Rapid identification of Henosepilachna vigintioctopunctata and Henosepilachna vigintioctomaculata based on species-specific mitochondrial cytochrome oxidase I primers
-
Abstract:Objective
Henosepilachna vigintioctopunctata (Fabricius) and Henosepilachna vigintioctomaculata (Motschulsky), two kinds of phytophagous ladybeetles in China, are destructive pests causing great damage to solanaceous plants. They are difficult to distinguish based on external morphological characteristics, and it is therefore necessary to develop a rapid and accurate method to differentiate them.
MethodWe established a molecular identification technique using species-specific (SS) PCR primers based on the species-specificity of mitochondrial cytochrome oxidase I (mtCOI) of two ladybeetles. Two pairs of SS-mtCOI primers, Hvp and Hvm, were designed based on sequence variations in the mtCOI gene between H. vigintioctopunctata and H. vigintioctomaculata.
ResultPCR amplifications were conducted using these two primers and both had species-specific amplifications. Sensitivity assays were conducted under different DNA concentrations, and the results showed that Hvp primers for H. vigintioctopunctata had a detectable amplification band at a DNA concentration of 3.13 mg/L, while Hvm primers for H. vigintioctomaculata had a detectable amplification band at a DNA concentration of 2.43 mg/L. The egg or 1st instar of H. vigintioctopunctata and H. vigintioctomaculata could also be accurately differentiated by Hvp and Hvm primers. Furthermore, six field populations of H. vigintioctopunctata collected from six provinces could be authenticated by the Hvp primers.
ConclusionThese two pairs of SS-mtCOI primers can differentiate H. vigintioctopunctata and H. vigintioctomaculata rapidly, accurately and sensitively.
摘要:目的茄二十八星瓢虫Henosepilachna vigintioctopunctata和马铃薯瓢虫Henosepilachna vigintioctomaculata 都是茄科作物上的重要害虫,对茄科作物造成极大的经济损失。这2种瓢虫由于外形非常相似,无法通过体表特征区分,因此很有必要开发一种准确且快速的区分方法。
方法基于这2种瓢虫线粒体细胞色素氧化酶I(Mitochondrial cytochrome oxidase I, mtCOI)的物种特异性,利用种特异性(Species-specific,SS) PCR引物建立了一种分子鉴定技术,即以茄二十八星瓢虫和马铃薯瓢虫之间的mtCOI基因序列变异为基础,设计了2对SS-mtCOI引物Hvp和Hvm。
结果用这2对引物进行PCR扩增,均出现物种特异性扩增现象。在不同的DNA质量浓度下对该SS-mtCOI引物进行敏感性检测,结果表明,Hvp引物在茄二十八星瓢虫DNA质量浓度为3.13 mg/L时仍可检测到扩增条带,Hvm引物在马铃薯瓢虫DNA浓度为2.43 mg/L时仍能检测到扩增条带。此外,Hvp和Hvm引物也能准确鉴定马铃薯瓢虫和茄二十八星瓢虫的卵和1龄幼虫,从6个不同省份采集的田间种群也能通过Hvp引物准确鉴定。
结论这2对SS-mtCOI引物能快速、准确、灵敏地鉴别茄二十八星瓢虫和马铃薯瓢虫。
-
关键词:
- 茄二十八星瓢虫 /
- 马铃薯瓢虫 /
- SS-mtCOI引物 /
- 分子鉴定 /
- 敏感性检测
-
-
Figure 4. Gel electrophoresis of PCR products amplified from double diluted Henosepilachna vigintioctopunctata template DNA with Hvp primers (A) and H. vigintioctomaculata template DNA with Hvm primers (B)
Marker: DL2000 DNA Marker; For figure A, 1–8: Dilution of 100.00, 50.00, 25.00, 12.50, 6.25, 3.13, 1.56, and 0.78 mg/L respectively; For figure B, 1–8: Dilution of 150.00, 75.00, 37.50, 18.75, 9.38, 4.69, 2.43, and 1.17 mg/L respectively
Figure 6. Gel electrophoresis of PCR products amplified from six different populations of Henosepilachna vigintioctopunctata with Hvp and Hvm primers
Marker: DL2000 DNA Marker; 1–6: Samples from Guangzhou City, 7–12: Samples from Hangzhou City, 13–18: Samples from Jingzhou City. 19–24: Samples from Nanjing City, 25–30: Samples from Heze City, 31–36: Samples from Beijing City
-
[1] RAHAMAN M A, PRODHAN M D H, MAULA A K M. Effect of botanical and synthetic pesticides in controlling Epilachna beetle and the yield of bitter gourd[J]. International Journal of Sustainable Crop Production, 2008, 3(5): 23-26.
[2] ISLAM K, ISLAM M S, FERDOUSI Z. Control of Epilachna vigintioctopuntata Fab. (Coleoptera: Coccinellidae) using some indigenous plant extracts[J]. Journal of Life and Earth Science, 2011, 6: 75-80.
[3] ZHOU L, XIE B G, WANG X P. Population dynamic of Henosepilachna vigintioctopunctata in different host plants in Jianghan Plain[J]. Northern Horticulture, 2015, 11: 103-105.
[4] KOHYAMA T I, MATSUBAYASHI K W, KATAKURA H. Heterospecific sperm reduction in interspecific crosses between two closely related phytophagous ladybird beetles, Henosepilachna vigintioctomaculata and H. pustulosa (Coleoptera: Coccinellidae)[J]. Entomological Science, 2016, 19: 49-54. doi: 10.1111/ens.12159
[5] LÜ J, CHEN S M, GUO M J, et al. Selection and validation of reference genes for RT-qPCR analysis of the ladybird beetle Henosepilachna vigintioctomaculata[J]. Frontiers in Physiology, 2018, 9: 1614. doi: 10.3389/fphys.2018.01614
[6] KARTHIKA P, VADIVALAGAN C, KRISHNAVENI N, et al. Contrasting genetic diversity and intra-population polymorphism of the invasive pest Henosepilachna vigintioctopunctata (Coleoptera, Coccinellidae): A DNA barcoding approach[J]. Journal of Asia-Pacific Entomology, 2017, 20: 23-29. doi: 10.1016/j.aspen.2016.11.011
[7] KARTHIKA P, VADIVALAGAN C, MUTHUSANKAR A, et al. Methyl linolenate as a feeding stimulant for the 28-spotted potato ladybird, Henosepilachna vigintioctopunctata? A molecular docking approach[J]. Physiological and Molecular Plant Pathology, 2018, 101: 75-84. doi: 10.1016/j.pmpp.2017.01.005
[8] GHOSH S K, SENAPATI S K. Biology and seasonal fluctuation of Henosepilachna vigintioctopunctata Fabr. on brinjal under Terai region of West Bengal[J]. Indian Journal of Agricultural Research, 2001, 35: 149-154.
[9] SHINOGI T, HAMANISHI Y, OTSU Y, et al. Role of induced resistance in interactions of Epilachna vigintioctopunctata with host and non-host plant species[J]. Plant Science, 2005, 168: 1477-1485. doi: 10.1016/j.plantsci.2005.01.022
[10] VENKATESHA M G. Seasonal occurrence of Henosepilachna vigintioctopunctata (F.) (Coleoptera: Coccinellidae) and its parasitoid on Ashwagandha in India[J]. Journal of Asia-Pacific Entomology, 2006, 9(3): 265-268. doi: 10.1016/S1226-8615(08)60301-5
[11] ZHANG Y C, LIU H J, ZHENG Z M. Ultrastructure of Henosepilachna vigintioctomaculata and H. vigintioctopunctata[J]. Chinese Bulletin of Entomology, 2002, 39: 132-135.
[12] YU G Y. Identification of “28 stars” ladybug[J]. Chinese Bulletin of Entomology, 2000, 37: 239-242.
[13] BLACK W C, DUTEAU N M, PUTERKA G J, et al. Use of the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) to detect DNA polymorphisms in aphids (Homoptera: Aphididae)[J]. Bulletin of Entomological Research, 1992, 82: 151-159. doi: 10.1017/S0007485300051671
[14] WANG N, WANG X, ZHANG Y, et al. Establishment and application of SCAR marker for rapid identification of Trialeurodes vaporariorum[J]. Journal of Environmental Entomology, 2010, 53: 323-330.
[15] TAUTZ D, ARCTANDER P, MINELLI A, et al. DNA points the way ahead in taxonomy[J]. Nature, 2002, 418(6897): 479.
[16] ZHANG G F, WANG Y S, GUO J Y, et al. Rapid identification of the important quarantine pest Diabrotica virgifera virgifera by SS-COI[J]. Plant Protection, 2019, 45: 109-115.
[17] WANG Y S, ZHOU P, TIAN H, et al. First record of the invasive pest Pseudococcus jackbeardsleyi (Hemiptera: Pseudococcidae) on the Chinese mainland and its rapid identification based on species-specific polymerase chain reaction[J]. Journal of Economic Entomology, 2018, 111(5): 2120-2128. doi: 10.1093/jee/toy223
[18] ZHANG T, WANG Y, GUO W, et al. DNA barcoding, species-specific PCR and real-time PCR techniques for the identification of six Tribolium pests of stored products[J]. Scientific Reports, 2016, 6: 28494. doi: 10.1038/s41598-016-0001-8
[19] SUN X T, TAO J, REN L L, et al. Identification of Sirex noctilio (Hymenoptera: Siricidae) using a species-specific cytochrome C oxidase subunit I PCR assay[J]. Journal of Economic Entomology, 2016, 109(3): 1424-1430. doi: 10.1093/jee/tow060
[20] PAN H, CHU D, GE D, et al. Further spread of and domination by Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q on field crops in China[J]. Journal of Economic Entomology, 2011, 104(3): 978-985. doi: 10.1603/EC11009
[21] LÜ J, GUO W, GUO M J, et al. Double-stranded RNAs targeting HvRPS18 and HvRPL13 reveal potential targets for pest management of the 28-spotted ladybeetle, Henosepilachna vigintioctopunctata[J]. Pest Management Science, 2020, 76(8): 2663-2673. doi: 10.1002/ps.5809
[22] HEBERT P D, CYWINSKA A, BALL S L, et al. Biological identifications through DNA barcodes[J]. Proceedings of the Royal Society B: Biological Sciences, 2003, 270(1512): 313-321. doi: 10.1098/rspb.2002.2218
[23] JORDAENS K, SONET G, RICHET R, et al. Identification of forensically important Sarcophaga species (Diptera: Sarcophagidae) using the mitochondrial COI gene[J]. International Journal of Legal Medicine, 2013, 127(2): 491-504. doi: 10.1007/s00414-012-0767-6
[24] SHATTERS R G, POWELL C A, BOYKIN L M, et al. Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: Development of universal and Bemisia tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers[J]. Journal of Economic Entomology, 2009, 102(2): 750-758. doi: 10.1603/029.102.0236
[25] WANG Y S, TIAN H, WAN F H, et al. Species-specific COI primers for rapid identification of a globally significant invasive pest, the cassava mealybug Phenacoccus manihoti Matile-Ferrero[J]. Journal of Integrative Agriculture, 2019, 18: 1042-1049. doi: 10.1016/S2095-3119(18)62043-X
[26] WANG Y S, DAI T M, TIAN H, et al. Phenacoccus madeirensis green (Hemiptera: Pseudococcidae): New geographic records and rapid identification using a species-specific PCR assay[J]. Crop Protection, 2019, 116: 68-76. doi: 10.1016/j.cropro.2018.10.003
-
期刊类型引用(6)
1. 赵慧. 数字化技术在甜樱桃生产中的应用. 落叶果树. 2024(01): 47-50 . 百度学术
2. 张振飞,郭靖,颜安,袁以琳,肖淑婷,侯正清,孙哲. 基于多光谱无人机不同飞行高度下苹果树冠幅信息的提取. 新疆农业科学. 2024(06): 1468-1476 . 百度学术
3. 董秀春,蒋怡,杨玉婷,郭涛,李宗南,李章成. 基于语义分割模型和遥感的柑橘园空间信息提取. 中国农机化学报. 2023(01): 178-184 . 百度学术
4. 杨珍,郭艳光,鲁晓波. 基于改进AlexNet网络的无人机遥感图像分类方法. 湖南科技大学学报(自然科学版). 2023(03): 59-69 . 百度学术
5. 王雨阳,王懿祥,李明哲,梁丹. 基于无人机可见光影像的毛竹林郁闭度估测方法. 浙江农林大学学报. 2022(05): 981-988 . 百度学术
6. 崔万新,李锦荣,司前程,王茹,罗祥英,杨锋,李映坤. 基于无人机可见光数据荒漠灌木覆盖度提取方法研究. 水土保持研究. 2021(06): 175-182+189 . 百度学术
其他类型引用(4)