环境因子对入侵植物空心莲子草生长−防御生理特性的影响

    吴昊, 王晓冉, 陈彦冰, 章甜甜

    吴昊, 王晓冉, 陈彦冰, 等. 环境因子对入侵植物空心莲子草生长−防御生理特性的影响[J]. 华南农业大学学报, 2022, 43(2): 68-77. DOI: 10.7671/j.issn.1001-411X.202102013
    引用本文: 吴昊, 王晓冉, 陈彦冰, 等. 环境因子对入侵植物空心莲子草生长−防御生理特性的影响[J]. 华南农业大学学报, 2022, 43(2): 68-77. DOI: 10.7671/j.issn.1001-411X.202102013
    WU Hao, WANG Xiaoran, CHEN Yanbing, et al. Impacts of environmental factors on growth-defense physiological traits of invasive plant Alternanthera philoxeroides[J]. Journal of South China Agricultural University, 2022, 43(2): 68-77. DOI: 10.7671/j.issn.1001-411X.202102013
    Citation: WU Hao, WANG Xiaoran, CHEN Yanbing, et al. Impacts of environmental factors on growth-defense physiological traits of invasive plant Alternanthera philoxeroides[J]. Journal of South China Agricultural University, 2022, 43(2): 68-77. DOI: 10.7671/j.issn.1001-411X.202102013

    环境因子对入侵植物空心莲子草生长−防御生理特性的影响

    基金项目: 国家自然科学基金(31800460);信阳师范学院“南湖学者奖励计划”青年项目(2018B051)
    详细信息
      作者简介:

      吴昊,讲师,博士,主要从事外来入侵植物生态学研究,E-mail: wuhao86868686@163.com

    • 中图分类号: S45; Q948.15

    Impacts of environmental factors on growth-defense physiological traits of invasive plant Alternanthera philoxeroides

    • 摘要:
      目的 

      探讨大空间尺度上生物及非生物因子对入侵植物空心莲子草Alternanthera philoxeroides生长−防御生理特性的影响,为全球环境变化下的入侵群落动态预测及入侵防治提供理论依据。

      方法 

      在中国21°N~37°N范围内分别设置72个面积为10 m×10 m的空心莲子草入侵样地(水、陆生境各36个),测定样地中空心莲子草的氮平衡指数(Nitrogen balance index, NBI)、叶绿素指数(Chlorophyll index, Chla)、类黄酮指数(Flavonoid index, Flav)和花青素指数(Anthocyanin index, Anth),并利用回归分析和典范对应分析(Canonical correspondence analysis, CCA)探讨地理、气候、氮素营养、植物多样性和昆虫发生量等因素对这4项生理指标的影响。

      结果 

      回归分析及CCA均表明,水、陆2种生境空心莲子草的Flav与纬度呈显著正向关系、与降雨量呈显著负向关系。回归分析中,陆生和水生型空心莲子草的Chla分别与经度、硝态氮含量呈显著正向关系;水生型空心莲子草的Anth与纬度呈显著负向关系、与年均气温呈显著正向关系。CCA中,水生型空心莲子草的NBI与Pielou均匀度指数、昆虫丰富度和莲草直胸跳甲数量之间具有强烈负向关系,与Patrick丰富度指数和Shannon-Wiener多样性指数具有较大正向关系,而Flav表现出与NBI完全相反的分布格局。

      结论 

      经度、氮素影响空心莲子草的生理生长特性,纬度、气候和植物多样性影响空心莲子草的化学防御特性,而植物多样性和昆虫发生量使得水生型空心莲子草的生长与防御之间具有明显权衡关系。

      Abstract:
      Objective 

      To explore the impacts of biotic and abiotic factors on the growth-defense physiological traits of invasive plant Alternanthera philoxeroides at large spatial scales, and provide a theoretical basis for dynamic prediction of invaded communities and bio-control under the global environmental change.

      Method 

      We totally set up 72 plots invaded by A. philoxeroides with the area of 10 m×10 m per plot across 21°N−37°N in mainland China (36 terrestrial and 36 aquatic), and measured the nitrogen balance index (NBI), chlorophyll index (Chla), flavonoid index (Flav) and anthocyanin index (Anth) of A. philoxeroides in each plot. We then used the methods of regression analysis and canonical correspondence analysis (CCA) for examining the impacts of geography, climate, nitrogen nutrition, plant diversity and insect occurrence on these four physiological indexes.

      Result 

      Regression analysis and CCA all showed that the Flav had significant positive relationship with latitude and significant negative relationship with rainfall. In regression analysis, the Chla for terrestrial and aquatic A. philoxeroides had significant positive relationship with longitude and nitrate nitrogen content, respectively, while the Anth for aquatic A. philoxeroides had significant negative relationship with latitude but positive relationship with annual mean air temperature. In CCA, the NBI for aquatic A. philoxeroides had strong negative relationships with Pielou evenness index, insect richness and the abundance of Agasicles hygrophila, but had strong positive relationships with Patrick richness index and Shannon-Wiener diversity index, while the Flav for aquatic A. philoxeroides showed the opposite distribution pattern with NBI in CCA ordination chart.

      Conclusion 

      The longitude and nitrogen nutrition mainly affect the physiological growth traits of A. philoxeroides, while the latitude, climate and plant diversity mainly affect its chemical defense traits. Plant diversity and insect occurrence promot the ‘growth-defense’ tradeoff of aquatic A. philoxeroides.

    • 图  1   研究区样地所属城市的纬度−气温和纬度−降雨量拟合关系

      Figure  1.   Fitting relationships between the latitude and temperature, precipitation of sampling cities

      图  2   陆生型空心莲子草生理指标与环境因子的回归拟合

      Figure  2.   Regression fittings between physiological indexes of terrestrial Alternanthera philoxeroides and environmental factors

      图  3   水生型空心莲子草生理指标与环境因子的回归拟合

      Figure  3.   Regression fittings between physiological indexes of aquatic Alternanthera philoxeroides and environmental factors

      图  4   陆生型空心莲子草生理指标与环境因子的CCA排序

      环境矢量箭头的方向代表其与排序轴的正负相关性;环境矢量连线越长、与排序轴间的夹角越小,则说明该环境因子的主导性越强;表征各生理指标的圆圈与环境矢量连线的垂直距离越短,表示两者相关性越大

      Figure  4.   CCA ordination of physiological indexes of terrestrial Alternanthera philoxeroides and environmental factors

      Direction of environment vector arrow represents its positive or negative correlation with CCA axis; The longer the environment vector and the smaller angle between vector and axis, the stronger the dominance of environment factor; The shorter the vertical distance between the circle and vector, the greater the correlation between certain plant physiological index and environment factor

      图  5   水生型空心莲子草生理指标与环境因子的CCA排序

      Figure  5.   CCA ordination of physiological indexes of aquatic Alternanthera philoxeroides and environmental factors

      表  1   陆生环境因子与CCA排序轴的相关性分析1)

      Table  1   Correlation analysis of terrestrial environmental factors and CCA axis

      环境因子 Environmental factor CCA第1轴 CCA axis 1 CCA第2轴 CCA axis 2
      纬度 Latitude −0.161 −0.667**
      经度 Longitude 0.148 −0.787**
      海拔 Elevation 0.503** 0.516**
      铵态氮含量 Ammonium nitrogen content −0.255 −0.047
      硝态氮含量 Nitrate nitrogen content −0.041 0.494**
      年均气温 Annual mean air temperature 0.087 0.595**
      年均降雨量 Annual mean precipitation 0.010 0.745**
      莲草直胸跳甲数量 Abundance of Agasicles hygrophila 0.041 −0.037
      昆虫丰富度 Insect richness −0.671** 0.396*
      Patrick丰富度指数 Patrick richness index −0.214 −0.607**
      Shannon-Wiener多样性指数 Shannon-Wiener diversity index 0.225 −0.405*
      Simpson多样性指数 Simpson diversity index 0.405* −0.013
      Pielou均匀度指数 Pielou evenness index 0.705** 0.107
       1) “*”“**”分别表示在0.05,0.01水平显著相关
       1) “*” and “**” represent significant correlations at 0.05 and 0.01 levels, respectively
      下载: 导出CSV

      表  2   水生环境因子与CCA排序轴的相关性分析1)

      Table  2   Correlation analysis of aquatic environmental factors and CCA axis

      环境因子 Environmental factor CCA第1轴 CCA axis 1 CCA第2轴 CCA axis 2
      纬度 Latitude −0.071 −0.713**
      经度 Longitude −0.296 −0.170
      海拔 Elevation −0.363* 0.003
      铵态氮含量 Ammonium content −0.102 −0.104
      硝态氮含量 Nitrate nitrogen content −0.193 0.223
      年均气温 Annual mean air temperature −0.040 0.684**
      年均降雨量 Annual mean precipitation 0.095 0.595**
      莲草直胸跳甲数量 Abundance of Agasicles hygrophila −0.443** 0.140
      昆虫丰富度 Insect richness −0.471** 0.172
      Patrick丰富度指数 Patrick richness index 0.298 −0.618**
      Shannon-Wiener多样性指数 Shannon-Wiener diversity index 0.050 −0.479**
      Simpson多样性指数 Simpson diversity index −0.334* −0.496**
      Pielou均匀度指数 Pielou evenness index −0.349* 0.270
       1) “*”“**”分别表示在0.05和0.01水平显著相关
       1) “*” and “**” represent significant correlations at 0.05 and 0.01 levels, respectively
      下载: 导出CSV
    • [1]

      VITT P, HAVENS K, KRAMER A T, et al. Assisted migration of plants: Changes in latitudes, changes in attitudes[J]. Biodiversity and Conservation, 2012, 143(1): 18-27.

      [2] 吴昊, 丁建清. 入侵生态学最新研究动态[J]. 科学通报, 2014, 59(6): 438-448.
      [3]

      WINDER M, JASSBY A D, NALLY R M. Synergies between climate anomalies and hydrological modifications facilitate estuarine biotic invasions[J]. Ecology Letters, 2011, 14(8): 749-757. doi: 10.1111/j.1461-0248.2011.01635.x

      [4]

      SORTE C J B, IBANEZ I, BLUMENTHAL D M. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance[J]. Ecology Letters, 2013, 16(2): 261-270. doi: 10.1111/ele.12017

      [5] 张桥英, 彭少麟. 增温对入侵植物马缨丹生物量分配和异速生长的影响[J]. 生态学报, 2018, 38(18): 6670-6676.
      [6] 薛晨阳, 许玉凤, 曲波. 不同氮水平下瘤突苍耳、苍耳及其杂交种形态、光合及生长特征比较[J]. 生物多样性, 2018, 26(6): 554-563. doi: 10.17520/biods.2018002
      [7] 周晓慧, 彭培好, 李景吉. 模拟气候变暖和氮沉降对两种来源加拿大一枝黄花叶性状和性状谱的影响[J]. 生态学报, 2019, 39(5): 1605-1615.
      [8]

      YOU W H, YU D, LIU C H, et al. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability[J]. Hydrobiologia, 2013, 718(1): 27-39. doi: 10.1007/s10750-013-1596-4

      [9]

      AGATI G, TATTINI M. Multiple functional roles of flavonoids in photo protection[J]. New Phytologist, 2010, 186(4): 786-793. doi: 10.1111/j.1469-8137.2010.03269.x

      [10]

      PAUL-VICTOR C, ZÜST T, REES M, et al. A new methods for measuring relative growth rate can uncover the costs of defensive compounds in Arabidopsis thaliana[J]. New Phytologist, 2010, 187(4): 1102-1111. doi: 10.1111/j.1469-8137.2010.03325.x

      [11] 沈文燕, 陆长梅, 周长芳. 互花米草和芦苇抗氧化系统在抵御硫胁迫过程中的响应差异[J]. 复旦学报(自然科学版), 2011, 50(5): 653-661.
      [12] 朱慧, 马瑞君, 吴双桃, 等. 自然生境中五爪金龙总黄酮含量的比较[J]. 生态环境, 2008, 17(3): 1193-1197.
      [13]

      XIAO L, HERVE M R, CARRILLO J, et al. Latitudinal trends in growth, reproduction and defense of an invasive plant[J]. Biological Invasions, 2019, 21(1): 189-201. doi: 10.1007/s10530-018-1816-y

      [14]

      XIAO L, DING J Q, ZHANG J L, et al. Chemical responses of an invasive plant to herbivory and abiotic environments reveal a novel invasion mechanism[J]. Science of the Total Environment, 2020, 741: 140-452.

      [15]

      HUANG W, SIEMANN E, XIAO L, et al. Species-specific defence responses facilitate conspecifics and inhibit heterospecifics in above-belowground herbivore interactions[J]. Nature Communications, 2014, 5(1): 4851. doi: 10.1038/ncomms5851

      [16] 吴昊, 张辰, 代文魁. 气候变暖和物种多样性交互效应对空心莲子草入侵的影响[J]. 草业学报, 2020, 29(3): 38-48. doi: 10.11686/cyxb2019277
      [17]

      WU H, ISMAIL M, DING J Q. Global warming increases the interspecific competitiveness of the invasive plant alligator weed, Alternanthera philoxeroides[J]. Science of the Total Environment, 2017, 575: 1415-1422. doi: 10.1016/j.scitotenv.2016.09.226

      [18]

      LU X M, HE M Y, DING J Q, et al. Latitudinal variation in soil biota: Testing the biotic interaction hypothesis with an invasive plant and a native congener[J]. ISME Journal, 2018, 12: 2811-2822. doi: 10.1038/s41396-018-0219-5

      [19] 高芳磊, 郭素民, 闫明, 等. 不同生境下空心莲子草响应模拟昆虫采食的生长和化学防御策略[J]. 生态学报, 2018, 38(7): 2344-2352.
      [20] 张强, 陈雄伟, 陈军文, 等. 两种入侵能力不同的莲子草光合系统稳定性的比较研究[J]. 广西植物, 2014, 34(3): 348-354.
      [21] 郭素民, 李钧敏, 李永慧, 等. 空心莲子草响应南方菟丝子寄生的生长−防御权衡[J]. 生态学报, 2014, 34(17): 4866-4873.
      [22] 吴昊, 杜奎, 李万通, 等. 空心莲子草入侵对豫南草本植物群落多样性及稳定性的影响[J]. 草业科学, 2019, 36(2): 382-393.
      [23] 倪广艳, 朱丽薇, 牛俊峰, 等. 三种菊科入侵植物的生长与化学防御的关系研究[J]. 生态环境学报, 2014, 23(1): 1-6. doi: 10.3969/j.issn.1674-5906.2014.01.001
      [24] 王开金, 陈列忠, 李宁, 等. 加拿大一枝黄花黄酮类成分及抗氧化与自由基消除活性的研究[J]. 中国药学杂志, 2006, 41(7): 493-497. doi: 10.3321/j.issn:1001-2494.2006.07.004
      [25]

      MARTZ F, PELTOLA R, FONTANAY S, et al. Effect of latitude and altitude on the terpenoid and soluble phenolic composition of Juniper (Juniperus communis) needles and evaluation of their antibacterial activity in the boreal zone[J]. Journal of Agricultural and Food Chemistry, 2009, 57(20): 9575-9584. doi: 10.1021/jf902423k

      [26]

      LÄTTI A K, JAAKOLA L, RIIHINEN K R, et al. Anthocyanin and flavonol variation in bog bilberries (Vaccinium uliginosum L.) in Finland[J]. Journal of Agricultural and Food Chemistry, 2010, 58: 427-433. doi: 10.1021/jf903033m

      [27] 张诗行, 刘艳红. 东北红豆杉幼苗黄酮类化合物含量变化及其对气候因子的响应[J]. 生态学杂志, 2020, 39(1): 73-81.
      [28]

      DU Y, LU R L, XIA J Y. Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants[J]. Functional Ecology, 2020, 34(8): 1-12.

      [29] 朱慧, 彭媛媛, 王德利. 植物对昆虫多样性的影响[J]. 生态学杂志, 2008b, 27(12): 2215-2221.
      [30]

      WU H, DING J Q. Abiotic and biotic determinants of plant diversity in aquatic communities invaded by Water Hyacinth [Eichhornia crassipes (Mart.) Solms][J]. Frontiers in Plant Science, 2020, 11: 1306. doi: 10.3389/fpls.2020.01306

      [31] 马瑞燕, 王韧. 不同生态型的喜旱莲子草对莲草直胸跳甲化蛹能力的影响[J]. 植物生态学报, 2004, 28(1): 24-30. doi: 10.3321/j.issn:1005-264X.2004.01.004
      [32]

      FENG Y L, LEI Y B, WANG R F, et al. Evolutionary tradeoffs for nitrogen allocation to photosynthesis cell walls in an invasion plant[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1853-1856. doi: 10.1073/pnas.0808434106

      [33] 胡小京, 刘玉彩, 裴芸, 等. 水分胁迫对野百合幼苗生理特性的影响[J]. 河南农业科学, 2020, 49(1): 111-117.
      [34]

      VAN DEN BERG L J, PETERS C J, ASHMORE M R, et al. Reduced nitrogen has a greater effect than oxidised nitrogen on dry heathland vegetation[J]. Environmental Pollution, 2008, 154(3): 359-369. doi: 10.1016/j.envpol.2007.11.027

      [35]

      GAO L, LI B, LIU W Y, et al. Inhibition effects of daughter ramets on parent of clonal plant Eichhornia crassipes[J]. Aquatic Botany, 2013, 107: 47-53. doi: 10.1016/j.aquabot.2013.01.010

      [36] 李德文, 李美兰, 于景华, 等. 外源NO对UV-B胁迫下红豆杉抗氧化系统的影响[J]. 生态学杂志, 2012, 31(9): 2203-2208.
      [37] 王小菲, 高文强, 刘建锋, 等. 植物防御策略及其环境驱动机制[J]. 生态学杂志, 2015, 34(12): 3542-3552.
      [38] 胡可, 韩科厅, 戴思兰. 环境因子调控植物花青素苷合成及呈色的机理[J]. 植物学报, 2010, 45(3): 307-317. doi: 10.3969/j.issn.1674-3466.2010.03.002
      [39] 宋森楠, 宋晓宇, 陈立平, 等. 冬小麦氮平衡指数与籽粒蛋白质含量空间结构及关系[J]. 农业工程学报, 2013, 29(15): 91-97. doi: 10.3969/j.issn.1002-6819.2013.15.012
      [40]

      SHARMA R, KAUR R. Elucidating physiological and biochemical alterations in giant duckweed (Spirodela polyrhiza L. Schleiden) under diethyl phthalate stress: Insights into antioxidant defence system[J]. Peer Journal, 2020, 8(9): e8267. doi: 10.7717/peerj.8267.

    • 期刊类型引用(2)

      1. 孙思昂,邓梓妍,熊佳瑶,李少斌,杜何为,杜小龙. 空心莲子草生物及生态防治研究进展. 南方农业. 2022(09): 164-167 . 百度学术
      2. 杨凤梅,郑舒含,关晓银,邝乃诵,郭雁君. 空心莲子草的生物学特性及利用价值研究进展. 现代农业科技. 2022(22): 99-103+107 . 百度学术

      其他类型引用(8)

    图(5)  /  表(2)
    计量
    • 文章访问数:  513
    • HTML全文浏览量:  8
    • PDF下载量:  946
    • 被引次数: 10
    出版历程
    • 收稿日期:  2021-02-14
    • 网络出版日期:  2023-05-17
    • 刊出日期:  2022-03-09

    目录

      /

      返回文章
      返回