• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

基于小规模数据集的柑橘树冠层施药情况的分类模型

徐相华, 林佳翰, 陆健强, 陈宏泽, 杨瑞帆

徐相华, 林佳翰, 陆健强, 等. 基于小规模数据集的柑橘树冠层施药情况的分类模型[J]. 华南农业大学学报, 2021, 42(5): 127-132. DOI: 10.7671/j.issn.1001-411X.202101025
引用本文: 徐相华, 林佳翰, 陆健强, 等. 基于小规模数据集的柑橘树冠层施药情况的分类模型[J]. 华南农业大学学报, 2021, 42(5): 127-132. DOI: 10.7671/j.issn.1001-411X.202101025
XU Xianghua, LIN Jiahan, LU Jianqiang, et al. Classification model of spraying deposition on citrus canopy based on small-scale data set[J]. Journal of South China Agricultural University, 2021, 42(5): 127-132. DOI: 10.7671/j.issn.1001-411X.202101025
Citation: XU Xianghua, LIN Jiahan, LU Jianqiang, et al. Classification model of spraying deposition on citrus canopy based on small-scale data set[J]. Journal of South China Agricultural University, 2021, 42(5): 127-132. DOI: 10.7671/j.issn.1001-411X.202101025

基于小规模数据集的柑橘树冠层施药情况的分类模型

基金项目: 广东省重点领域研发计划(2019B020214003);广东省普通高校“人工智能”重点领域专项(2019KZDZX1012)
详细信息
    作者简介:

    徐相华(1982—),男,硕士,E-mail: 86238154@qq.com

    通讯作者:

    陆健强(1980—),男,高级实验师,博士,E-mail: ljq@scau.edu.cn

  • 中图分类号: TP391.4;S499

Classification model of spraying deposition on citrus canopy based on small-scale data set

Article Text (iFLYTEK Translation)
  • 摘要:
    目的 

    提升柑橘果园的智能化管理水平,快速无损获取柑橘树冠层的施药情况,改善小规模数据集导致施药情况分类模型易发生过拟合的问题。

    方法 

    提出一种基于卷积神经网络的柑橘树冠层施药情况分类模型——VGG_C模型。模型以VGG模型核心思想为基础进行构建,通过交叉熵损失函数优化,加速概率分布与真实分布的迭代过程,并在输出端引入不确定性度量计算以及在下采样模块中插入Droupout方法,降低由于数据较少而发生过拟合的概率。

    结果 

    VGG_C模型针对训练集的分类损失值为0.44%,比ResNet和VGG模型分别降低了87%和91%;准确率为95.3%,比ResNet和VGG模型分别提高了5%和10%;验证集的预测平均准确率为96.4%。

    结论 

    VGG_C模型通过多层卷积模型协同实现柑橘冠层热红外图像特征的高效提取,通过优化输出端结构提高了柑橘冠层施药情况分类模型在小数据集规模上的训练测试优度,可为柑橘树施药情况的智能化判断提供有效参考。

    Abstract:
    Objective 

    The study was aimed to improve the intelligent management level of citrus orchards, quickly and non-destructively evaluate the spraying quality on citrus canopy, and solve the overfitting problem of the spraying quality classification model caused by small-scale data set.

    Method 

    We proposed a classification model of spraying quality on citrus canopy based on convolutional neural network: Visual geometry group citrus model (VGG_C model). The model was constructed based on the core idea of the VGG model. Through optimization of the cross-entropy loss function, the iterative process of probability distribution and true distribution was accelerated. The uncertainty measurement calculation was introduced at the output end and the Droupout method was inserted in the downsampling module to reduce the probability of overfitting due to small amount of data.

    Result 

    The loss value of VGG_C model for the training set was 0.44%, which was 87% and 91% lower than that of ResNet and VGG respectively. The accuracy of VGG_C model for the training set was 95.3%, which was 5% and 10% higher than that of ResNet and VGG respectively. The average accuracy of the verification set was 96.4%.

    Conclusion 

    VGG_ C model can effectively extract the features of citrus canopy thermal infrared image through multi-layer convolution model and improve the training and testing superiority of citrus canopy application classification model in small data set by optimizing the output structure. VGG_ C model can provide an effective reference for the intelligent judgment of pesticide application on citrus trees.

  • 柑橘种植业在我国经济作物领域中占有重要地位,随着我国柑橘产业的快速发展,柑橘产量和种植面积不断增加[]。目前我国的柑橘生产作业以人工为主,对于果树的农药喷施效果,大多仍由果农根据以往经验进行辨别,缺乏科学准确的判断依据[-]。另外,受限于柑橘果园环境影响因素复杂和数据采集传输设备老化,在柑橘喷药程度的智能化研究过程中,数据较少导致模型发生过拟合的可能性较大。针对上述问题,结合人工智能与热红外成像技术,本研究提出一种基于小规模数据集的快速无损的柑橘树冠层施药情况分类方法,具有一定的实际意义。

    现阶段,针对果树的施药研究主要集中在施药前的检测与施药中的操作方面。姜红花等[]提出的杂草智能检测方法,使用ResNet-101网络提取特征,进行杂草和背景的二分类,实现了实时精准控制农药变量喷撒的要求。何志谦等[]基于STM32设计的一款智能农业喷药机器人,通过多层系统包括主电路系统、飞控系统和喷药系统的设计,实现了农药定量与变量喷撒,达到了精细化农业的要求。有研究设计农业智能机器人,通过机器人采集作业信息,进行大数据分析,实现精准喷药,大幅度提高智能化水平[-]。而对于果树施药后,进行快速无损检测柑橘冠层施药情况,精准掌握施药效果的研究较少。

    本研究利用热红外成像技术可识别地物热状况信息的特点[-],以VGG模型为核心设计思想,采用3×3卷积核参数卷积层与1×1池化核参数池化层叠加的方法,构造VGG_C模型,相较ResNet模型和VGG模型,VGG_C模型可针对农业中现有数据集较小的特点进行优化,通过多层卷积操作对柑橘树冠层热红外图像进行特征提取,并在输出端引入不确定性度量计算以及在下采样模块中插入Droupout方法,降低过拟合发生的概率,采用交叉熵损失函数更新模型权重参数,提高模型对不同喷施药量的柑橘树冠层热红外图像的分类精度,实现柑橘树冠层施药情况的智能化分类检测。最后,与ResNet模型和VGG模型进行柑橘树冠层施药情况分类性能对比试验,验证VGG_C模型在小规模数据集上进行分类研究的有效性,以期为智慧农业实现柑橘树施药情况快速无损判断提供有益参考。

    本试验采用FLIR Vue R 640红外热像仪,分别采集不同环境状态下喷施农药的柑橘树冠层及未喷施农药的柑橘树冠层两类红外图像。FLIR Vue R 640红外热像仪采用焦平面探测器,19 mm镜头,镜头尺寸为45 mm×63 mm×45 mm,镜头质量为128 g,波长范围为7.5~13.5 μm,帧频9 Hz,像素大小为17 μm,分辨率为640×512。

    为模拟农事作业的真实场景[],提高数据的多样性和可靠性,针对影响热红外图像信息的3个主要环境因素:温度、湿度和光照度,采用控制变量的方式,在不同环境参数以及相机与植物不同的间距下采集热红外图像(表1)。

    表  1  试验环境数据
    Table  1.  Data of test environment
    组别
    Group
    θ/℃
    Temperature
    相对湿度/%
    Relative humidity
    光照度/lx
    Illuminance
    相机与植物的间距/cm
    Distance between camera and plant
    1 20~23 45~47 800~1000 150
    2 20~23 48~50 800~1000 150
    3 20~23 51~53 800~1000 150
    4 24~27 45~47 800~1000 180
    5 24~27 48~50 800~1000 180
    6 24~27 51~53 800~1000 180
    7 28~31 45~47 800~1000 200
    8 28~31 48~50 800~1000 200
    9 28~31 51~53 800~1000 200
    下载: 导出CSV 
    | 显示表格

    卷积神经网络模型需要大量的数据支撑网络训练,本研究采用空间几何变换的方式,如翻转、随机旋转、随机缩放等操作[],对获取的柑橘树冠层热红外图像进行数据增强,数据增强倍数为10,即1份数据对应的热红外图像平行扩增9份热红外图像,避免过多冗余数据导致训练效率下降。

    采集原始柑橘树冠层热红外图像数据324张,其中未喷药的原始图像数据为110张,已喷药的原始图像数据为214张,经10倍数据增强后的图像数据为3240张,其中未喷药图像1100张,已喷药图像2140张。生成的图像数据集存放于目标路径下的2个子文件夹,命名为“dry”的文件夹存放未喷药的原始图像数据,命名为“wet” 的文件夹存放喷药的原始图像数据。部分图像数据如图1所示。

    图 1 部分图像数据
    图  1  部分图像数据
    Figure  1.  The part of image data

    VGG_C模型结构如图2所示。VGG_C模型由基础模块和下采样模块组成,如图3所示,基础模块通过卷积核为3×3的卷积操作对柑橘树冠层热红外图像进行特征提取,卷积核为1×1的卷积操作对局部特征进行池化,获取全局性特征,增加批归一化(Batch normalization, BN)分支,防止梯度爆炸或消失。在原始图像数据集不丰富的前提下,为了降低过拟合概率,下采样模块以基础模块为基础,在批归一化分支中引入Dropout方法[-]。VGG_C模型通过多层基础模块提取柑橘树冠层热红外图像的多尺度特征信息,结合下采样模块,实现对基础模块输出的降采样操作,降低模型计算量,提高模型运行效率[-]

    图 2 VGG_C模型结构
    图  2  VGG_C模型结构
    Figure  2.  VGG_C model structure
    图 3 VGG_C模型组成模块
    图  3  VGG_C模型组成模块
    Figure  3.  VGG_C model components

    因训练数据较少,训练的网络易出现过拟合现象,造成网络泛化性能低下,增加了训练过程中对模型不确定性的校准[-]。在本研究中,仅依靠网络输出的柑橘树冠层施药类别概率做决策,若分类网络输出已施药的概率为0.9,则可认为该柑橘树冠层已施药。因模型训练过程中对图片进行压缩和数据采集传感器存在误差等原因造成不确定性的影响,网络输出的实际可信度值为0.1,即网络的输出不具有可信度。

    针对上述问题,在网络输出端添加不确定性度量计算。不确定性度量是针对类别疏忽概率所设立的一个分支,仅存在于训练过程中,用于强迫网络学习更具精度的类别概率预测。通过计算网络输出的施药情况分类概率所对应的不确定性,判断分类结果与真实结果是否接近,进而决定是否信任该输出结果。计算网络输出的不确定性方法如下:

    假设样本的不确定性服从正态分布,对于给定的样本( $ {x}_{i} $ )所对应的不确定性( $ {z}_{i} $ )定义为

    $$ {\rm{P}}\left( {{{{z}}_{{i}}}|{{{x}}_{{i}}}} \right) = {\rm{N}}\left( {{{{z}}_{{i}}};{{\rm{\mu }}_{i}}{\rm{\sigma }}_{i}^2} \right){\rm{,}} $$ (1)

    式中, ${\rm{P}}\left( {{z_{i}}|{x_{i}}} \right)$ 表示样本 $ {x}_{i} $ 所对应的不确定性,N表示正态分布, $ {\mu }_{i} $ 表示高斯分布的均值, $ {\sigma }_{i}^{2} $ 表示高斯分布的方差。其中 ${\rm{\sigma }}_{i}^2$ ${{\rm{\mu }}_{i}}$ 均依赖于网络的输出, $ {\mu }_{i}= {f}_{\theta 1}\left({x}_{i}\right) $ $ {\sigma }_{i}={f}_{\theta 2}\left({x}_{i}\right) $ 。其中 $ \theta 1 $ $ \theta 2 $ 分别表示与均值和方差相关的参数,f表示柑橘树冠层施药情况分类网络。

    为评价柑橘树冠层施药情况的分类准确率,选择损失值和准确值作为模型训练结果的评价指标。为自适应调整模型优度与学习率的关系,采用交叉熵损失函数计算模型迭代的损失函数值,交叉熵用于评估卷积神经网络训练得到的概率分布与真实分布的差异情况,表示期望输出与实际输出的距离,当交叉熵的值越小时,2个概率分布就越接近。在本研究中,期望输出代表柑橘树冠层施药情况分类模型对输入的柑橘树冠层热红外图像的预测分类结果,实际输出代表输入图像的真实施药情况。交叉熵损失函数(C)的公式为:

    $$C = - \frac{1}{n}\sum\limits_x {[y\ln a + (1 - y)\ln (1 - a)]} ,$$ (2)

    式中,y为期望输出,a为神经元的实际输出,a的表达式为:

    $${{a}} = \sigma (z),\;z = \sum {w_{{j}} x_{{j}} + b} ,$$ (3)

    式中, $\sigma $ ()为激活函数,z为输入经过神经网络后的输出,wj为第j个神经层的权重值,xj为第j个神经层的输入,b为偏置值。当期望输出y与真实输出a相接近时,损失函数的值逼近于0。

    采用准确率作为评估模型对验证集进行分类结果的指标。准确率(Accuracy rate)的公式为:

    $$ {\rm{Accuracy}}\;{\rm{rate = }}\frac{\rm{{{TP + TN}}}}{{{\rm{TP + TN + FP + FN}}}}{\rm{,}} $$ (4)

    式中,TP (True positive)为将正类样本预测为正的数量,TN (True negative)为将负类样本预测为负的数量,FP (False positive)为将负类预测误报为正类的数量(Type I error),FN (False negative)为将正类预测误报为负类的数量(Type II error)。

    为验证VGG_C模型在基于小规模数据集的柑橘树冠层施药情况分类应用上的准确性和可靠性,选择VGG模型、ResNet模型[]与VGG_C模型分别对本研究所构建的柑橘树冠层热红外图像数据集进行训练与验证。试验环境如下:开发语言为Python3.5;深度学习框架为Tensorflow 2.0.0框架,内置Keras接口;运算部分使用Google Colaboratory免费提供的Tesla T4 GPU。根据文献[]的方法,通过Sklearn库随机地将原始柑橘树冠层热红外图像数据根据80%与20%的比例,划分为训练集和验证集两部分,保证分类结果的客观性和准确性。综合考虑Google colab 平台的GPU、CPU性能以及平台可供使用的时间和额度,设置epoch为300。

    3种模型在训练集上的损失值和准确率迭代曲线如图4所示,随着迭代次数的增加,3种模型的损失值和准确率经过快速下降和上升后,均在迭代次数为7次左右逐渐开始收敛,表明3种模型均具有有效快速地拟合未喷药和已喷药的柑橘树冠层热红外图像的特征。分析整体曲线结果表明,VGG_C训练得到的柑橘树冠层施药情况分类模型具有更低的平均损失值和更高的平均准确率,表明该模型可以更全面地提取图像特征信息,对喷药情况分类的准确性和可靠性更高。经统计,最终VGG_C模型收敛的损失值为0.44%、准确率为95.3%。

    图 4 3种模型的损失函数和准确率曲线图
    图  4  3种模型的损失函数和准确率曲线图
    Figure  4.  The curves of loss function and accuracy rate of three models

    为进一步评估VGG_C柑橘树冠层施药情况分类模型对未知标签图像的泛化能力,在模型训练完毕且保存成功后,调用已经训练好的模型,反复多次随机抽取验证集中648张图像的部分图像进行预测,并输出预测结果。图5所示为预测输出结果示例,每个预测框上方输出预测结果与真实结果,可直观地表现模型的预测结果。预测框如图5a所示:预测结果(pred)为未施药(dry),实际结果(truth)为未施药(dry),预测结果为正确;图5b所示:预测结果(pred)为已施药(wet),实际结果为未施药(dry),预测结果为错误。

    图 5 预测试验结果示例
    图  5  预测试验结果示例
    Figure  5.  Examples of predictive test results

    进行30次随机抽取,每次抽取验证集中的12张图片,共360张图片进行柑橘树冠层施药情况分类预测试验,经统计,分类的平均准确率为 96.4%,进一步验证了VGG_C模型在柑橘树冠层施药情况分类的准确性和有效性。

    本研究通过采集模拟常见环境条件下的324张热红外图像,并利用数据增强的手段,构建了3240张的柑橘树冠层热红外图像数据集。提出一种基于小规模数据集的柑橘树冠层施药情况分类模型−VGG_C模型,通过与ResNet和VGG模型的对比试验,得出结论如下:

    1)VGG_C模型以VGG模型结构为设计思想,通过多层卷积操作提取柑橘树冠层热红外图像的局部细节特征,结合多层池化操作融合生成全局整体信息,针对数据少导致过拟合的问题,在网络输出端创新性加入不确定性度量计算,排除过拟合产生的无效信息对模型精度的影响,有效提高模型在小规模数据集下对柑橘冠层施药情况的精准分类。

    2)VGG_C模型准确率可达95.3%,验证集的平均准确率为96.4%,模型分类效果优于传统的ResNet模型和VGG模型,结果表明VGG_C模型对于判断柑橘树冠层热红外图像未喷药和已喷药的施药情况具有更为准确的分类效果。

    本研究结果可以辅助柑橘果园的管理,减少农药资源的浪费和柑橘果园管理的人力、物力、财力资源的消耗。该模型可通过增加采集图像的数量,完善样本数据,并在不断地测试中优化已经搭建的卷积神经网络结构,对网络参数进行调整,得到准确率更高、更能够适应农业应用的卷积神经网络结构,为柑橘果园乃至整个农业的发展提供一定的参考依据。

  • 图  1   部分图像数据

    Figure  1.   The part of image data

    图  2   VGG_C模型结构

    Figure  2.   VGG_C model structure

    图  3   VGG_C模型组成模块

    Figure  3.   VGG_C model components

    图  4   3种模型的损失函数和准确率曲线图

    Figure  4.   The curves of loss function and accuracy rate of three models

    图  5   预测试验结果示例

    Figure  5.   Examples of predictive test results

    表  1   试验环境数据

    Table  1   Data of test environment

    组别
    Group
    θ/℃
    Temperature
    相对湿度/%
    Relative humidity
    光照度/lx
    Illuminance
    相机与植物的间距/cm
    Distance between camera and plant
    1 20~23 45~47 800~1000 150
    2 20~23 48~50 800~1000 150
    3 20~23 51~53 800~1000 150
    4 24~27 45~47 800~1000 180
    5 24~27 48~50 800~1000 180
    6 24~27 51~53 800~1000 180
    7 28~31 45~47 800~1000 200
    8 28~31 48~50 800~1000 200
    9 28~31 51~53 800~1000 200
    下载: 导出CSV
  • [1] 兰玉彬, 朱梓豪, 邓小玲, 等. 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类[J]. 农业工程学报, 2019, 35(3): 92-100. doi: 10.11975/j.issn.1002-6819.2019.03.012
    [2] 陆健强, 林佳翰, 邓小玲, 等. 多尺度特征融合的柑橘冠层施药沉积量分类模型[J]. 农业工程学报, 2020, 36(23): 70-76. doi: 10.11975/j.issn.1002-6819.2020.23.008
    [3]

    GAO J F, FRENCH A P, POUND M P, et al. Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields[J]. Plant Methods, 2020, 16(9): 108-116.

    [4]

    STEINMETZ M, SOOSTEN D, HUMMEL J, et al. Validation of the RumiWatch Converter V0.7. 4.5 classification accuracy for the automatic monitoring of behavioural characteristics in dairy cows[J]. Archives of Animal Nutrition, 2020, 74(2): 164-172. doi: 10.1080/1745039X.2020.1721260

    [5] 姜红花, 张传银, 张昭, 等. 基于Mask R-CNN的玉米田间杂草检测方法[J]. 农业机械学报, 2020, 51(6): 220-228. doi: 10.6041/j.issn.1000-1298.2020.06.023
    [6] 何志谦, 胡明海, 丁黎明, 等. 基于智能四旋翼农业喷药机器人的设计与实现[J]. 山西电子技术, 2020(1): 15-17.
    [7] 李乐, 刘玉倩. 基于大数据的农业智能机器人开发[J]. 农机化研究, 2019, 41(11): 221-224. doi: 10.3969/j.issn.1003-188X.2019.11.038
    [8]

    KISLAYA A, GOUTAM R. An autonomous UAV for pesticide spraying[J]. International Journal of Trend in Scientific Research and Development, 2019, 3(3): 986-990.

    [9]

    RICARDO A D, SERGIO T D J, MARCELO C F. Deposit of pesticides without and with adjuvants on citrus seedlings following different intervals of artificial rain[J]. Ciencia Rural, 2016, 46(1): 13-19. doi: 10.1590/0103-8478cr20150064

    [10] 奉山森, 张燕, 樊军庆, 等. 基于单片机的农药喷洒机械自动调平系统设计[J]. 农机化研究, 2014, 36(11): 104-107. doi: 10.3969/j.issn.1003-188X.2014.11.024
    [11]

    WANG J, LAN Y B, YAO W X, et al. Aerial spraying application of multi-rotor unmanned aerial vehicle on areca trees[J]. International Journal Precision Agricultural Aviation, 2020, 3(4): 51-64.

    [12] 周建民, 周其显, 刘燕德, 等. 红外成像技术在农产品加工自动化中的应用[J]. 中国农机化, 2010(6): 69-72.
    [13] 张小雨, 孙宏勇, 王艳哲, 等. 应用基于红外热画像技术的CWSI简化算法判断作物水分状态[J]. 中国农业气象, 2013, 34(5): 569-575. doi: 10.3969/j.issn.1000-6362.2013.05.011
    [14] 张京, 何雄奎, 宋坚利, 等. 无人驾驶直升机航空喷雾参数对雾滴沉积的影响[J]. 农业机械学报, 2012, 43(12): 94-96. doi: 10.6041/j.issn.1000-1298.2012.12.017
    [15] 尚垚睿. 人脸部件的提取和分类方法研究[D]. 北京: 中国人民公安大学, 2019.
    [16] 吴穗岚, 陈乐, 曾涛. 基于卷积神经网络的膝关节炎患者的膝盖红外图像分类[J]. 中国计量大学学报, 2019, 30(2): 185-190. doi: 10.3969/j.issn.2096-2835.2019.02.010
    [17] 穆文秀, 洪蕾, 王瀚. 基于机器学习的智能昆虫分目识别算法应用[J]. 数字技术与应用, 2018, 36(11): 118-119.
    [18] 左羽, 陶倩, 吴恋, 等. 基于卷积神经网络的植物图像分类方法研究[J]. 物联网技术, 2020, 10(3): 72-75.
    [19] 崔洲涓, 安军社, 崔天舒. 基于多层深度卷积特征的抗遮挡实时跟踪算法[J]. 光学学报, 2019, 39(7): 229-242.
    [20] 徐超. 基于深度学习的信用卡逾期风险预测的方法研究与实现[D]. 苏州: 苏州大学, 2016.
    [21] 张伟. 基于深度卷积神经网络自学习特征的地表覆盖分类研究[D]. 北京: 中国科学院大学, 2017.
    [22] 董慧妍. 基于机器学习的糖尿病性视网膜病变图像分级研究[D]. 北京: 北京邮电大学, 2019.
  • 期刊类型引用(2)

    1. 麻丽明,沈海军,王贵丽,周燕. 航测像控点测量与布设下的智能施药作业研究. 农机化研究. 2024(04): 221-224+229 . 百度学术
    2. 周平,高鹏,陈文彬,杨明欣,丁郑,刘欢,王卫星. 不同水分处理下柑橘树光合参数对水分及气象因素的响应. 节水灌溉. 2022(06): 90-95 . 百度学术

    其他类型引用(0)

图(5)  /  表(1)
计量
  • 文章访问数:  902
  • HTML全文浏览量:  6
  • PDF下载量:  1015
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-01-13
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2021-09-09

目录

YANG Ruifan

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回