Diversity of Ralstonia solanacearum strains from tomato in the south of Jiangxi Province
-
摘要:目的
分离鉴定赣南地区番茄青枯病菌,明确菌系分化,为当地番茄抗青枯病育种和病害防治奠定基础。
方法从江西省赣南地区采集番茄青枯病病株,经选择性平板分离、纯化和分子鉴定,获得不同地理来源的青枯菌Ralstonia solanacearum菌株。通过生理生化测定和接种番茄试验,鉴定青枯菌的生化变种和致病类型。PCR扩增内切葡聚糖酶基因egl序列,明确青枯菌的演化型和序列变种。双层平板培养法测定其对8个不同噬菌体的敏感性。
结果获得了来自赣南地区9个市(县)的番茄青枯菌菌株44个,其中,41个菌株为生化变种Ⅲ,3个菌株为生化变种Ⅳ;致病力测定结果聚为I、II和III类,其致病力分别为强、中和弱,其中,强致病力菌株占65.9%。所有菌株属于亚洲分支演化型(Ⅰ),并进一步划分为Sequevar13、14、15、17、18、34、44和48等8个序列变种。大部分菌株对供试的8个噬菌体敏感。
结论赣南地区番茄青枯菌以生化变种III和强致病力菌株为主,对噬菌体较敏感,存在8个序列变种,具有明显的菌系分化现象和遗传多样性。
Abstract:ObjectiveIsolating and identifying Ralstonia solanacearum strains from tomato plants in the Southern of Jiangxi Province, and clarifying the bacterial differentiation can lay the foundation for local tomato bacterial wilt resistance breeding and disease control.
MethodThe diseased tomato plants were collected from the south of Jiangxi Province, R. solanacearum strains with different geographical origins were isolated by selective plate, purificated and identificated by PCR. The test of physiology and biochemistry and inoculation on tomato plants were conducted for the determination of biovar and virulence difference. The endoglucanase gene (egl) fragments were amplified by PCR to determine the phylotype and sequevar of R. solanacearum.
ResultA total of 44 R. solanacearum strains were obtained from nine cities (counties) in the south of Jiangxi Province, among which 41 strains were identified as biovar III and three strains were identified as biovar IV. According to the results of virulence difference, 44 strains were clustered into three groups, namely group I (high virulence), group II (moderate virulence) and group III (weak virulence), of which group I (high virulence) strains accounted for 65.9%. All strains were belonged to the phylotype I and further divided into eight sequevars, namely Sequevar 13, 14, 15, 17, 18, 34, 44 and 48 respeclively. Most R. solanacearum strains were sensitive to the eight tested bacteriophages.
ConclusionThe strains of R. solanacearum from tomato in the south of Jiangxi Province are mainly biovar III and high virulence, sensitive to bacteriophages, have eight sequevars, and have obvious differentiation and genetic diversity.
-
Keywords:
- Ralstonia solanacearum /
- Tomato bacterial wilt /
- Biovar /
- Virulence /
- Phylotype /
- Sequevar /
- Bacteriophage
-
木尔坦棉花曲叶病毒Cotton LeafCurl Multan Virus(CLCuMV)属双生病毒科菜豆金黄花叶病毒属,含DNA-A组分,并伴随有卫星DNA β分子,该病毒是引起棉花曲叶病的主要病原之一[1-2].该病毒通过烟粉虱Bemisia tabaci进行传播和扩散,危害严重[3-6].已在我国广东、广西、海南及云南的棉花Gossypium hirsutum L.[2]、朱槿Hibiscus rosa-sinensis Linn.[7-9]、黄秋葵Abelmoschus esculentu L.[10]、垂花悬铃木Malvaviscus arboreus Cav. var. penduliflocus(DC.)Schery[11]和红麻Hibiscus cannabinus[8]等锦葵科植物检测到该病毒.已有利用测序比对CLCuMV在不同寄主间的变异程度的研究[12].
实时荧光定量PCR(Real time fluorescence quantitative PCR,RT-PCR)是在PCR定性技术基础上发展起来的核酸定量技术[12],被广泛用于医学病理学及分子生物学等领域[13],主要包括荧光染料法和探针法.利用RT-PCR探针法定量检测了发病番茄叶片和介体昆虫烟粉虱的番茄黄化曲叶病毒含量[14]、发病番茄植株中番茄黄化曲叶病毒和番茄黄化皱叶病毒的含量[15],也检测了蓟马虫体内番茄斑点枯萎病毒的含量[16],为解释病毒共同侵染、预测病毒传播提供了有效的依据.目前鲜见利用荧光染料法对CLCuMV定量检测的报道.
本文基于SYBR Green I检测技术,构建CLCuMV实时荧光定量PCR定量检测体系,并比较其与常规PCR定量检测该病毒的灵敏度差异;定量测定寄主植物朱槿的健康及显症植株及介体昆虫烟粉虱虫体内的CLCuMV含量,为深入研究木尔坦棉花曲叶病的发病过程、致病机理以及该病毒与寄主植物、介体昆虫的互作提供有效的定量检测技术.
1. 材料与方法
1.1 材料
2014年7月在广东省广州市南沙区蒲园的绿化地朱槿病株上采集供试感病叶片.病株表现为叶脉膨大且颜色加深,叶片边缘上卷,有脉突和耳突等木尔坦棉花曲叶病的典型症状.对照叶片是在未显症状的健康朱槿植株上采集的.
介体昆虫为室内饲养于朱槿植株上的MEAM1隐种(B型)烟粉虱试验种群.
质粒标准品为含有CLCuMV基因组的质粒pBin PLUS-1.85A,由广东省农业科学院植物保护研究所蔬菜病害防控研究室提供.
高纯度质粒小量快速提取试剂盒(北京天根生化科技有限公司);血液组织细胞基因组提取试剂盒(北京天根生化科技有限公司);植物基因组提取试剂盒EasyPureTM Plant Genomic DNA Kit(北京全式金生物技术有限公司);2XGoTaqTM Green Master Mix(普洛麦格生物技术有限公司);2 × SYBR Green PCR Master Mix(北京天根生化科技有限公司);Alpha1506微量分光光度计(上海谱元仪器有限公司).
1.2 方法
1.2.1 质粒提取与引物设计
取出保存于- 80 ℃并含有pBin PLUS-1.85A的农杆菌菌株(GV3101)培养后,用试剂盒提取质粒pBin PLUS-1.85A,再将其转化到大肠埃希菌感受态细胞(DH5α),继续培养.取D600 nm为0.6 ~ 0.8的适量菌液,用试剂盒提取质粒,微量分光光度计测定质粒浓度,将该质粒作为标准样品母液,- 20 ℃保存备用.
质粒中病毒基因组拷贝数= N × 10-9 × ρ/Mr,式中,N为阿伏伽德罗常数,ρ为核酸质量浓度(ng·μL-1),Mr为相对分子质量.由该公式计算出母液质粒浓度为5.02 × 109 μL-1.
基于CLCuMV的DNA-A基因组序列(GenBank登录号为:EF465535.1[17]),用Primer 5.0软件设计并合成检测引物CLCMuV 492-F:5′-TCCAGATGTCCGCACAAATA-3′,CLCMuV 492-R:5′-AACCAGGTCAGCACATTTCC-3′.
1.2.2 PCR反应体系及条件
常规PCR反应体系(25 μL):2XGoTaqTM Green Master Mix 12.5 μL,CLCMuV 492-F和CLCMuV 492-R各1 μL,样本DNA 1 μL,用ddH2O补足25 μL.阴性对照不加DNA,加1 μL DEPC(焦磷酸二乙酯)水.反应条件:94 ℃ 7 min;94 ℃ 35 s,49 ℃ 35 s,72 ℃ 45 s,35个循环;72 ℃ 10 min,4 ℃保存.在10 g·L-1琼脂糖凝胶电泳检测PCR产物.
荧光定量PCR反应体系(20 μL):2 × SYBR Green PCR Master Mix 10 μL、10 μmol·L-1CLCMuV 492-F和CLCMuV 492-R各0.5 μL、样本DNA 1 μL、用ddH2O补至20 μL.阴性对照不加DNA,加1 μL DEPC水.反应条件:94 ℃,7 min;94 ℃,35 s,49 ℃,35 s,72 ℃,45 s,35个循环;95 ℃,10 s,95 ℃,5 s.
1.2.3 CLCuMV实时荧光定量PCR
用DEPC水以10倍梯度稀释质粒标准样品母液,获得8个供试的质粒浓度:5.2 × 108、5.2 × 107、5.2 × 106、5.2 × 105、5.2 × 104、5.2 × 103、5.2 × 102和5.2 × 101 μL-1,进行实时荧光定量PCR,获得质粒浓度与其循环阈值(Ct值)之间关系,建立其检测标准曲线.
CLCuMV以5.2 × 109、5.2 × 108、5.2 × 107、5.2 × 106、5.2 × 105、5.2 × 104、5.2 × 103、5.2 × 102、5.2 × 101和5.2 μL-1为供试浓度,对其进行常规PCR和实时荧光定量PCR,比较其检测的灵敏度.以不加DNA模板作为阴性对照.
1.2.4 朱槿显症叶片DNA提取及CLCuMV定量检测
选取5株朱槿发病植株,分别采集显症的嫩叶、成熟叶片,分开标记编号,每袋1片样叶,带回实验室并保存于- 80 ℃冰箱中.试验时,试剂盒提取朱槿DNA,用健康朱槿上的叶片作对照.微量分光光度计测定各样本的总DNA质量浓度,再将其稀释为100 ng·μL-1,备用.
1.2.5 烟粉虱饲毒处理及CLCuMV定量检测
以显症的朱槿作为病毒来源,在放置病株的养虫笼(50 cm × 50 cm × 50 cm)中释放B型烟粉虱300头.接虫24、48 h后分别从接虫朱槿植株的上、中、下部叶片上随机吸取饲毒成虫,共10头,并放于φ为95%的乙醇溶液保存,待测.从健康朱槿植株上饲养的供试成虫中吸取10头,作为对照.试剂盒提取介体昆虫DNA,微量分光光度计测定各样本的总DNA质量浓度,将其稀释为10 ng·μL-1,备用.
1.3 数据处理
采用t检验对已显症状朱槿嫩叶与成熟叶片处理的CLCuMV含量、饲毒24与48 h烟粉虱虫体CLCuMV含量进行显著性检验.采用SPSS 19.0进行统计分析.
2. 结果与分析
2.1 CLCuMV实时荧光定量PCR标准曲线的建立
用DEPC水以10倍梯度稀释质粒母液获得8个浓度,并对其进行荧光定量PCR,获得8个标准样品的浓度与Ct值之间的关系,其标准曲线关系式为y = - 3.75x + 40.56(朱槿)、y = - 4.13x + 41.43(烟粉虱),其中y为循环阈值(Ct值)、x为质粒标准品的初始浓度拷贝数的对数值.
2.2 实时荧光定量PCR与常规PCR检测CLCuMV的灵敏度
将5.2 ~ 5.2 × 109 μL-1 10个浓度的质粒标准样品分别进行实时荧光定量PCR和常规PCR.实时荧光定量PCR扩增曲线表明,空白对照无DNA模板,Ct值高于35,当质粒标准样品为5.2 × 109,5.2 × 108、5.2 × 107、5.2 × 106、5.2 × 105、5.2 × 104、5.2 × 103、5.2 × 102、5.2 × 101和5.2 × 100 μL-1,其Ct值分别为4.72、8.56、12.89、16.31、20.05、23.23、26.66、29.65、32.87和35.22,其中5.2 μl-1的Ct值高于35,其余的均小于35,说明利用实时荧光定量PCR可定量检测出质粒标准样品的最低浓度为5.2 × 101 μL-1.利用常规PCR检测上述10个浓度质粒标准样品时,5.2 × 109、5.2 × 108、5.2 × 107、5.2 × 106、5.2 × 105、5.2 × 104、5.2 × 103和5.2 × 102 μL-1的质粒标准样品可扩增出清晰的492 bp的目的条带(图 1),判定该方法检测最低浓度为5.2 × 102 μL-1.分析表明,利用实时荧光定量PCR检测CLCuMV的灵敏度约是常规PCR的10倍.
2.3 朱槿病株的CLCuMV定量检测
利用上述实时荧光定量PCR技术,对供试的朱槿上显症的嫩叶、成熟叶及对照进行CLCuMV定量检测.结果表明,显症的嫩叶和老熟叶片的Ct平均值分别为20.66 ± 0.89和22.70 ± 0.32,均可检测到病毒,但所有健康叶片样本的Ct值均大于35,未检测到病毒.根据试验所建立的检测朱槿的标准曲线,获得显症嫩叶和显症老熟叶片的CLCuMV浓度分别为(9.00 ± 3.80)× 105和(1.60 ± 0.25)× 105 μL-1,虽然后者小于前者,但两者间无显著性差异(t = - 2.173,P = 0.095).
2.4 烟粉虱虫体CLCuMV定量检测
利用实时荧光定量PCR对未饲毒和饲毒的单头烟粉虱虫体进行检测,结果表明对未经饲毒烟粉虱扩增的Ct值均大于35,说明对照中的烟粉虱不带毒;饲毒后24和48 h烟粉虱的扩增Ct值为32.44 ± 0.24和31.92 ± 0.73,说明饲毒24和48 h的烟粉虱均能检测到病毒,根据建立的检测烟粉虱标准曲线,推算出饲毒24和48 h的烟粉虱含有CLCuMV(4.0 ± 1.6)× 102和(1.3 ± 0.2)× 102 μL-1,前者显著性地大于后者(t = 2.445,P = 0.04).结果分析表明,利用实时荧光定量PCR可对介体内的CLCuMV进行定量检测.
3. 讨论与结论
本试验建立了一种用实时荧光定量PCR检测木尔坦棉花曲叶病毒的方法,本方法的灵敏度约是常规PCR的10倍,检测最低浓度达到5.2 × 101 μL-1.王洪星等[18]应用RT-PCR检测甘蔗黄叶病毒和高粱花叶病毒,检出水平分别为5 × 102和2.5 × 102 μL-1.李金磊等[19]建立的RT-PCR检测猪传染性胃肠炎病毒灵敏度可达5 × 101μL-1,与本试验灵敏度类似.
本研究利用实时荧光定量PCR检测寄主植物及介体昆虫的CLCuMV带毒量,检测的显症嫩叶与显症老熟叶片的CLCuMV含量并无显著差异.笔者还发现将烟粉虱转移到非番茄黄化曲叶病毒寄主植物上时,随着时间延长,昆虫体内番茄黄化曲叶病毒含量递减.本试验结果表明,饲毒24 h烟粉虱获毒量显著性地高于饲毒48 h烟粉虱获毒量,但CLCuMV在昆虫介体烟粉虱中的增殖情况还需要进一步的试验验证.
建立并完善CLCuMV的检测体系,将有助于比较CLCuMV在不同寄主植物中的传播情况,也可以监测CLCuMV在昆虫介体中的繁殖动态,最终有效预防木尔坦棉花曲叶病的传播.
-
表 1 参考序列信息
Table 1 Referenced sequence information
参考菌株
Reference strain寄主
Host来源
Origin演化型
Phylotype序列变种
Sequevaregl登录号
Accession numberJT523 马铃薯 Solanum tuberosum 留尼汪岛 Reunion Ⅰ 13 AF295252 PSS8 番茄 S. lycopersicum 中国 China Ⅰ 14 FJ561066 PSS358 番茄 S. lycopersicum 中国 China Ⅰ 15 EU407298 UW151 姜 Zingiber officinale 澳大利亚 Australia Ⅰ 16 AF295254 P11 花生 Arachis hypogaea 中国 China Ⅰ 17 FJ561068 GMI1000 番茄 S. lycopersicum 法国 France Ⅰ 18 AF295251 JT519 天竺葵 Pelargonium hortorum 留尼汪岛 Reunion Ⅰ 31 GU295032 PSS219 番茄 S. lycopersicum 中国 China Ⅰ 34 FJ561167 O3 橄榄树 Olea europaea 中国 China Ⅰ 44 FJ561069 TB28 烟草 Nicotiana tabacum 中国 China Ⅰ 44 FJ561127 Tb43 烟草 N. tabacum 中国 China Ⅰ 44 FJ561129 BdlI 木槿 Hibiscus syriacus 中国 China Ⅰ 44 FJ561098 CIIP365 马铃薯 S. tuberosum 菲律宾 The Philippines Ⅰ 45 GQ907151 MADI7 辣椒 Capsicum annuum 马达加斯加 Madagascar Ⅰ 46 GU295040 GMI8254 番茄 S. lycopersicum 印度尼西亚 Indonesia Ⅰ 47 GU295014 M2 桑树 Morus alba 中国 China Ⅰ 48 FJ561067 CMR87 番茄 S. lycopersicum 喀麦隆 Cameroon Ⅱ 35 EF439727 CMR12 番茄 S. lycopersicum 喀麦隆 Cameroon Ⅱ 52 EF439725 CMR39 番茄 S. lycopersicum 喀麦隆 Cameroon Ⅱ 41 EF439726 CFBP2972 马铃薯 S. tuberosum 马提尼克 Martinique Ⅱ 35 EF371809 UW551 天竺葵 P. hortorum 肯尼亚 Kenya Ⅱ 1 DQ657596 ICMIP7963 马铃薯 S. tuberosum 肯尼亚 Kenya Ⅱ 7 AF295263 续表 1 Continued table 1 参考菌株
Reference strain寄主
Host来源
Origin演化型
Phylotype序列变种
Sequevaregl登录号
Accession numberUW162 香蕉 Musa nana 秘鲁 Peru Ⅱ 4 AF295256 MOLK2 香蕉 M. nana 菲律宾 The Philippines Ⅱ 3 EF371841 CMR66 木龙葵 S. scabrum 喀麦隆 Cameroon Ⅲ 49 EF439729 JT525 天竺葵 P. hortorum 留尼汪岛 Reunion Ⅲ 19 AF295272 CFBP3059 茄子 S. melongena 布基纳法索 Burkina Faso Ⅲ 23 AF295270 NCPPB332 马铃薯 S. tuberosum 津巴布韦 Zimbabwe Ⅲ 22 DQ657649 MAFF301558 马铃薯 S. tuberosum 日本 Japan Ⅳ 8 AY465002 Psi 番茄 S. lycopersicum 印度尼西亚 Indonesia Ⅳ 10 EF371804 ACH732 番茄 S. lycopersicum 澳大利亚 Australia Ⅳ 11 GQ907150 表 2 青枯菌生化变种鉴定1)
Table 2 Biovar identification of Ralstonia solanacearum
来源
Origin菌株编号
No. of strain菌株数/个
Strain quantity麦芽糖
Maltose纤维二糖
Cellobiose乳糖
Lactose甘露醇
Mannitol山梨醇
Sorbitol甜醇
Dulcitol生化变种
Biovar于都县
Yudu CountyTm1901~Tm1908、
Tm1920~Tm19249 + + + + + + Ⅲ 上犹县
Shangyou CountyTm1913~Tm1919 7 + + + + + + Ⅲ 石城县
Shicheng CountyTm1925~Tm1929 4 + + + + + + Ⅲ 瑞金市
Ruijin CityTm1930、Tm1931 2 + + + + + + Ⅲ 大余县
Dayu CountyTm1932~Tm1934 3 − − − + + + Ⅳ 安远县
Anyuan CountyTm1935~Tm1937 3 + + + + + + Ⅲ 会昌县
Huichang CountyTm1938~Tm1943 6 + + + + + + Ⅲ 兴国县
Xingguo CountyTm2046、Tm2047 2 + + + + + + Ⅲ 全南县
Quannan CountyTm1944、Tm1945、
Tm2048~Tm20588 + + + + + + Ⅲ 1)“+”表示被利用,“−”表示不被利用
1)“+”indicates to be used, “−” indicates not to be used表 3 44个青枯菌接种5个番茄品种的发病率及聚类分组
Table 3 Incidence of 44 Ralstonia solanacearum strains inoculated to five tomato cultivars and their clustering results
来源
Origin菌株编号
No. of strain发病率/% Incidence rate 聚类分组
Cluster红圣佳2号
Hongshengjia 2金艳
Jinyan多宝
Duobao粉霸
Fenba精棚T红
Jingpeng T red于都县 Yudu County Tm1901 55 80 95 100 95 Ⅱ Tm1902 90 85 75 100 100 Ⅰ Tm1903 85 80 95 100 100 Ⅰ Tm1904 90 95 70 100 100 Ⅰ Tm1907 85 75 80 100 100 Ⅰ Tm1908 37 65 60 72 90 Ⅲ 上犹县 Shangyou County Tm1913 90 70 90 100 90 Ⅰ Tm1914 95 75 85 95 100 Ⅰ Tm1915 85 75 95 90 100 Ⅰ Tm1916 60 75 90 85 95 Ⅱ Tm1917 40 70 85 90 100 Ⅱ Tm1918 50 70 95 90 100 Ⅱ Tm1919 0 5 15 40 65 Ⅲ 于都县 Yudu County Tm1920 80 85 80 90 90 Ⅰ Tm1923 50 80 95 68 95 Ⅱ Tm1924 80 95 85 85 100 Ⅰ 石城县 Shicheng County Tm1925 65 85 85 95 85 Ⅱ Tm1926 95 100 90 100 100 Ⅰ Tm1928 80 75 100 95 100 Ⅰ Tm1929 35 21 40 50 95 Ⅲ 瑞金市 Ruijin City Tm1930 90 95 95 100 100 Ⅰ Tm1931 100 100 100 100 100 Ⅰ 大余县 Dayu County Tm1932 20 35 65 45 80 Ⅲ Tm1933 35 35 55 80 90 Ⅲ Tm1934 20 40 75 60 100 Ⅲ 安远县 Anyuan County Tm1935 40 52 85 95 100 Ⅲ Tm1936 30 35 90 80 89 Ⅲ Tm1937 85 95 90 100 95 Ⅰ 会昌县 Huichang County Tm1938 90 85 95 100 100 Ⅰ Tm1939 80 85 95 100 95 Ⅰ Tm1940 85 90 100 95 100 Ⅰ Tm1941 100 84 100 100 100 Ⅰ Tm1942 95 100 100 100 95 Ⅰ Tm1943 40 85 95 90 100 Ⅱ 全南县 Quannan County Tm1944 100 100 95 100 100 Ⅰ Tm1945 100 90 100 90 100 Ⅰ 兴国县 Xingguo County Tm2046 100 100 100 100 100 Ⅰ Tm2047 100 100 100 100 100 Ⅰ 全南县 Quannan County Tm2048 100 95 100 100 89 Ⅰ Tm2049 100 95 100 100 90 Ⅰ Tm2050 100 95 100 100 100 Ⅰ Tm2054 100 100 100 100 100 Ⅰ Tm2055 100 95 100 100 100 Ⅰ Tm2058 90 90 100 100 100 Ⅰ 表 4 44个青枯菌对8个噬菌体的敏感性测定
Table 4 Sensitivity determination of 44 Ralstonia solanacearum to eight bacteriophages
来源
Origin菌株编号
No. of strain数量/个
Quantity噬菌体1) Bacteriophage 敏感性2)
SensitivityP1555-L P1555-1 P1555-M P1556-1 P1556-2 P7-1 P574 P1521 于都县
Yudu CountyTm1901~Tm1907 5 – – – + + + – + M Tm1908 1 + + + + + + + + V 上犹县
Shangyou CountyTm1913、Tm1914 2 + + + + – + + + S Tm1915~Tm1919 4 + + + + + + + + V Tm1916 1 + + + + – + + + S 于都县
Yudu CountyTm1920~Tm1924 3 + + + + + + + + V 石城县
Shicheng CountyTm1925~Tm1929 3 + + + + + + + + V Tm1928 1 + + + + – + + + S 瑞金市
Ruijin CityTm1930、Tm1931 2 + + + + + + + + V 大余县
Dayu CountyTm1932~Tm1934 3 + + + + + + + + V 安远县
Anyuan CountyTm1935~Tm1937 3 + + + + + + + + V 会昌县
Huichang CountyTm1938、Tm1939 2 – – – + + + – + M Tm1940~Tm1943 4 + + + + + + + + V 全南县
Quannan CountyTm1944 1 – – – + + + + + M Tm1945 1 – – – – – + + + M 兴国县
Xingguo CountyTm2046 1 + + + + + + + + V Tm2047 1 – – – + – + – – W 全南县
Quannan CountyTm2048、Tm2049 2 – – – + + + + + M Tm2050 1 – – – – + + + + M Tm2054~Tm2058 3 + + + + + + + + V 1)“+”表示产生噬菌斑,“–”表示不产生噬菌斑;2)M:中等,S:强,V:特强,W:弱
1) “+” indicates having plaques,“–” indicates no having plaques;2) M: Moderate, S: Strong, V:Very strong, W: Weak -
[1] 冯洁. 植物病原细菌分类最新进展[J]. 中国农业科学, 2017, 50(12): 2305-2314. doi: 10.3864/j.issn.0578-1752.2017.12.011 [2] HAYWARD A C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum[J]. Annual Review of Phytopathology, 1991, 29(1): 65-87. doi: 10.1146/annurev.py.29.090191.000433
[3] 乔俊卿, 陈志谊, 刘邮洲, 等. 茄科作物青枯病研究进展[J]. 植物病理学报, 2013, 43(1): 1-10. doi: 10.3969/j.issn.0412-0914.2013.01.001 [4] 王杰, 龙世芳, 王正文, 等. 番茄青枯病防治研究进展[J]. 中国蔬菜, 2020, 40(1): 22-30. [5] HAYWARD A. Characteristics of Pseudomonas solanacearum[J]. Journal of Applied Bacteriology, 1964, 27(2): 265-277. doi: 10.1111/j.1365-2672.1964.tb04912.x
[6] 华静月, 张长龄, 何礼远. 我国植物青枯菌的生化型和其他生理差异[J]. 植物保护学报, 1984, 11(1): 43-50. [7] PRIOR P, FEGAN M. Recent development in the phylogeny and classification of Ralstonia solanacearum[J]. Acta Horticulturae, 2005, 695(14): 127-136.
[8] 徐进, 冯洁. 植物青枯菌遗传多样性及致病基因组学研究进展[J]. 中国农业科学, 2013, 46(14): 2902-2909. doi: 10.3864/j.issn.0578-1752.2013.14.006 [9] JIANG G, WEI Z, XU J, et al. Bacterial wilt in China: History, current status, and future perspectives[J/OL]. Frontiers in Plant Science, 2017, 8: 1549. [2021-01-18]. https://doi.org/10.3389/fpls.2017.01549.
[10] ADDY H S, ASKORA A, KAWASAKI T, et al. Loss of virulence of the phytopathogen Ralstonia solanacearum through infection by φRSM filamentous phages[J]. Phytopathology, 2012, 102(5): 469-477. doi: 10.1094/PHYTO-11-11-0319-R
[11] ADDY H S, ASKORA A, KAWASAKI T, et al. The filamentous phage фRSS1 enhances virulence of phytopathogenic Ralstonia solanacearum on tomato[J]. Phytopathology, 2012, 102(3): 244-251. doi: 10.1094/PHYTO-10-11-0277
[12] LIU N, LEWIS C, ZHENG W, et al. Phage cocktail therapy: Multiple ways to suppress pathogenicity[J]. Trends in Plant Science, 2020, 25(4): 315-317. doi: 10.1016/j.tplants.2020.01.013
[13] 佘小漫, 何自福. 作物青枯病研究进展[J]. 广东农业科学, 2020, 47(12): 82-89. [14] 汪国平, 林明宝, 吴定华. 番茄青枯病抗性遗传研究进展[J]. 园艺学报, 2004, 31(3): 403-407. doi: 10.3321/j.issn:0513-353X.2004.03.033 [15] 陈胜华. 番茄青枯病生物防治策略研究[J]. 农业与技术, 2018, 38(6): 24. [16] 何自福, 虞皓, 罗方芳. 广东茄科青枯菌致病力分化及其DNA多态性分析[J]. 植物病理学报, 2003, 33(5): 415-420. doi: 10.3321/j.issn:0412-0914.2003.05.007 [17] WICKER E, GRASSART L, CORANSON-BEAUDU R, et al. Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential[J]. Applied & Environmental Microbiology, 2007, 73(21): 6790-6801.
[18] PEREZ A S, MEJIA L, FEGAN M, et al. Diversity and distribution of Ralstonia solanacearum strains in Guatemala and rare occurrence of tomato fruit infection[J]. Plant Pathology, 2010, 57(2): 320-331.
[19] NORMAN D J, ZAPATA M, GABRIEL D W, et al. Genetic diversity and host range variation of Ralstonia solanacearum strains entering North America[J]. Phytopathology, 2009, 99(9): 1070-1077. doi: 10.1094/PHYTO-99-9-1070
[20] POUSSIER S, VANDEWALLE P, LUISETTI J. Genetic diversity of African and worldwide strains of Ralstonia solanacearum as determined by PCR-restriction fragment length polymorphism analysis of the hrp gene region[J]. Applied and Environmental Microbiology, 1999, 65(5): 2184-2194. doi: 10.1128/AEM.65.5.2184-2194.1999
[21] CHESNEAU T, MAIGNIEN G, BOYER C, et al. Sequevar diversity and virulence of Ralstonia solanacearum phylotype Ⅰ on Mayotte Island (Indian Ocean)[J]. Frontiers in Plant Science, 2017, 8: 2209. Doi: 10.3389/fpls.2017.02209.
[22] JI P, ALLEN C, SANCHEZ-PEREZ A, et al. New diversity of Ralstonia solanacearum strains associated with vegetable and ornamental crops in Florida[J]. Plant Disease, 2007, 91(2): 195-203. doi: 10.1094/PDIS-91-2-0195
[23] MAHBOU SOMO TOUKAN G, CELLIER G, WICKER E, et al. Broad diversity of Ralstonia solanacearum strains in Cameroon[J]. Plant Disease, 2009, 93(11): 1123-1130. doi: 10.1094/PDIS-93-11-1123
[24] XUE Q Y, YIN Y N, YANG W, et al. Genetic diversity of Ralstonia solanacearum strains from China assessed by PCR-based fingerprints to unravel host plant-and site-dependent distribution patterns[J]. FEMS Microbiology Ecology, 2011, 75(3): 507-519. doi: 10.1111/j.1574-6941.2010.01026.x
[25] SHE X M, HE Z F, LI H P. Genetic structure and phylogenetic relationships of Ralstonia solanacearum strains from diverse origins in Guangdong Povince, China[J]. Journal of Phytopathology, 2017, 166(3): 177-186.
[26] 曾宪铭, 董春. 广东农作物青枯病菌的生化型[J]. 华南农业大学学报, 1995, 16(1): 50-53. [27] 郑向华, 杨帆, 邓海滨, 等. 我国植物青枯菌的生物型及RAPD分析[C]. //中国植物病理学会. 中国植物病理学会2008年学术年会论文集. 广州: 中国农业科学技术出版社, 2008: 329-337. [28] XU J, PAN Z C, PRIOR P, et al. Genetic diversity of Ralstonia solanacearum strains from China[J]. European Journal of Plant Pathology, 2009, 125(4): 641-653. doi: 10.1007/s10658-009-9512-5
[29] 马超, 丛聪, 王丽丽, 等. 噬菌体控制植物细菌性疾病的研究进展[J]. 中国抗生素杂志, 2017, 42(9): 749-754. doi: 10.3969/j.issn.1001-8689.2017.09.006 [30] DI LALLO G, EVANGELISTI M, MANCUSO F, et al. Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker[J]. Journal of Basic Microbiology, 2015, 54(11): 1210-1221.
[31] WEI C H, LIU J L, MAINA A, et al. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt[J]. Virologica Sinica, 2017, 32(6): 476-484. doi: 10.1007/s12250-017-3987-6
[32] WANG X F, WEI Z, YANG K M, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019, 37(12): 1513-1520. doi: 10.1038/s41587-019-0328-3