Biodiversity of Isaria in soil and its activity against Phyllotreta striolata
-
摘要:目的
调查国内部分地区不同土壤中棒束孢属Isaria真菌的多样性分布,测定其对黄曲条跳甲Phyllotreta striolata的生物活性,促进棒束孢菌对黄曲条跳甲的生防应用。
方法从福建、广东、广西、云南、贵州、湖南、湖北、河南、河北等地的不同生境中采集土壤样品,通过选择培养基分离纯化棒束孢菌株,根据形态学和分子标记鉴定菌种,采用多样性指数与优势度指数评价生物多样性;采用浸虫法测定棒束孢菌株对黄曲条跳甲成虫的生物活性。
结果从200余份土壤样品中分离得到棒束孢属真菌41株,优势菌种是爪哇棒束孢Isaria javanica,有34株,优势度指数为0.829;玫烟色棒束孢I. fumosorosea有5株,粉棒束孢I. farinosa和环链棒束孢I. cateniannulate各1株。林地物种丰富度最高,多样性指数为1.121,休耕地、果园、耕地和草地的多样性指数范围为0~0.349;林地种间分配最均匀,优势度指数为0.468,休耕地、果园、耕地和草地的优势度指数范围为0~0.159。生测结果表明,大部分供试的棒束孢菌株对黄曲条跳甲都有一定活性,玫烟色棒束孢IfH6102菌株对黄曲条跳甲的活性最高,在处理黄曲条跳甲成虫11 d后,其校正死亡率达60.89%。
结论棒束孢菌在我国土壤中分布广泛,林地生境中的物种多样性最丰富,棒束孢菌具有防治黄曲条跳甲的应用潜力。
Abstract:ObjectiveTo investigate the diversity of Isaria from different soils in some areas of China, and to determine their bioactivity against Phyllotreta striolata, so as to promote the application of Isaria as biocontrol agents.
MethodSoil samples were collected from different habitats in Fujian, Guangdong, Yunnan, Guizhou, Hunan, Hubei, Henan, Hebei and Guangxi Provinces (Regions). Isaria strains were isolated and purified by selective medium, and identified based on morphology and molecular markers. The Shannon-Weiner and dominance indexes were used to evaluate the biodiversity. The biological activities of Isaria strains against P. striolata were determined by immersion method.
ResultA tatol of 41 Isaria strains were isolated from more than 200 soil samples. The dominant species was I. javanica with 34 strains and a dominance index of 0.829. Meanwhile, five strains of I. fumosorosea, one strain of I. farinosa and one strain of I. cateniannulate were isolated. The woodland habitat had the highest biodiversity for Isaria with Shannon-Wiener index of 1.121, followed by fallow land, orchard, farmland, grassland with the Shannon-Wiener indexes ranged from 0 to 0.349. Woodland habitat had the most uniform distribution among species, with the dominance index of 0.468, and the dominance indexes of fallow land, orchard, farmland and grassland ranged from 0 to 0.159. The results of bioassay showed that most tested strains had certain activity against P. striolata. The strain IfH6102 had the highest activity with the corrected mortality of 60.89% at 11 days after treatment.
ConclusionIsaria is widely distributed in the soil of China. The woodland has the highest biodiversity for Isaria, and Isaria has the potential to be used for controlling P. striolata.
-
Keywords:
- Isaria /
- entomogenous fungi /
- Phyllotreta striolata /
- biodiversity /
- biological control
-
水稻直播栽培技术便于实现机械化,具有降低劳动强度,缓解农时,节本增效等优点[1-3],随着人们对水稻直播理念的深入了解[4],水稻直播机在各地得到广泛推广。但现有的机械式水稻直播机大多采用镇压轮传动播种,这种播种方式普遍存在一些不足:镇压轮易于裹草堵转,导致漏播;播量靠手动调节且控制精度低;无法实时依据机具车速变化自动调节播种量;自动化程度较低。目前国内外针对播种机播量调节已有一些相关研究,国外直播装备研究和运用起步较早,基本实现自动化、智能化作业[5],如LEMKEN公司生产的Saphir系列播种机通过配备电脑控制终端Easytronic系统,可以预设播种量并对播种量、施肥量进行校对,可完成多种作物播种;日本矢崎公司生产了一种直接配套插秧机进行播种作业的SYG-8型水稻直播机,播种量、穴距可精准调节,但该机具作业效率较低,价格高昂,使其推广受到限制。国内现有水稻直播机的研究主要集中在机械结构的设计改进以及关键部件的参数优化[6-8],未能从根本上解决镇压轮传动播种导致的漏播以及播种量无法同步均匀调节问题。
本文以现有苏南地区机械式水稻播种机为基础,设计了一种基于PID控制算法[9-11]的水稻直播机播量控制系统。该系统可以在线无极调节排种量,实现排种转速的闭环控制,达到同步播种目的,提高播量控制精度,为现有的水稻直播机播量自动化改造提供了一种可靠途径。
1. 同步排种系统设计
1.1 同步排种控制原理
播量控制系统工作原理如图1所示。播种作业时,通过电位器设定目标播量,结合安装在测速轮上的编码器采集实时机具车速以及排种转速,计算出排种目标转速;同时安装在排种轴上的编码器实时检测排种轴转速;决策系统将目标播量、机具车速、排种转速作为控制系统的输入量,得到当前排种器的转速控制量,然后通过PID调速算法使控制器输出相应PWM波[12-13],再经过放大调理后,驱动排种电机在线调节排种转速,实现同步排种作业。
1.2 排种转速控制策略
$$ Q(t) = \frac{{0.06q(t){{n}}}}{{L v(t)}}, $$ (1) 式中, q(t)为单个排种器播种量,g/min;n为播种行数;L为排种通道所能覆盖的作业幅宽,m;v(t)为机具作业车速,km/h;0.06是各变量单位换算产生的系数;q(t)和排种电机转速(ɑ)的标定公式为:
$$ q(t) = ka + b, $$ (2) 式中, k和b是标定试验测定系数。根据目标播种量,排种电机转速和机具车速之间关系可以表示为:
$$ a = \frac{{Q(t) L v(t)}}{{1\,000k{{n}}}} - \frac{b}{k}{\text{。}} $$ (3) 根据公式(3),机具车速发生变化时,控制器可以同步调整排种轴转速,确保实际单位面积排种量与目标播种量一致。
1.3 控制系统设计
1.3.1 机械结构
针对江苏丹阳欣田机械制造有限公司生产的2BFGK-12型播种机进行自动化改造,改造后的播种机结构简图如图2所示。自动化改进保留了机械式播种开沟、旋耕、播种、镇压等功能,重点改进了排种驱动方式,将链轮传动改为直流电机驱动,排种轴下方种箱内侧安装直流电机驱动,通过链轮驱动排种轴,播种行数为12行,机具宽度230 mm,取消地轮与排种轴连接的链式结构;设计增加了一种铁质测速轮,直径为400 mm,测速轮表面均匀布设15个防滑齿[16],抓地性良好,且具有单铰链仿行机构,弹簧支杆上方每隔20 mm开调节孔位1个,共计10个,可以通过开口销调节弹簧压缩长度,减缓测速轮对地弹跳,提高测速准确度;弹簧压杆上方安装行程开关,抬起机具可断停排种电机,防止重播;通过轴套分别在排种轴和地轮安装2个编码器用于测量排种轴转速和机具车速;播量可按需无极调节,简化了播量调节方法,可实现同步播种。
1.3.2 控制系统结构
控制系统按照模块化设计思路,由速度采集、人机交互、执行机构、主控单元等主要模块组成,如图3所示。排种控制系统设计手动和自动2种模式:手动模式可转动旋钮调节播量;自动模式下,控制系统可依据设定机具前进速度与播种量的比例系数,在线调节排种转速。数码管采用三段式设计,分别显示机具车速、播量档位、排种转速。速度采集模块采用2个编码器测速,分别采集排种转速和机具车速,信号经过A/D转换发送主控器STC12C5A60S2单片机[17]。驱动电路采用拖拉机12 V电源供电,控制电路经L7805稳压芯片输出5 V供电,强弱电分离,提高电路板稳定性与可靠性,控制系统主控原理图如图4。
1.3.3 主要设计模块
1)测速模块:编码器是把角位移或直线位移等非电量信号转换为电量信号的装置[18],安装于具有单铰链仿行机构的测速轮,实时检测机具行进速度,产生脉冲信号经过调理电路将脉冲信号放大并滤掉杂波,确保输出标准方波。选用欧姆龙增量式编码器E6B2-CWZ6C,旋转1周输出600脉冲数,该编码器具有构造简单、性能稳定,测量精度高等优点[19]。编码器采样频率为5 Hz,对每5个采样脉冲数据进行均值滤波,输出1 Hz速度控制信号,提高了测量速度的精度与稳定性。采用一个0.2 μF电容滤除采样信号过程中的杂波,并对LM358放大器进行保护。
试验中设计直径为400 mm的测速轮模拟拖拉机后轮,播种机测速轮的转速与脉冲频率的关系为:
$$ N = \frac{{60{{f_0}}}}{{ZM}}, $$ (4) 式中,Z表示编码器每转输出的脉冲个数;f0为准时钟的脉冲频率,Hz;M为编码器2个脉冲之间的时钟脉冲的个数。
2)直流电机驱动模块:直流电机工作时需要驱动12个排种槽轮,为了提高电路板驱动性能,设计了二极驱动电路单元,双NPN型三极管组合构成达林顿管,提升了SSF7509增强型MOS管[20]驱动电流,有效提高了驱动效率,最大漏极电流达60 A,漏源击穿电压为80 V,漏源导通电阻为6.5 mΩ。PWM信号经驱动模块调理运算控制排种电机,为提高驱动模块可靠性与稳定性,对MOS管电路铜箔表面走锡处理,形成3 mm的焊锡导线,增大有效走线截面,提高电路板载荷电流,驱动模块电路图如图5。
3)人机交互模块:人机交互模块由按键、播量旋钮和数码管组成。74HC595驱动3个2位1.42 cm的共阴极数码管[21],将串行信号转为并行信号,分别显示拖拉机速度(km/h)、播量档位、排种轴转速(r/min);电源芯片实现了DC12 V与DC5 V的电压转换,排种轴控制模式可手动自动切换,按键输出端与P0.5引脚相连,高电平为自动模式、低电平为手动模式,墒情较为严重时,可选用手动模式,确保播种效果,人机交互电路图如图6。
1.4 系统建模与PID参数确定
排种器转速控制本质是一个直流电机控制系统,测速轮转速作为系统输入量,输出量为排种槽轮转速。在忽略微小电感的情形下[22],可将该排种器驱动电机看成经典的一阶系统,其传递函数是一个典型积分环节和惯性环节串联[23]:
$$ G(s) = \frac{{1/2\pi {C_{\rm e}}}}{{s\left(\displaystyle\frac{{{J_{\rm a}}{R_{\rm a}}}}{{{C_{\rm e}}{C_{\rm t}}}}s + 1\right)}}, $$ (5) 式中,G(s)是原函数经过拉普拉斯变换后的复函数表达式;Ce为电动势常数,由电动机结构参数确定;Jɑ为电动机转子转动惯量;Rɑ为电动机电阻;Ct为电磁力矩常数,由电动机结构参数确定;s为复频率。
选用邦瑞公司生产的5D90-12GU直流电机,电机参数为Ce=12.04, Jɑ=4×10–5 kg·m2, Rɑ=6Ω, Ct=0.115 N·m/A,代入式(5)得:
$$ G(s) = \frac{{8.69}}{{s(0.642s + 1)}}{\text{。}} $$ (6) 本研究选用PID控制器模型,被控对象由排种电机、电机驱动器、执行机构组成。PID控制系统输入信号Nin,Sin为经PID控制器输出的最佳转速控制量,Nout为排种轴的作业转速;控制器执行过程中,编码器实时监测测速轮和排种轴转速,并将转速信号输入到控制系统中,与最佳转速控制量形成偏差(e),经PID调节器输出相应的控制量来调节排种转速,实现播量在线无极调节,达到控制目标。PID控制器与电机数学模型、负反馈控制量组成闭环控制系统,其传递函数近似于二阶惯性环节,通过与标准惯性环节比较取PID参数:kp=15.216 2,ki=0.319 3,kd=1.012 1,PID控制系统结构图如图7。
2. 结果与分析
2.1 空载变速响应测试效果
电机空载下,测试控制器变速调节电机转速响应变化效果,排种轴转速选取农户常用播种量对应的3个转速,分别为20、30和40 r/min,测试控制系统启动后的电机响应转速数据曲线如图8,性能参数如表1所示。结果表明:控制系统在目标转速40 r/min下超调量最大,不同转速下的调整峰值时间差距较小,整体调整时间低于0.63 s,响应及时。
表 1 空载响应试验数据Table 1. The experimental data of no-load response转速/(r·min–1)
Speed超调量/%
Overshoot峰值时间/s
Peak time调整时间/s
Adjusted time20 7.66 0.24 0.38 30 8.02 0.29 0.54 40 8.21 0.33 0.63 2.2 带负载性能测试结果
传统播种机由于制造工艺和加工精度的差异,致使相同槽轮的排种轴阻力差距较大,对控制系统带负载能力要求较高。依据排种轴扭矩标准[24],12行以下播种机扭矩不大于10 N·m,通过磁负载装置给电机施加7.5、10.0和12.5 N·m负载,测试控制系统带负载能力及负载变化的调节能力,记录排种电机实时转速值及驱动电路负载电流。变负载响应曲线如图9所示。施加负载7.5 N·m时,电机瞬时转速回落较小,转速回调时间短,随着负载增大,电机瞬时转速回落逐渐增大,调整时间延长,当负载12.5 N·m时,转速瞬间下降了23.5%,控制系统迅速响应,系统转速回调时间为0.32 s,最大负载电流为6.5 A,大负载作业条件下控制系统工作稳定,性能可靠,为控制系统适配不同播种机提供了理论依据,带负载性能测试如图10所示。
2.3 田间试验结果
排种转速控制精度对于播种效果起关键作用,为了综合测试播种机性能,开展了排种转速及播量控制精度田间试验(图11)。试验地点位于南京高淳禾田家庭农场,田间秸秆留茬高度18.5 cm,秸秆含水率(w)21.2%,秸秆切碎长度13.5 cm,秸秆量6 725.6 kg/hm2。土壤状况如表2所示,试验品种为‘南粳46’。设计机具车速和目标播量两因素三水平试验,依据苏南地区农户实际播种要求,选取试验机具车速为0.8、1.2和1.6 m/s,目标播量为7.50、11.25和15.00 g/m2。水稻直播机有效播种幅宽2.3 m,由久保田754拖拉机牵引,播种作业距离140 m(田块长约70 m)视为1次试验,记录排种轴实时转速、机具车速、实际播量,每个目标播量重复2次试验,取平均值为最终数据,结果见表3。表3的结果表明,3种目标播量下的转速最大误差分别为6.73%、6.59%和7.21%,转速误差平均值分别为4.67%、4.92%和5.31%,对比传统播种机最大控制误差24.54%和平均控制误差17.08%[23],本系统控制精度显著提高;目标播量15.00 g/m2时,机具车速提升后转速误差平均值降低较为明显且播量误差显著降低,说明本控制系统在较高车速和较高目标播量下,控制效果更好;播种机整机转速控制精准,能满足实际需求,在不同的测试条件下,播量控制系统性能稳定。
表 2 田间土壤状况Table 2. Soil condition in field土壤深度/cm
Soil depth容重/(g·cm−1)
Density含水率(w)/%
Water content坚实度/MPa
Firmness0~5 1.32 23.41 0.43 5~10 1.45 20.26 0.86 10~15 1.53 18.96 1.23 表 3 不同目标播量下田间试验的控制精度Table 3. Control accuracy of speed and seeding amount in field under different target seeding amounts播量/(g·m−2)
Seeding amount机具车速/(m·s−1)
Vehicle speed转速最大误差/%
Max. speed error转速误差均值/%
Average speed error播量误差/%
Seeding amount error7.50 0.8 6.73 4.67 3.86 1.2 4.96 3.62 3.91 1.6 4.13 2.74 3.66 11.25 0.8 6.59 4.92 3.25 1.2 5.81 3.83 2.76 1.6 5.34 2.32 2.12 15.00 7.21 5.21 3.96 7.21 5.68 3.54 2.52 5.68 4.08 1.63 1.04 4.08 机具行驶作业速度变化时需要排种轴快速同步响应,为测试播量控制系统排种同步性,设计了田间阶梯车速播种试验。选取目标播量11.25 g/m2,测试机具行驶速度在0.8~1.6 m/s范围内阶梯变化,实时记录排种轴转速和车速,田间排种车速同步跟随效果如图12。图12的结果表明,田间播种车速变化时排种转速响应及时,具有较高的排种同步性,说明本研究设计改造的排种驱动机构和PID控制算法的引入措施起到了关键性的作用。
3. 结论
对传统水稻直播机进行自动化改造,重点改进了播量调节机构,并设计了配套的播量控制系统,简化播量调节方式。控制系统引入PID控制策略,并且建立了相应的传递函数,针对设计目标播量下的转速范围内,排种电机空载转速最大超调量为8.21%,转速调整最大时间为0.63 s,电机负载状况下最大回调时间为0.32 s,最大负载电流6.5 A, 控制系统响应迅速,满足实际播种需求。
田间试验转速最大误差为7.21%,最大转速误差均值5.31%,最大播量误差为3.96%,播种机整机转速控制精度较传统播种机显著提高,田间播种车速变化时排种转速响应及时,具有较高的排种稳定性和同步性,实现了同步播种作业,提高了传统播种机播种性能。
该控制系统自动化改造简便,对传统机械直播机具有较高适配性,为现有的机械式播种机低成本播量自动化改造提供了思路。
-
表 1 棒束孢菌株的具体信息
Table 1 Specific information of Isaria strains
菌株编号
Strain No.菌种
Species采集地点
Location植被环境
Habitat经、纬度/(°)
Latitude and longitudeIjFJ01 爪哇棒束孢 Isaria javanica 福建南平市 耕地 Farmland E118.18,N26.64 IjFJ02 爪哇棒束孢 I. javanica 福建龙岩市连城县 休耕地 Fallow land E116.78,N25.71 IjFJ04 爪哇棒束孢 I. javanica 福建宁德市福安市 休耕地 Fallow land E119.65,N27.07 IjFJ05 爪哇棒束孢 I. javanica 福建三明市沙县 耕地 Farmland E117.97,N26.50 IjFJ06 爪哇棒束孢 I. javanica 福建南平市武夷山市 耕地 Farmland E117.99,N27.61 IjFJ17 爪哇棒束孢 I. javanica 福建三明市永安市 休耕地 Fallow land E117.32,N25.96 IjGD02 爪哇棒束孢 I. javanica 广东潮州市饶平县 耕地 Farmland E116.80,N24.13 IjGD07 爪哇棒束孢 I. javanica 广东湛江市徐闻县 耕地 Farmland E110.25,N20.42 IjGD12 爪哇棒束孢 I. javanica 广东梅州市梅县 休耕地 Fallow land E116.40,N24.65 IjGD14 爪哇棒束孢 I. javanica 广东江门市恩平县 休耕地 Fallow land E112.39,N22.30 IjGD15 爪哇棒束孢 I. javanica 广东惠州市香炉峰 休耕地 Fallow land E114.03, N23.60 IjGD17 爪哇棒束孢 I. javanica 广东惠州市博罗县 耕地 Farmland E114.28,N23.35 IjGD18 爪哇棒束孢 I. javanica 广东惠州市龙门县 休耕地 Fallow land E113.98,N23.53 IjGD20 爪哇棒束孢 I. javanica 广东惠州市龙门县 果园 Orchard E114.13,N23.66 IjGD21 爪哇棒束孢 I. javanica 广东中山市三乡镇 耕地 Farmland E113.44,N22.36 IjYN7003 爪哇棒束孢 I. javanica 云南普洱市宁洱县 耕地 Farmland E101.14,N23.19 IfGZ3703 玫烟色棒束孢 I. fumosorosea 贵州黔南州福泉市 草地 Grassland E107.53,N26.7 IfGZ4206 玫烟色棒束孢 I. fumosorosea 贵州毕节市七星关区 休耕地 Fallow land E105.31,N27.25 IfGZ4304 玫烟色棒束孢 I. fumosorosea 贵州毕节市大方县 林地 Woodland E105.82,N27.27 IjGZ4601 爪哇棒束孢 I. javanica 贵州遵义市播州区 草地 Grassland E106.66,N27.59 IjGX20A02 爪哇棒束孢 I. javanica 广西南宁市武鸣区 林地 Woodland E108.27,N23.01 IjGX20J02 爪哇棒束孢 I. javanica 广西南宁市武鸣区 果园 Orchard E108.27,N23.01 IjGX21G01 爪哇棒束孢 I. javanica 广西南宁市青秀区 果园 Orchard E108.77,N22.83 IjGX21L01 爪哇棒束孢 I. javanica 广西南宁市青秀区 果园 Orchard E108.77,N22.83 IjGX2303 爪哇棒束孢 I. javanica 广西贵港市港南区 草地 Grassland E109.72,N23 IjGX26S01 爪哇棒束孢 I. javanica 广西柳州市柳江区 草地 Grassland E109.28,N24.25 IjGX2701 爪哇棒束孢 I. javanica 广西柳州市柳城县 林地 Woodland E109.28,N24.65 IjGX2802 爪哇棒束孢 I. javanica 广西柳州市融水苗族自治县 草地 Grassland E109.28,N25.06 IjGX2906 爪哇棒束孢 I. javanica 广西柳州市柳城县 草地 Grassland E108.95,N24.51 IjGX30A01 爪哇棒束孢 I. javanica 广西河池市宜州区 林地 Woodland E108.31,N24.68 IjGX30S01 爪哇棒束孢 I. javanica 广西河池市宜州区 林地 Woodland E108.31,N24.68 IjGX32A03 爪哇棒束孢 I. javanica 广西河池市金城江区 林地 Woodland E107.77,N24.84 IcGX32S01 环链棒束孢 I. cateniannulate 广西河池市金城江区 林地 Woodland E107.77,N24.84 IjGX33H05 爪哇棒束孢 I. javanica 广西河池市南丹县 休耕地 Fallow land E107.56,N25.04 IfGX6701 粉棒束孢 I. farinosa 广西桂林市兴安县 林地 Woodland E110.77,N25.71 IfGX70A01 玫烟色棒束孢 I. fumosorosea 广西柳州市鹿寨县 林地 Woodland E109.84,N24.51 IjGX7704 爪哇棒束孢 I. javanica 广西贺州市平桂区 草地 Grassland E111.58,N24.37 IjH0904 爪哇棒束孢 I. javanica 湖北省孝感市孝南区 草地 Grassland E113.938,N31.030 IfH6102 玫烟色棒束孢 I. fumosorosea 湖南省怀化市塘湾镇 林地 Woodland E110.420,N27.216 IjH2702 爪哇棒束孢 I. javanica 湖北省孝感市应城市 草地 Grassland E113.576,N30.868 表 2 棒束孢菌株对黄曲条跳甲的致病力
Table 2 Pathogenicity of Isaria strain to Phyllotreta striolata
菌株名称
Strain菌株编号
Strain No.校正死亡率1)/% Corrected mortality 7 d 9 d 11 d 爪哇棒束孢 Isaria javanica IjGX20A02 6.67±0.09c 6.67±0.09b 6.67±0.09c 爪哇棒束孢 I. javanica IjGX21G01 0d 0c 0d 环链棒束孢 I. cateniannulate IcGX32S01 6.67±0.09c 7.14±0.09b 21.43±0.09bc 玫烟色棒束孢 I. fumosorosea IfGX21L01 13.33±0.09bc 7.14±0.09b 7.14±0.09c 爪哇棒束孢 I. javanica IjGX33H05 0d 7.14±0.09b 21.43±0.25bc 玫烟色棒束孢 I. fumosorosea IfGX70A01 6.67±0.09c 13.33±0.09b 13.33±0.09c 爪哇棒束孢 I. javanica IjGX7704 6.67±0.05c 6.67±0.05b 16.67±0.05c 玫烟色棒束孢 I. fumosorosea IfGZ4304 6.67±0.09c 13.33±0.09b 13.33±0.09c 玫烟色棒束孢 I. fumosorosea IfH6102 26.92±9.43a 44.00±9.43a 60.87±8.16a 1)表中数据为平均值±标准误;同列数据后不同小写字母表示差异显著(P<0.05,Duncan’s法)
1) Data in the table were mean value ± standard error; Different lowercase letters in the same column indicated significant differences (P<0.05,Duncan’s test) -
[1] 李增智. 我国利用真菌防治害虫的历史、进展及现状[J]. 中国生物防治学报, 2015, 31(5): 699-711. [2] WANG C S, WANG S B. Insect pathogenic fungi: Genomics, molecular interactions, and genetic improvements[J]. Annual Review of Entomology, 2017, 62: 73-90. doi: 10.1146/annurev-ento-031616-035509
[3] QUESADAM E, MARTIN C I, GARRIDOJ I, et al. Horizontal transmission of Metarhizium anisopliae among laboratory populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae)[J]. Biological Control, 2008, 47(1): 115-124. doi: 10.1016/j.biocontrol.2008.07.002
[4] DONG C, GUO S, WANG W, et al. Cordyceps industry in China[J]. Mycology, 2015, 6(2): 121-129. doi: 10.1080/21501203.2015.1043967
[5] ZHANG X, HU Q, WENG Q. Secondary metabolites (SMs) of Isaria cicadae and Isaria tenuipes[J]. RSC Advances, 2019, 9(1): 172-184. doi: 10.1039/C8RA09039D
[6] ZIMMERMANN G. The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): Biology, ecology and use in biological control[J]. Biocontrol Science and Technology, 2008, 18(9): 865-901. doi: 10.1080/09583150802471812
[7] 陈宜涛, 冯明光. 适于玫烟色拟青霉液相发酵生产的培养基和初始接种量及pH[J]. 浙江大学学报(农业与生命科学版), 2003, 29(1): 42-46. [8] RAN H, LIU Y, WU C, et al. Phylogenetic and comparative analyses of complete chloroplast genomes of Chinese viburnum and sambucus (Adoxaceae)[J]. Plants, 2020, 9(9): 1143. doi: 10.3390/plants9091143
[9] 杨建云, 纪春艳, 凌冰, 等. 黄曲条跳甲幼虫致病菌的鉴定及其对黄曲条跳甲的杀虫活性研究[J]. 中国生物防治学报, 2014, 30(3): 434-440. [10] YAN X, LIN Y, HUANG Z, et al. Characterisation of biological and biocontrol traits of entomopathogenic nematodes promising for control of striped flea beetle (Phyllotreta striolata)[J]. Nematology, 2018, 20(6): 503-518. doi: 10.1163/15685411-00003155
[11] 中华人民共和国农业部. NY/T1154.6—2006农药室内生物测定试验准则: 杀虫剂第6部分: 活性试验浸虫法[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2006: 1-5. [12] ZHAO Q, YE L, WANG Z, et al. Sustainable control of the rice pest, Nilaparvata lugens, using the entomopathogenic fungus Isaria javanica[J]. Pest Management Science, 2021, 77(3): 1452-1464. doi: 10.1002/ps.6164
[13] 郑庆伟. 玫烟色棒束孢FZ-01对烟粉虱具有优良的生防潜力[J]. 农药市场信息, 2020(5): 49. [14] 包强, 肖蕾, 周品谦, 等. 玫烟色棒束孢菌对茶芽粗腿象甲杀虫效果初探[J]. 湖南农业科学, 2020(10): 72-74. [15] 邢培翔, 刁红亮, 韩志慧, 等. 玫烟色棒束孢IF-1106对2种果树蚜虫的致病力[J]. 山西农业科学, 2019, 47(11): 2029-2033. doi: 10.3969/j.issn.1002-2481.2019.11.36 [16] 王定锋, 李良德, 李慧玲, 等. 一株寄生茶大灰象甲的棒束孢菌的分子鉴定[J]. 茶叶学报, 2019, 60(2): 80-84. doi: 10.3969/j.issn.1007-4872.2019.02.007 [17] ARNOSTI A, JUNIOR I D, CONCESCHI M R, et al. Interactions of adjuvants on adhesion and germination of Isaria fumosorosea on adults of Diaphorina citri[J]. Scientia Agricola (Piracicaba, Brazil), 2019, 76(6): 487-493. doi: 10.1590/1678-992x-2017-0240
[18] 宋文静, 冯世鹏, 韩日畴. 粉棒束孢Isaria farinosa的研发进展[J]. 环境昆虫学报, 2020, 42(2): 237-256. [19] 许忠顺, 薛原, 张丽, 等. 防治斜纹夜蛾蛹和2龄幼虫的棒束孢菌株筛选[J]. 植物保护, 2020, 46(5): 93-101. [20] ZHANG X N, GUO J J, ZOU X, et al. Pathogenic differences of the entomopathogenic fungus Isaria cateniannulata to the spider mite Tetranychus urticae (Trombidiformes: Tetranychidae) and its predator Euseius nicholsi (Mesostigmata: Phytoseiidae)[J]. Experimental and Applied Acarolgy, 2018, 75(1): 69-84. doi: 10.1007/s10493-018-0247-x
[21] 司升云, 李芒, 潘鹏亮, 等. 蔬菜主要害虫2013年发生概况及2014年发生趋势[J]. 中国蔬菜, 2014(3): 1-4. doi: 10.3969/j.issn.1000-6346.2014.03.001 [22] 邝灼彬, 吕利华, 冯夏, 等. 球孢白僵菌对四种十字花科蔬菜害虫的兼控潜力评价[J]. 昆虫知识, 2005(6): 673-676. [23] 何越超, 陈江, 史梦竹, 等. 黄曲条跳甲高致病力绿僵菌的筛选及培养特性研究[J]. 福建农业学报, 2017, 32(2): 189-194. [24] 孙淑君, 游秀峰, 夏红军. 黄曲条跳甲对常用杀虫剂的敏感性测定[J]. 河南科学, 2013, 31(3): 293-296. doi: 10.3969/j.issn.1004-3918.2013.03.013 [25] 张玉波, 王晓蕾, 樊美珍, 等. 马尾松林生态系中虫生真菌及其寄主的多样性和消长动态的研究[J]. 安徽农业大学学报, 2007(3): 342-347. doi: 10.3969/j.issn.1672-352X.2007.03.008 [26] 李文英, 贺运春, 王建明, 等. 山西省虫生真菌生态多样性研究[J]. 生物多样性, 2003(1): 53-58. doi: 10.3321/j.issn:1005-0094.2003.01.007 -
期刊类型引用(7)
1. 朱士江,李虎,徐文,冯雅婷. 三峡库区土壤含水量对柑橘园果实品质的影响. 中国农业科技导报. 2023(06): 201-207 . 百度学术
2. 余高,陈芬,田霞,卢心,滕明欢,谢婉莹. 冬季覆盖对幼龄柑橘园土壤化学性质及酶活性的影响. 河南农业科学. 2023(09): 91-101 . 百度学术
3. 同晓蕾,豆攀,张伯虎,问亚军,闫苗苗. 旱地果园生草栽培技术研究进展. 黑龙江农业科学. 2021(02): 127-131 . 百度学术
4. 黄玉杰,唐明明,刘道纯. 覆草和浇水量对桃树幼苗生长及土壤温湿度的影响. 经济林研究. 2021(01): 184-190 . 百度学术
5. 高海英. 果园生草对土壤和果树影响的试验研究. 乡村科技. 2021(20): 62-64 . 百度学术
6. 高鹏,谢家兴,孙道宗,陈文彬,杨明欣,周平,王卫星. 基于物联网和LSTM的柑橘园土壤含水量和电导率预测模型. 华南农业大学学报. 2020(06): 134-144 . 本站查看
7. 李运珍,谢永旺,邹彬. 浅析沃柑的引种栽培管理技术. 农村科学实验. 2019(13): 47+49 . 百度学术
其他类型引用(3)