Effects of irrigation method and nitrogen application on methane emission and organic carbon fraction in double-cropping rice field
-
摘要:目的
获得稻田甲烷(CH4)减排的水氮管理模式,揭示不同灌溉方式和施氮处理下土壤有机碳组分和甲烷氧化菌对稻田CH4排放通量的影响。
方法通过田间试验测定3种灌溉方式(常规灌溉、“薄浅湿晒”灌溉和干湿交替灌溉)和3种氮肥处理(N1:120 kg·hm−2氮,20%基肥80%追肥;N2:120 kg·hm−2氮,50%基肥50%追肥;N3:90 kg·hm−2氮,50%基肥50%追肥)下双季稻不同生育期稻田CH4排放通量、土壤有机碳组分含量和甲烷氧化菌数量,分析稻田CH4排放通量与土壤有机碳组分和甲烷氧化菌之间的关系。
结果干湿交替灌溉N3处理稻田CH4排放通量最低,晚稻分蘖期稻田CH4排放通量较常规灌溉N1处理降低70.5%。干湿交替灌溉下,N2处理早稻孕穗期土壤微生物量碳含量较N1及N3处理均增加23.5%,N3处理晚稻分蘖期土壤可溶性有机碳含量较N1及N2处理分别增加12.0%和12.9%。N3处理下,常规灌溉早稻孕穗期土壤易氧化有机碳含量较“薄浅湿晒”灌溉和干湿交替灌溉分别增加38.8%和40.9%。双季稻田CH4排放通量仅与土壤可溶性有机碳含量呈极显著正相关(r=0.55,P<0.01)。
结论土壤可溶性有机碳含量显著影响双季稻田CH4排放通量,干湿交替灌溉N3处理稻田CH4排放通量较低。
Abstract:ObjectiveThe objective was to obtain water and nitrogen management mode for methane (CH4) emission reduction, and reveal the effects of soil organic carbon fraction and methane oxidizing bacteria on CH4 emission flux from rice fields treated by different irrigation methods and nitrogen application.
MethodThrough field experiment, CH4 emission fluxes, soil organic carbon fraction contents and methane oxidizing bacteria numbers at different growth stages of double-cropping rice were determined under three irrigation methods (conventional irrigation, “thin-shallow-wet-dry” irrigation and alternate drying and wetting irrigation) and three nitrogen application methods (N1: 120 kg·hm−2 nitrogen, 20% basal fertilizer and 80% topdressing; N2: 120 kg·hm−2 nitrogen, 50% basal fertilizer and 50% topdressing; N3: 90 kg·hm−2 nitrogen, 50% basal fertilizer and 50% topdressing). The correlation relationships of CH4 emission fluxes with soil organic carbon fractions and methane oxidizing bacteria were analyzed.
ResultThe treatment of alternate drying and wetting irrigation combining with N3 had the lowest CH4 emission flux from rice fields, and CH4 emission flux at the tillering stage of late rice decreased by 70.5% compared with the treatment of conventional irrigation combining with N1. Under the alternate drying and wetting irrigation, the soil microbial biomass carbon content at the booting stage of early rice in N2 treatment increased by 23.5% compared with both N1 and N3 treatments, and the soil soluble organic carbon content at the tillering stage of late rice in N3 treatment increased by 12.0% and 12.9% compared with N1 and N2 treatments, respectively. Under the N3 treatment, conventional irrigation increased the soil readily oxidizable organic carbon content by 38.8% and 40.9% compared to “thin-shallow-wet-dry” irrigation and alternate drying and wetting irrigation at the booting stage of early rice, respectively. CH4 emission flux from double-cropping rice fields was significantly positively correlated only with soil soluble organic carbon content (r=0.55, P<0.01).
ConclusionSoil soluble organic carbon content significantly affects CH4 emission fluxes from double-cropping rice fields, and alternate drying and wetting irrigation combining with N3 treatment had lower CH4 emission flux from rice fields.
-
普通大蓟马Megalurothrips usitatus又名豆大蓟马、豆花蓟马,隶属于缨翅目蓟马科大蓟马属,主要分布于澳大利亚、马来西亚、斯里兰卡、菲律宾、斐济、印度、日本等[1-3],在我国海南、台湾、广东、广西、湖北、贵州、陕西等地也均有发生为害[4-5]。据报道,该虫有28种寄主,其中16种为豆科植物,目前它已成为危害华南地区豆科作物的主要害虫[6-9],田间调查和室内试验均表明豇豆为其嗜好寄主[10-11]。普通大蓟马主要以锉吸式口器取食豇豆幼嫩组织的汁液,可造成叶片皱缩、生长点萎缩、豆荚痂疤等,严重影响豇豆品质[12-13]。此外,该虫体积小、发生量大、隐秘性强,大部分时间都躲在花中取食,从豇豆苗期至采收期均可为害[14-15],以上特点均增加了农户的防治难度。当其为害严重时,农户只能增加施药频率和施药量,这也导致该虫对多种常用化学农药产生了严重的抗药性[16-17]。
目前关于普通大蓟马的研究主要集中在生物学特性[18]及综合防治技术[19-20]等层面,随着抗药性的不断发展与研究的不断深入,从分子层面解析普通大蓟马的抗药性机制和寄主选择机制等以寻求新型绿色防控方法势在必行,室内种群的大规模饲养是展开这些研究的基础。化蛹基质作为影响昆虫种群规模的关键因子,韩云等[21]曾指出普通大蓟马在含水量(w)为15%的砂壤土中羽化率显著高于砂土、壤土和黏土,但不适用于室内大规模饲养,因为实际应用中,存在土壤类型无法明确区分、配制砂壤土会增加人工饲养的工作量等问题。土壤以外的其他基质对普通大蓟马化蛹的适合度鲜见研究报道。
本研究以普通大蓟马为试验对象,室内观测其在沙子、蛭石和厨房用纸3种基质及无基质条件下的羽化规律,分析该虫对不同化蛹基质的适合度,以期为普通大蓟马的室内大规模饲养提供基础资料,为该虫的综合治理提供理论依据。
1. 材料与方法
1.1 供试材料
普通大蓟马于2017年采自广东省广州市增城区朱村豇豆田,采回后在RXZ-500C型智能人工气候箱(宁波江南仪器厂)内用豇豆豆荚饲养,饲养条件为温度(26±6) ℃,光照周期12 h光∶12 h暗,相对湿度(70±5)%。室内饲养多代后,选取发育一致的老熟2龄若虫(以体色变为橙红色为标准)进行室内试验。
供试基质包括沙子、蛭石、锯末和厨房用纸,并以无基质作为空白对照。试验前将沙子、蛭石和锯末置于DHG-9140型电热恒温鼓风干燥箱(上海精宏实验设备有限公司)中105 ℃恒温烘烤6 h备用。
1.2 试验方法
首先称取过筛烘干后的沙子50 g 3组,分别加入2.5、3.5和4.5 mL蒸馏水,充分混匀,配制成含水量(w)分别为5%、7%和9%的沙子化蛹基质;称取过筛烘干后的蛭石10 g 3组,分别加入10.0、12.5和15.0 mL蒸馏水,充分混匀,配制成含水量(w)分别为20%、25%和30%的蛭石化蛹基质;称取过筛烘干后的蛭石10 g 3组,分别加入12.5、15.0和17.5 mL蒸馏水,充分混匀,配制成含水量(w)分别为25%、30%和35%的锯末化蛹基质。将以上基质分别转移至350 mL玻璃组培瓶内,基质深度均为5 cm,将厨房用纸对折成合适大小后平铺在组培瓶底部作为基质。在所有基质上放置纱网,再加入1根新鲜的豇豆豆荚(长度约4~5 cm),分别接入50头普通大蓟马老熟2龄若虫,用250目纱布封口后置于人工气候箱中饲养,每日观察并记录成虫羽化数量。每个处理设6次重复。设置不加入任何化蛹基质的空白对照。
含水量的测定方法按以下公式[22]进行:
含水量=实际含水质量/烘干后基质质量×100%。
1.3 数据分析
运用SPSS 24.0软件进行试验数据处理分析,不同基质及含水量对普通大蓟马羽化率、蛹历期和性比(雄性∶雌性)的影响采用单因素方差分析,并运用Duncan’s法检验差异显著性。
2. 结果与分析
2.1 不同基质对普通大蓟马羽化率、蛹历期和性比的影响
普通大蓟马在不同基质中的羽化率、蛹历期和性比具有显著差异(图1)。由图1A可知,普通大蓟马在厨房用纸中的羽化率显著高于其他基质,为54.33%,其次为含水量5%(w)的沙子,羽化率为44.67%;锯末最不适宜于普通大蓟马羽化,在含水量(w)为25%、30%、35%的锯末中普通大蓟马的羽化率分别为10.33%、5.33%、16.67%,显著低于空白对照与其他基质。
图 1 不同基质对普通大蓟马羽化率、发育历期和性比(雄性∶雌性)的影响1~3分别为含水量(w)为5%、7%和1%的沙子,4~6分别为含水量(w)为20%、25%和30%的蛭石,7~9分别为含水量(w)为25%、30%和35%锯末,10:厨房用纸,11:无基质;各图中的不同小写字母表示差异显著(P<0.05,Duncan’s法)Figure 1. Effects of different substrates on eclosion rate, pupa developmental period and male-female ratio of Megalurothrips usitatus1: Sand with 5% moisture, 2: Sand with 7% moisture, 3: Sand with 10% moisture, 4: Vermiculite with 20% moisture, 5: Vermiculite with 25% moisture, 6: Vermiculite with 30% moisture, 7: Sawdust with 25% moisture, 8: Sawdust with 30% moisture, 9: Sawdust with 35% moisture, 10: Kitchen paper, 11: No substrate; Different lowercase leters in the same figure indicated significant difference among different substrate (P<0.05, Duncan’s method)由图1B可知,普通大蓟马在含水量5%(w)的沙子中蛹的发育历期最短,为5.29 d,其次为含水量7%(w)的沙子,为6.01 d,在其他基质中的蛹期则无显著差异,在6.14~7.16 d。
由图1C可知,普通大蓟马在含水量30%(w)的蛭石中性比最高,为0.60,含水量10%(w)的沙子和30%(w)的蛭石性比相对较低,分别为0.12和0.06,在其他基质中性比无显著差异。
2.2 不同基质条件下普通大蓟马的羽化情况
由表1数据可知,沙子含水量(w)为5%时普通大蓟马羽化最早,始于第2天;其次为蛭石,羽化始于第4天,其他条件下羽化均始于第3天;以锯末为基质时羽化最晚,始于第5天。沙子含水量(w)为5%和厨房用纸条件下,羽化高峰出现在第5天,羽化率分别为21%和22.67%;次高峰在第6天,羽化率分别为14.33%和21%。沙子含水量(w)为9%、锯末以及空白对照下羽化高峰出现在第7天,其他条件下羽化高峰均出现在第6天。不同基质类型及含水量条件下,普通大蓟马的羽化均结束于第8天或第9天,与不同基质培养条件下普通大蓟马蛹期之间的差异相对应。
表 1 不同基质对普通大蓟马逐日羽化率的影响1)Table 1. Effects of differents substrates on daily eclosion rate of Megalurothrips usitatus% t/d 沙子含水量(w) Water content in sand 蛭石含水量(w) Water content in vermiculite 5% 7% 9% 20% 25% 30% 1 0 0 0 0 0 0 2 1.67±0.42c 0 0 0 0 0 3 1.00±1.68c 0 0 0 0 0 4 1.33±0.67c 5.33±0.33c 0.33±0.33b 0 0 0 5 21.00±3.82a 5.33±2.17b 2.67±1.91b 3.00±2.30bc 10.33±3.48ab 0.33±0.33b 6 14.33±4.66b 17.33±1.76a 2.67±1.91b 11.67±2.09a 14.67±3.33a 7.67±2.22a 7 2.33±0.80c 5.00±0.85b 8.67±1.84a 6.33±2.28b 7.67±1.74bc 6.67±1.52a 8 0.67±0.42c 0.67±0.67c 0.67±0.42b 4.00±1.35bc 4.00±1.37cd 1.67±0.94b 9 0 0 0.33±0.33b 0.67±0.42b 0 0.67±0.42b 10 0 0 0 0 0 0 3. 讨论与结论
化蛹基质的类型对普通大蓟马化蛹具有一定影响,本研究发现锯末和蛭石不适宜于普通大蓟马化蛹,锯末和蛭石不同含水量条件下大蓟马的羽化率都显著低于空白对照。有研究指出土壤中砂土含量低于30%时,蓟马若虫不能化蛹[23],蓟马在砂壤土中的羽化率也显著高于砂土、黏土、壤土等单一土壤[21]。
化蛹基质的含水量对普通大蓟马化蛹具有显著影响,本研究发现当沙子含水量(w)为5%时,羽化率仅次于厨房用纸,高达44.67%,与孟国玲等[23]关于豆带蓟马Taenithripsglycines在含水量(w)为5.7%时羽化率最高(43.63%)的报道相对一致。韩云等[21]研究发现普通大蓟马在含水量(w)为15%的砂壤土中羽化率最高,为52.08%,而土壤含水量(w)5%时羽化率仅为6.67%。这与本研究结果不符,究其原因可能是不同类型的基质吸水力与保水力不同,导致在相同的绝对含水量下湿度有差异。此外,有研究曾指出高含水量不利于蓟马化蛹[24],这与本研究结果相一致,沙子含水量(w)5%时的羽化率显著高于含水量(w)7%和10%。
在本研究中,成虫性比普遍低于1∶1,含水量(w)30%的蛭石羽化性比最高,为0.6,含水量(w)30%锯末最低,为0.06,其他处理的性比无显著差异,为0.12~0.48。张念台[8]和谭柯[24]在田间调查的结果也显示其成虫性比低于1∶1,后代总是偏于雌性,谭柯[24]则表示后代偏雌性可能是蓟马暴发的原因之一。这与本研究结果相一致,后代偏于雌性。
本研究发现普通大蓟马在厨房用纸中的羽化率最高,蛹发育历期与其他基质相比无明显差异,且以厨房用纸为化蛹基质时,可以清楚地观察到普通大蓟马蛹期的形态特征变化,可以随时根据试验需求收集不同时期的若虫或成虫。虽然沙子含水量(w)5%时蛹发育历期最短且羽化率也较高,但蓟马一旦入土化蛹便无法继续观察形态或收集虫体。因此,本试验条件下,厨房用纸是最适合室内普通大蓟马大量饲养的化蛹基质。
-
图 1 不同处理各生育期双季稻田CH4排放通量
N1:120 kg·hm−2氮(20%基肥80%追肥),N2:120 kg·hm−2氮(50%基肥50%追肥),N3:90 kg·hm−2氮(50%基肥50%追肥);TS:分蘖期,BS:孕穗期,MS:乳熟期,RS:成熟期
Figure 1. CH4 emission fluxes from double-cropping paddy field at each growth stage in different treatments
N1: 120 kg·hm−2 nitrogen (20% basal fertilizer and 80% topdressing), N2: 120 kg·hm−2 nitrogen (50% base fertilizer and 50% topdressing), N3: 90 kg·hm−2 nitrogen (50% basal fertilizer and 50% topdressing); TS: Tillering stage, BS: Booting stage, MS: Milk stage, RS: Ripening stage
图 2 不同处理各生育期土壤甲烷氧化菌数量
N1:120 kg·hm−2氮(20%基肥80%追肥),N2:120 kg·hm−2氮(50%基肥50%追肥),N3:90 kg·hm−2氮(50%基肥50%追肥);TS:分蘖期,BS:孕穗期,MS:乳熟期,RS:成熟期
Figure 2. Soil methane oxidizing bacteria population amounts at each growth stage in different treatments
N1: 120 kg·hm−2 nitrogen (20% basal fertilizer and 80% topdressing), N2: 120 kg·hm−2 nitrogen (50% base fertilizer and 50% topdressing), N3: 90 kg·hm−2 nitrogen (50% basal fertilizer and 50% topdressing); TS: Tillering stage, BS: Booting stage, MS: Milk stage, RS: Ripening stage
表 1 不同处理各生育期土壤微生物量碳含量1)
Table 1 Soil microbial biomass carbon contents at each growth stage in different treatments
w/(g·kg−1) 施氮处理
Nitrogen treatment灌溉方式
Irrigation method晚稻 Late rice 早稻 Early rice TS BS MS RS TS BS MS RS N1 BG 0.15±0.01b 0.17±0.01ab 0.17±0.01b 0.17±0.01ab 0.16±0.01ab 0.17±0.01bc 0.18±0.01bc 0.15±0.01b GG 0.17±0.02ab 0.17±0.01ab 0.17±0.01b 0.17±0.01ab 0.17±0.02ab 0.17±0.01bc 0.18±0.01bc 0.15±0.01b CG 0.17±0.04ab 0.19±0.01ab 0.19±0.01b 0.16±0.01ab 0.14±0.02b 0.12±0.01d 0.12±0.01d 0.08±0.01c N2 BG 0.18±0.01ab 0.18±0.01ab 0.19±0.01b 0.17±0.01ab 0.19±0.01a 0.19±0.01ab 0.20±0.01b 0.18±0.01a GG 0.19±0.01ab 0.18±0.01ab 0.18±0.01b 0.20±0.03a 0.20±0.01a 0.21±0.01a 0.23±0.01a 0.18±0.01a CG 0.21±0.02a 0.21±0.02a 0.23±0.02a 0.15±0.02bc 0.17±0.01ab 0.14±0.01cd 0.18±0.01bc 0.14±0.02b N3 BG 0.17±0.01ab 0.18±0.01ab 0.18±0.01b 0.17±0.01ab 0.17±0.02ab 0.17±0.01bc 0.18±0.01b 0.16±0.01ab GG 0.19±0.01ab 0.18±0.01ab 0.17±0.01b 0.17±0.01ab 0.18±0.01a 0.17±0.01bc 0.18±0.01bc 0.16±0.01ab CG 0.17±0.01ab 0.20±0.01ab 0.19±0.01b 0.11±0.02c 0.16±0.01ab 0.14±0.02cd 0.16±0.01c 0.11±0.02c 1)N1:120 kg·hm−2氮(20%基肥80%追肥),N2:120 kg·hm−2氮(50%基肥50%追肥),N3:90 kg·hm−2氮(50%基肥50%追肥);BG:“薄浅湿晒”灌溉,GG:干湿交替灌溉,CG:传统灌溉;TS:分蘖期,BS:孕穗期,MS:乳熟期,RS:成熟期;同列数据后不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
1) N1: 120 kg·hm−2 nitrogen (20% basal fertilizer and 80% topdressing), N2: 120 kg·hm−2 nitrogen (50% base fertilizer and 50% topdressing), N3: 90 kg·hm−2 nitrogen (50% basal fertilizer and 50% topdressing); BG: “Thin-shallow-wet-dry” irrigation, GG: Alternate drying and wetting irrigation, CG: Conventional irrigation; TS: Tillering stage, BS: Booting stage, MS: Milk stage, RS: Ripening stage; Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05, Duncan’s method)表 2 不同处理各生育期土壤可溶性有机碳含量
Table 2 Soil soluble organic carbon contents at each growth stage in different treatments
w/(mg·kg−1) 施氮处理
Nitrogen
treatment灌溉方式
Irrigation
method晚稻 Late rice 早稻 Early rice TS BS MS RS TS BS MS RS N1 BG 80.1±5.2d 83.2±3.5abc 82.3±1.2c 61.1±2.0bc 86.9±5.6a 84.8±4.9ab 88.5±6.3abc 64.2±8.6abc GG 92.8±1.2bc 89.5±3.4a 89.0±2.2b 61.1±3.1bc 89.5±11.6a 84.9±21.9ab 77.1±6.4c 54.9±10.4c CG 92.6±5.5bc 73.6±5.4c 73.6±2.0e 45.6±3.2d 85.0±15.5a 74.9±15.9b 83.1±4.9bc 62.9±5.0abc N2 BG 84.6±2.0cd 82.7±4.9abc 83.2±4.4c 58.9±3.1bc 88.2±10.3a 70.9±6.1b 97.2±13.5ab 71.6±4.7ab GG 92.0±0.1bc 84.2±3.1ab 84.9±3.1bc 61.9±1.3bc 94.7±38.3a 87.6±13.9ab 83.7±2.4bc 57.2±1.9bc CG 90.6±3.0bc 76.4±2.2bc 75.7±1.9de 46.9±4.8d 92.5±13.9a 77.6±4.2ab 70.4±8.1c 49.8±5.1c N3 BG 85.4±4.1cd 87.2±6.7a 101.9±3.0a 66.6±5.0ab 71.3±31.4a 87.6±4.8ab 106.3±6.7a 78.3±6.2a GG 103.9±2.4a 89.5±2.3a 100.2±3.9a 69.2±2.5a 102.9±19.2a 99.1±17.2a 105.0±6.2a 78.0±4.7a CG 99.2±6.7ab 79.5±2.0abc 80.7±4.3cd 55.3±3.1c 96.6±9.6a 93.7±3.7ab 89.1±5.8abc 71.1±4.6ab 1) N1:120 kg·hm−2氮(20%基肥80%追肥),N2:120 kg·hm−2氮(50%基肥50%追肥),N3:90 kg·hm−2氮(50%基肥50%追肥);BG:“薄浅湿晒”灌溉,GG:干湿交替灌溉,CG:传统灌溉;TS:分蘖期,BS:孕穗期,MS:乳熟期,RS:成熟期;同列数据后不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
1) N1: 120 kg·hm−2 nitrogen (20% basal fertilizer and 80% topdressing), N2: 120 kg·hm−2 nitrogen (50% base fertilizer and 50% topdressing), N3: 90 kg·hm−2 nitrogen ( 50% basal fertilizer and 50% topdressing); BG: “Thin-shallow-wet-dry” irrigation, GG: Alternate drying and wetting irrigation, CG: Conventional irrigation; TS: Tillering stage, BS: Booting stage, MS: Milk stage, RS: Ripening stage; Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05, Duncan’s method)表 3 不同处理各生育期土壤易氧化有机碳含量
Table 3 Soil readily oxidizable organic carbon contents at each growth stage in different treatments
w/(g·kg−1) 施氮处理
Nitrogen
treatment灌溉方式
Irrigation
method晚稻 Late rice 早稻 Early rice TS BS MS RS TS BS MS RS N1 BG 4.53±1.66ab 3.55±0.21ab 4.65±0.58a 5.74±0.60a 2.41±0.39d 3.08±0.29d 4.48±0.42abc 1.70±0.44b GG 1.08±0.13b 3.82±0.34ab 5.30±0.38a 4.70±0.20bc 2.81±0.17d 3.82±0.34bcd 5.11±0.36a 2.04±0.48b CG 6.48±1.65ab 4.33±0.28ab 5.13±0.31a 5.31±0.12ab 3.67±1.17bcd 4.55±0.23abc 5.06±0.26a 3.29±0.61a N2 BG 4.18±2.84ab 3.05±0.25b 5.27±0.40a 4.12±0.37c 4.74±1.33abcd 4.13±0.12abcd 3.95±0.25bc 1.86±0.32b GG 3.08±1.52ab 4.34±0.65ab 5.57±0.35a 4.52±0.10bc 4.62±1.00abcd 4.15±0.24abcd 4.84±0.20ab 2.23±0.34ab CG 7.10±0.79a 4.58±0.66a 5.51±0.32a 5.54±0.18ab 7.25±0.67a 5.12±0.18a 5.02±0.12a 2.71±0.37ab N3 BG 3.68±1.89ab 4.34±0.65ab 5.94±0.51a 4.79±0.40abc 5.65±1.23abc 3.40±0.86cd 5.15±0.08a 1.55±0.21b GG 5.02±1.79ab 4.34±0.25ab 4.76±0.18a 4.10±0.17c 2.96±0.15cd 3.35±0.29cd 3.77±0.56c 1.74±0.19b CG 6.27±1.95ab 3.62±0.18ab 4.59±0.51a 4.73±0.32abc 6.39±0.28ab 4.72±0.41ab 4.24±0.20abc 2.31±0.16ab 1) N1:120 kg·hm−2氮(20%基肥80%追肥),N2:120 kg·hm−2氮(50%基肥50%追肥),N3:90 kg·hm−2氮(50%基肥50%追肥);BG:“薄浅湿晒”灌溉,GG:干湿交替灌溉,CG:传统灌溉;TS:分蘖期,BS:孕穗期,MS:乳熟期,RS:成熟期;同列数据后不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
1) N1: 120 kg·hm−2 nitrogen (20% basal fertilizer and 80% topdressing), N2: 120 kg·hm−2 nitrogen (50% base fertilizer and 50% topdressing), N3: 90 kg·hm−2 nitrogen (50% basal fertilizer and 50% topdressing); BG: “Thin-shallow-wet-dry” irrigation, GG: Alternate drying and wetting irrigation, CG: Conventional irrigation; TS: Tillering stage, BS: Booting stage, MS: Milk stage, RS: Ripening stage; Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05, Duncan’s method)表 4 双季稻田CH4排放通量与土壤有机碳组分和甲烷氧化菌相关性分析1)
Table 4 Correlation analyses of CH4 emission flux with soil organic carbon fraction and methane oxidizing bacteria
稻季
Rice season微生物量碳含量
Microbial biomass
carbon content可溶性有机碳含量
Soluble organic
carbon content易氧化有机碳含量
Readily oxidizable organic
carbon content甲烷氧化菌数量
Methane oxidizing
bacteria number晚稻 Late rice 0.31 0.55** 0.25 0.12 早稻 Early rice 0.22 0.34* 0.42* −0.04 1)“*”、“**”分别表示在0.05、0.01水平显著相关
1)“*”, “**” indicate significant correlation at 0.05 and 0.01 levels respectively -
[1] Intergovernmental panel on climate change. Climate change 2007: The physical science basis[M]. Cambridge: Cambridge University Press, 2007.
[2] 王楷, 李伏生, 方泽涛, 等. 不同灌溉模式和施氮量条件下稻田甲烷排放及其与有机碳组分关系[J]. 农业环境科学学报, 2017, 36(5): 1012-1020. doi: 10.11654/jaes.2016-1581 [3] 李健陵. 水氮管理方式对水稻生长发育和温室气体排放的影响[D]. 北京: 中国农业科学院, 2018. [4] ISLAM S M M, GAIHRE Y K, ISLAM M R, et al. Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh[J]. Science of the Total Environment, 2020, 734: 139382. doi: 10.1016/j.scitotenv.2020.139382.
[5] 马艳芹, 钱晨晨, 孙丹平, 等. 施氮水平对稻田土壤温室气体排放的影响[J]. 农业工程学报, 2016, 32(S2): 128-134. [6] LINQUIST B A, ADVIENTO-BORBE M A, PITTELKOW C M, et al. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis[J]. Field Crops Research, 2012, 135: 10-21. doi: 10.1016/j.fcr.2012.06.007
[7] 廖松婷. 东北黑土区不同种植模式下水稻田CH4、N2O排放研究[D]. 哈尔滨: 东北农业大学, 2014. [8] 展茗. 不同稻作模式稻田碳固定、碳排放和土壤有机碳变化机制研究[D]. 武汉: 华中农业大学, 2009. [9] 梁战备, 史奕, 岳进. 甲烷氧化菌研究进展[J]. 生态学杂志, 2004, 23(5): 198-205. doi: 10.3321/j.issn:1000-4890.2004.05.036 [10] 韦至激, 方泽涛, 李伏生, 等. 不同灌溉模式和施氮量下稻田N2O排放与有机氮组分的关系[J]. 江苏农业科学, 2018, 46(9): 246-251. [11] 王明星. 中国稻田甲烷排放[M]. 北京: 科学出版社, 2001: 83-172. [12] 李振高, 骆永明, 滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008. [13] 刘涛泽, 刘丛强, 张伟, 等. 喀斯特地区坡地土壤可溶性有机碳的分布特征[J]. 中国环境科学, 2009, 29(3): 248-253. doi: 10.3321/j.issn:1000-6923.2009.03.005 [14] 王莹, 阮宏华, 黄亮亮, 等. 围湖造田不同土地利用方式土壤有机碳和易氧化碳[J]. 生态环境学报, 2010, 19(4): 913-918. doi: 10.3969/j.issn.1674-5906.2010.04.031 [15] 周叶锋, 廖晓兰. 影响甲烷排放量的两种细菌——产甲烷细菌和甲烷氧化菌的研究进展[J]. 农业环境科学学报, 2007, 26(S1): 340-346. [16] 陈槐, 周舜, 吴宁, 等. 湿地甲烷的产生、氧化及排放通量研究进展[J]. 应用与环境生物学报, 2006, 12(5): 726-733. doi: 10.3321/j.issn:1006-687X.2006.05.029 [17] 李晶, 王明星, 陈德章. 水稻田甲烷的减排方法研究及评价[J]. 大气科学, 1998, 22(3): 354-362. doi: 10.3878/j.issn.1006-9895.1998.03.11 [18] NYKANEN H, VASANDER H, HUTTUNEN J T, et al. Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland[J]. Plant and Soil, 2002, 242(1): 147-155. doi: 10.1023/A:1019658428402
[19] KONG Y H, NAGANO H, KATAI J, et al. CO2, N2O and CH4 production/consumption potential of soils under different land-use types in central Japan and eastern Hungary[J]. Soil Science and Plant Nutrition, 2013, 59(3): 455-462. doi: 10.1080/00380768.2013.775005
[20] YAO H, CONRAD R. Thermodynamics of methane production in different rice paddy soils from China, the Philippines and Italy[J]. Soil Biology and Biochemistry, 1999, 31(3): 463-473. doi: 10.1016/S0038-0717(98)00152-7
[21] 胡敏杰, 仝川, 邹芳芳. 氮输入对土壤甲烷产生、氧化和传输过程的影响及其机制[J]. 草业学报, 2015, 24(6): 204-212. doi: 10.11686/cyxb2014313 [22] BANERJEE B, AGGARWAL P K, PATHAK H, et al. Dynamics of organic carbon and microbial biomass in alluvial soil with tillage and amendments in rice-wheat systems[J]. Environmental Monitoring and Assessment, 2006, 119(1/2/3): 173-189.
[23] 史登林, 王小利, 段建军, 等. 氮肥减量配施生物炭对黄壤稻田土壤有机碳活性组分和矿化的影响[J]. 应用生态学报, 2020, 31(12): 4117-4124. [24] 肖新, 朱伟, 肖靓, 等. 适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮[J]. 农业工程学报, 2013, 29(21): 91-98. doi: 10.3969/j.issn.1002-6819.2013.21.012 [25] 汤宏, 沈健林, 张杨珠, 等. 秸秆还田与水分管理对稻田土壤微生物量碳、氮及溶解性有机碳、氮的影响[J]. 水土保持学报, 2013, 27(1): 240-246. [26] 闵航, 陈美慈, 钱泽澍. 不同栽培措施对水稻田甲烷释放、甲烷产生菌和甲烷氧化菌的影响[J]. 农村生态环境, 1993(S1): 36-39. [27] 张坚超, 徐镱钦, 陆雅海. 陆地生态系统甲烷产生和氧化过程的微生物机理[J]. 生态学报, 2015, 35(20): 6592-6603. -
期刊类型引用(11)
1. 刘琅,李文秀,于凯波,吴鹍伦,周行,褚晶,吴朝晖. 控释肥与不同农药联合施用对水稻生长发育、产量和氮素利用率的影响. 江苏农业科学. 2025(02): 68-74 . 百度学术
2. 何意林,沈彤,田天,李国利. 植物源农药5%香芹酚水剂的急性毒性初步研究. 毒理学杂志. 2024(01): 85-87 . 百度学术
3. 张月,宋明丹,塔林葛娃,李月梅. 有机无机肥配施对春小麦产量、养分吸收及土壤矿质氮残留的影响. 江苏农业科学. 2024(17): 80-88 . 百度学术
4. 张一帆,何瑞银,段庆飞,徐勇. 基于CFD-DEM的排肥用波纹管结构优化设计与试验. 浙江农业学报. 2023(01): 191-201 . 百度学术
5. 赵欢欢,付建涛,安玉兴,卢颖林,陈立君,孙东磊. 我国药肥研究现状及前景分析. 热带农业科学. 2023(02): 97-102 . 百度学术
6. 李文秀,吴鹍伦,刘琅,周行,褚晶,吴朝晖. 不同药肥处理对杂交早稻潭两优83生长发育及产量的影响. 杂交水稻. 2023(06): 127-134 . 百度学术
7. 仲凤翔,梅爱中,钱爱林,崔劲松,王春兰. 25%甲氧·茚虫威SC等药剂防治稻纵卷叶螟药效试验. 福建稻麦科技. 2022(01): 31-33 . 百度学术
8. 李文秀,周行,刘琅,吴朝晖. 稻作生产中水、肥、药高效利用及对水稻的影响研究进展. 河南农业科学. 2022(06): 1-12 . 百度学术
9. 邓家欣,韦继光,於虹,姜燕琴,曾其龙,刘红军,蒋佳峰. 不同施肥处理对高丛越橘幼苗生长和生理指标及土壤理化性质的影响. 植物资源与环境学报. 2021(02): 28-34 . 百度学术
10. 王辉. 水稻施肥中多种复合肥的肥效对比试验. 农业开发与装备. 2021(06): 153-154 . 百度学术
11. 于洋,侯新月,袁安丽,高月. 寒区水稻水肥管理技术研究进展. 水利科学与寒区工程. 2021(05): 78-81 . 百度学术
其他类型引用(4)