-3466.2010.03.002
    [39] 宋森楠, 宋晓宇, 陈立平, 等. 冬小麦氮平衡指数与籽粒蛋白质含量空间结构及关系[J]. 农业工程学报, 2013, 29(15): 91-97. doi: 10.3969/j.issn.1002-6819.2013.15.012
    [40]

    SHARMA R, KAUR R. Elucidating physiological and biochemical alterations in giant duckweed (Spirodela polyrhiza L. Schleiden) under diethyl phthalate stress: Insights into antioxidant defence system[J]. Peer Journal, 2020, 8(9): e8267. doi: 10.7717/peerj.8267.

图(5)  /  表(2)
计量
  • 文章访问数:  516
  • HTML全文浏览量:  8
  • PDF下载量:  947
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-14
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-03-09

目录

/

返回文章
返回