Pathogen identification of anthracnose disease on Millettia speciosa and indoor determination of fungicide toxicity
-
摘要:目的
明确引起美丽崖豆藤炭疽病的病原菌种类并筛选其防治药剂。
方法采用组织分离法对病原菌进行分离、纯化后,利用柯赫氏法则验证其致病性,依据菌株的形态学特征和多基因序列分析确定病原菌种类;采用菌丝生长速率法测定病原菌对生产上常用于炭疽病防治的4种杀菌剂的敏感性。
结果分离得到的6株菌中有2株菌可侵染美丽崖豆藤叶片引起褐色病斑;结合形态学鉴定和多基因序列分析,确定引起美丽崖豆藤炭疽病的病原菌为暹罗刺盘孢Colletotrichum siamense。该病菌对苯醚甲环唑、咪鲜胺、吡唑醚菌酯和甲基硫菌灵的敏感性均高,抑制中浓度(EC50)均小于0.1 mg/L,其中,以咪鲜胺的防效最佳,EC50为0.015 mg/L。
结论美丽崖豆藤炭疽病的病原菌为暹罗刺盘孢,苯醚甲环唑、咪鲜胺、吡唑醚菌酯和甲基硫菌灵可作为防治美丽崖豆藤炭疽病的首选药剂。
Abstract:ObjectiveTo determine the pathogen causing anthracnose disease on Millettia speciosa and screen effective fungicides.
MethodTissue isolation method was used to isolate the pathogen. The pathogenicity was tested according to Koch’s rule after purification. The pathogen was identified based on morphological characteristics and multi-locus sequence analysis. Furthermore, the sensitivity of this pathogen against four common fungicides was measured according to the mycelial growth rate.
ResultTwo out of six obtained isolates could infect M. speciosa leaf and caused brown spot. Combining morphological characteristics and multi-locus sequences analysis, the pathogen caused anthracnose disease on M. speciosa was identified as Colletotrichum siamense. This pathogen was highly sensitive to difenoconazole, prochloraz, pyraclostrobin and thiophanate-methyl with EC50 values below 0.1 mg/L, and prochloraz showed the highest efficacy with EC50 of 0.015 mg/L.
ConclusionThe pathogen causing anthracnose disease on M. speciosa is C. siamense, and difenoconazole, prochloraz, pyraclostrobin and thiophanate-methyl can be applied to control anthracnose disease in the field.
-
自动驾驶技术研发中,行驶车辆的水平位置(经度、纬度)和航向角度是两大关键信息,主要为车辆控制系统的横向控制(转向盘控制)和纵向控制(制动、加速控制)提供参考数据,满足自动驾驶车辆定位导航的综合需求[1]。自动驾驶技术对车辆航向角测量精度要求非常高。对高速行驶的汽车而言,航向角轻微偏差都会导致汽车偏离原来的行驶路线。对农业机械而言,虽然对农机作业速度要求不高,但对导航作业精度要求很高(特别是播种时需要达到cm级),航向角的轻微偏差都会对导航作业精度产生很大影响。因此,提高车辆航向角的测量精度是非常必要的。车辆航向角测量方法主要有磁阻传感器法、双天线全球导航卫星系统(Global navigation satellite system,GNSS)定位定向法、单天线GNSS定位定向法和陀螺仪测航向法等。磁阻传感器受周围磁场环境影响大,精度和可靠性不高,在高压线等有磁场干扰的作业环境下容易受到影响[2-5];双天线GNSS定位系统测航向,虽然测量精度高,但动态响应特性差,成本高[6-7];单天线GNSS定位系统可输出航向角度信息,但是随机噪声大,且速度越低,噪声越大[8-11];陀螺仪测航向一方面需要航向角度初始化,另一方面随机漂移误差会出现累积发散现象[ 12-15]。上述几种测量方法测得的航向角,均不能很好地满足车辆自动驾驶的精度要求。
本文采用单天线GNSS定位和微电子机械系统(Micro electro mechanical system, MEMS)陀螺仪相结合的方式,通过融合算法实现车辆航向角的测量。提出基于卡尔曼滤波器的车辆航向角估计模型,把实时动态–全球导航卫星系统(Real time kinematic-GNSS,RTK-GNSS)测量出来的经纬度和高程经过高斯投影变换为导航平面坐标,与陀螺仪测量的车辆角速度经过积分得出的航向角做融合处理,得到更为精准的航向角。该方法克服了GNSS因更新频率低出现的数据延迟和MEMS陀螺仪因随机漂移引起的累积误差等问题,不仅能够得到更为精准的航向角数据,还能保证良好的实时性。
1. 传感器组合
本文测量车辆航向角采用的导航传感器主要有Trimble®BD970 GNSS嵌入式板卡和内置于Xsens MTi-300微型姿态参考系统的MEMS陀螺仪。
1.1 Trimble®BD970 GNSS嵌入式板卡
Trimble®BD970 GNSS嵌入式板卡是一款紧凑型的多星接收机板卡,专为满足各种精确到cm级的定位精度应用需求而设计。系统模块不仅支持GPS L1/L2、L2C、L5,而且支持GLONASS L1/L2 信号在内的各种卫星信号。该板卡易于集成且坚固可靠,支持因特网、USB、RS232 和CAN 等多种接口,串口输出波特率最高达115 200 bps,可实现高达50 Hz的原始测量与定位输出。基准站输出支持CMR、CMR+、RTCM 2.1、2.2、2.3、3.0、3.1等协议格式;定位数据输出支持ASCII:NMEA-0183 GSV、AVR、RMC、HDT、VGK、VHD、ROT、GGK、GGA、GSA、ZDA、VTG、GST、PJT、PJK、BPQ、GLL、GRS、GBS以及二进制:TrimbleGSOF。低延时RTK定位模式的水平定位精度可达±(8 mm+1 ppm)RMS,垂直定位精度可达±(15 mm+1 ppm)RMS,延迟时间小于20 ms,最大输出频率50 Hz。GNSS板卡物理特性如下,尺寸:100 mm×60 mm×11.6 mm;电源:3.3 V DC(−3%~5%);典型功耗:1.4 W (L1/L2 GPS)或1.5 W (L1/L2 GPS和G1/G2 GLONASS);质量:62 g;连接器I/O:24排针转接口和6排针转接口;天线:MMCX插座;工作温度:−40~75 ℃;储存温度:−55~85 ℃;振动限值:随机8 g RMS。
1.2 Xsens MTi-300微型姿态航向参考系统
Xsens Technologies B.V.公司研发的MTi-300微型姿态航向参考系统内部包括:3D速率陀螺、3D加速度计和3D磁场感应计。运行于DSP上的卡尔曼滤波算法融合上述传感器信息,给出运动载体的精确3D姿态角度[8]。系统通过RS232接口按设定格式输出3D姿态角度。MTi内置的3D速率陀螺的测量范围可达±300°/s,零偏稳定性为1°/s,随机游走系数0.05°/(s·Hz),校准误差0.1°,带宽40 Hz,A/D分辨率16位,更新速率最大为120 Hz。本文利用3D速率陀螺中的Z轴陀螺实现车辆航向角的角速率累积测量。
2. 航向角估计算法设计
2.1 GNSS定位数据预处理
GNSS定位数据预处理主要将Trimble®BD970 GNSS板卡测量得到的WGS-84大地坐标系的经度、纬度和高程向大地导航坐标系转换,通过高斯投影将WGS-84大地坐标转换为与WGS-84椭球对应的高斯平面坐标,这种转换是为了使GNSS板卡输出的WGS-84大地坐标定位数据能够用于车辆的导航控制系统。
本文使用的Gauss-Kruger投影坐标系的主要参数[12]包括:中央经线为114.000 000 (3度带);水平偏移量为500 km;地理坐标系为GCS_WGS_1984;大地参照系为D_WGS_1984;参考椭球体为WGS_1984;椭球长轴为6 378 137.000 000;椭球扁率为0.003 352 810 7。
2.2 卡尔曼滤波器设计
设定k时刻车辆本体的真实航向角度为ψk',车辆本体的真实前进速度是vk',则
$$ \psi _{{k}}' = {\psi _{{k}}} + {\varepsilon _{{{\psi k}}}} + {\xi _{{{\psi k}}}}\text{,} $$ (1) $$ v_{{k}}' = {v_{{k}}} + {\xi _{{{vk}}}}\text{,} $$ (2) 式中,ψk、vk分别指航向角度、前进速度的测量值,εψk指航向角度的测量偏差值,ξψk、ξvk分别指航向角度和前进速度的随机测量误差。
基于航位推算原理,建立车辆导航控制点在2D平面坐标系下的运动方程:
$$ {x_{{{ck}}}} = {x_{{{ck}} - 1}} + v_{{k}}' \cos \theta _{{k}}' {\rm{d}}t\text{,} $$ (3) $$ {y_{{{ck}}}} = {y_{{{ck}} - 1}} + v_{{k}}' \sin \theta _{{k}}' {\rm{d}}t\text{,} $$ (4) 式中,xck、yck为k时刻车辆本体的高斯投影平面坐标,xck−1、yck−1为k−1时刻车辆本体的高斯投影平面坐标,dt为航位推算的时间间隔。
将(1)和(2)式代入上述表达式,得到:
$$ \begin{split} {x_{{ck}}} = & {x_{{{ck}} - 1}} + {v_{{k}}}\cos {\psi _{{k}}}{\rm{d}}t + {\varepsilon _{{{\psi k}}}}\cos {\psi _{{k}}}{\rm{d}}t - \\ &{v_{{k}}}{\varepsilon _{{{\psi k}}}}\sin {\psi _{{k}}}{\rm{d}}t\text{,} \end{split} $$ (5) $$\begin{split} {y_{ck}} =& {y_{{{ck}} - 1}} + {v_{{k}}}{\rm{sin}}{\psi _k}{\rm{d}}t + {\varepsilon _{\psi {{k}}}}\sin {\psi _{{k}}}{\rm{d}}t + \\ &{v_k}{\varepsilon _{\psi k}}\cos {\psi _k}{\rm{d}}t\text{。} \end{split} $$ (6) 将上述等式以卡尔曼滤波器状态转移方程的形式表示为:
$$ {{\boldsymbol{X}}_{{k}}} = {{\boldsymbol{A}}_{{k}}}{{\boldsymbol{X}}_{{{k}} - 1}} + {{\boldsymbol{b}}_{{k}}} + {{\boldsymbol{u}}_{{k}}}\text{,} $$ (7) 式中,Xk=[xck,yck,εψk],表示k时刻的状态空间向量;Xk−1=[xck−1,yck−1,εψk−1],表示k−1时刻的状态空间向量;
$$ {{\boldsymbol{A}}_{{k}}} = \left[ {\begin{array}{*{20}{c}} 1&0&{\left( {{\rm{cos}}{\psi _{{k}}} - {v_{{k}}}\sin {\psi _{{k}}}} \right){\rm{d}}t}\\ 0&1&{\left( {{\rm{sin}}{\psi _{{k}}} + {v_{{k}}}\cos {\psi _{{k}}}} \right){\rm{d}}t}\\ 0&0&1 \end{array}} \right]\text{,} $$ 是k时刻状态转移矩阵,由陀螺仪累积航向角度和前进速度的测量值实时更新;
$$ {{\boldsymbol{b}}_{{k}}} = \left[ {\begin{array}{*{20}{c}} {{v_{{k}}}\cos {\psi _{{k}}}{\rm{d}}t}\\ {{v_{{k}}}\sin {\psi _{{k}}}{\rm{d}}t}\\ 0 \end{array}} \right]\text{,} $$ $$ {{\boldsymbol{u}}_{{k}}} = \left[ {0,\;\;0,\;\;{\xi _{\psi {{k}}}}} \right]\text{,} $$ 是状态转移方程的白噪声序列;系统过程噪声协方差矩阵为Qk,表示状态转移方程的误差大小,本文中Qk设定为常数矩阵,在仿真和试验过程中整定矩阵参数。
以GNSS天线在大地导航坐标系下的定位坐标作为观测向量,得到卡尔曼滤波器的测量方程如下:
$$ {{\boldsymbol{Z}}_{{{gk}}}} = {H_k}{X_k} + {{\boldsymbol{\nu}} _k} $$ (8) 式中,
$$ {{\boldsymbol{Z}}_{{{gk}}}} = \left[ {\begin{array}{*{20}{c}} {{x_{{{gk}}}}}\\ {{y_{{{gk}}}}} \end{array}} \right]\text{,} $$ $$ {{\boldsymbol{H}}_{{k}}} = \left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0 \end{array}} \right]\text{,} $$ $$ {{\boldsymbol{\nu}} _{{k}}} = \left[ {\begin{array}{*{20}{c}} {{\xi _{{{gxk}}}}}\\ {{\xi _{{{gyk}}}}} \end{array}} \right]\text{,} $$ 式中,xgk、ygk为GNSS天线处的定位坐标,Hk为卡尔曼滤波器k时刻的测量矩阵,ξgxk、ξgyk为OEM GNSS板卡定位在水平面坐标系下的随机定位误差。
测量向量的噪声方差矩阵为:
$$ {{\boldsymbol{R}}_k} = \left[ {\begin{array}{*{20}{c}} {{r_{xk}}^2}&0\\ 0&{{r_{yk}}^2} \end{array}} \right]\text{,} $$ (9) 式中,rxk2、ryk2分别为ξgxk、ξgyk的方差统计值。
综合上述推导,采用线性离散卡尔曼滤波器的递归差分方程进行状态向量预测和测量向量校正:
预测方程组为:
$$ {\hat x_k} = {{\boldsymbol{A}}_k}{\hat x_{k-1}} + {{\boldsymbol{b}}_k}\text{,} $$ (10) $$ {{\boldsymbol{P}}_k} = {{\boldsymbol{A}}_k}{{\boldsymbol{P}}_{k - 1}}{{\boldsymbol{A}}_k}^T + {{\boldsymbol{Q}}_{k - 1}}\text{,} $$ (11) 式中,
${\hat x_k} $ 表示k时刻的预测结果,${\hat x_{k-1}}$ 表示k−1时刻的预测结果,Ak表示状态转移矩阵,${\boldsymbol{A}}_k^T$ 代表Ak的转置,Pk对应${\hat x_k} $ 在k时刻的系统过程噪声方差预测值,Pk−1对应${\hat x_{k-1}}$ 在k−1时刻的系统过程噪声方差预测值,Qk−1为k−1时刻的系统过程协方差。校正方程组为:
$$ {{\boldsymbol{K}}_k} = {{\boldsymbol{P}}_k} {{\boldsymbol{H}}_k}^T{({{\boldsymbol{H}}_k}{{\boldsymbol{P}}_k} {{\boldsymbol{H}}_k}^T + {{\boldsymbol{R}}_k})^{ - 1}}\text{,} $$ (12) $$ {\hat x'_k} = {\hat x_k} + {{\boldsymbol{K}}_k}\left( {{{\boldsymbol{Z}}_{gk}} - {{\boldsymbol{K}}_k}{{\hat x}_k}} \right)\text{,} $$ (13) $$ {{\boldsymbol{P}}_k} = \left( {I - {{\boldsymbol{K}}_k}{{\boldsymbol{H}}_k}} \right){{\boldsymbol{P}}_k} \text{。} $$ (14) 式中,Kk为k时刻的卡尔曼滤波增益,
${\boldsymbol{H}}_k^T$ 为Hk的转置,${\hat x'_k}$ 是k时刻最优化估计值,Zgk是k时刻的测量更新值,I为单位矩阵。3. 结果与分析
采用GNSS板卡和MEMS陀螺仪在轮式拖拉机平台上进行原始数据采集。GNSS天线安装于车辆后轮轴中心点的正上方。内置MEMS陀螺仪的MTi尽可能安装于车辆质心位置处,以减少车辆颠簸晃动对MTi的干扰。
轮式拖拉机的行驶路线分直线型和S型2种情况。用C++编程语言开发卡尔曼滤波器和原始数据仿真测试的程序。最后将测得的数据以文本文件的方式导入Matlab程序中,测得的曲线图如图1、2所示。
图1为拖拉机直线行驶时,GNSS、陀螺仪和卡尔曼滤波融合后得到的3条航向角度对比曲线。GNSS航向误差幅度超过5°,陀螺仪累积航向的偏移在300 s左右超过2°,融合后的航向角度都在38°左右,偏移不超过1°,较原始GNSS航向角度的精度提高80%以上。
图2为拖拉机以S型轨迹行驶时,GNSS、陀螺仪和卡尔曼滤波融合后得到的3条航向角度对比曲线。融合后的航向角度可以跟踪拖拉机180°换向的转弯动作,曲线既保持了GNSS航向的整体变化趋势,也较GNSS和陀螺仪所得结果更为平滑,符合拖拉机实际运动状态。
从图1、2中可看出,未经处理的陀螺仪累积航向角度和GNSS定位测量的航向角度有较大波动,经卡尔曼滤波融合后,有效抑制了陀螺仪累积航向的发散,减少了零偏和随机漂移带来的误差。融合后的航向角度曲线既保持了GNSS航向的整体变化趋势,也保持了陀螺仪航向的细部变化趋势,且较GNSS和陀螺仪所得曲线更为平滑。
4. 结论
本文采用卡尔曼滤波器对RTK-GNSS、MEMS陀螺仪所得的拖拉机航向角进行融合处理,得出了更为精确的航向角融合估计结果,仿真测试结果表明本文所用方法可用于在线测量拖拉机航向角。
RTK-GNSS航向角和MEMS陀螺仪累积航向角在采样频率方面,分别属于低频型和高频型;在误差特性方面,分别为零均值随机误差和偏移型缓变误差。2种传感器互补性强,研究结果表明多传感器融合的方法能够很好地弥补这2种传感器单独测量数据时存在的噪声误差。
-
图 2 美丽崖豆藤叶片接种8 d后的发病症状
A~C:NDL13接种;D~E: 刺伤后接PDA饼;F: 空白对照;G~H:NDL18接种接种
Figure 2. Disease symptoms on Millettia speciosa leaves eight days after inoculation
A−C indicate the anthracnose symptom of leaves inoculated with NDL13; D−E indicate leaves were wounded and inoculated with pure PDA plug; F indicate leaves were only wounded; G−H indicate leaves were inoculated with NDL18
图 3 炭疽病菌株的菌落形态和显微形态
A和B:培养8 d后正、反面菌落;C和D:培养15 d后正、反面菌落;E: 孢子;F和G:附着孢
Figure 3. Colony morphology and microscopic characters of Colletotrichum isolates
A and B indicate upper and reverse of cultures 4 days after inoculation; C and D indicate upper and reverse of cultures 15 days after inoculation; E: conidia; F and G indicate appressoria
表 1 病原菌鉴定所用引物
Table 1 Primers used for pathogen identification
基因 Gene 产物名称 Product name 引物名称 Primer name 序列 (5′→3′) Sequence ITS 内转录间隔区 Internal transcribed spacer ITS1 TCCGTAGGTGAACCTGCGG ITS4 TCCTCCGCTTATTGATATGC CHS 几丁质合成酶 Chitin synthase CHS-79F TGGGGCAAGGATGCTTGGAAGAAG CHS-345R TGGAAGAACCATCTGTGAGAGTTG GAPDH 3−磷酸甘油醛脱氢酶
Glyceraldehyde-3- phosphate dehydrogenaseGDF GCCGTCAACGACCCCTTCATTGA GDR GGGTGGAGTCGTACTTGAGCATGT ACT 肌动蛋白 Actin ACT-512F ATGTGCAAGGCCGGTTTCGC ACT-783R TACGAGTCCTTCTGGCCCAT TUB2 β−微管蛋白 β-tubulin Bt2a GGTAACCAAATCGGTGCTGCTTTC Bt2b ACCCTCAGTGTAGTGACCCTTGGC 表 2 刺盘孢菌株的序列信息
Table 2 Sequence information of the Colletotrichum isolates
类别
Taxon菌株编号1)
Isolate No.宿主
Host来源地
Original placeGenBank 登录号 GenBank accession No. ITS CHS GAPDH ACT TUB2 C. aenigma ICMP 18608 Persea americana Israel JX010244 JX009774 JX010044 JX009443 JX010389 C. aenigma ICMP 18686 Pyrus pyrifolia Japan JX010243 JX009789 JX009913 JX009519 JX010390 C. alienum ICMP 12071 Malus domestica New Zealand JX010251 JX009882 JX010028 JX009572 JX010411 C. alienum ICMP 18704 Persea americana New Zealand JX010253 JX009886 JX010045 JX009456 C. asianum ICMP 18696 Mangiferaindica Australia JX010192 JX009753 JX009915 JX009576 JX010384 C. asianum ICMP 18580 Coffea arabica Thailand JX010196 JX009867 JX010053 JX009584 JX010406 C. boninense ICMP 17904 Crinum asiaticum var. sinicum Japan JX010292 JX009827 JX009905 JX009583 JQ005588 C. boninense LPS0023 Alcantareaimperialis Brazil MK286012 MK286457 MK286456 MK286458 C. fructicola ICMP 18645 Theobroma cacao Panama JX010172 JX009873 JX009992 JX009543 JX010408 C. fructicola ICMP 18727 Fragaria × ananassa USA JX010179 JX009812 JX010035 JX009565 JX010394 C. fructicola ICMP 18120 Dioscoreaalata Nigeria JX010182 JX009844 JX010041 JX009436 JX010401 C. fructicola ICMP 17921 Ficus habrophylla Germany JX010181 JX009839 JX009923 JX009495 JX010400 C. gloeosporioides ICMP 17821 Citrus sinensis Italy JX010152 JX009818 JX010056 JX009531 JX010445 C. gloeosporioides ICMP 18697 Vitis vinifera USA JX010154 JX009780 JX009987 JX009557 C. horii ICMP 12492 Diospyros kaki New Zealand GQ329687 JX009748 JX010001 JX009533 JX010375 C. horii ICMP 17968 Diospyros kaki China JX010212 JX009811 JX009939 JX009547 JX010378 C. kahawae ICMP 17816 Coffea arabica Kenya JX010231 JX009813 JX010012 JX009452 JX010444 C. kahawae ICMP 17915 Coffea arabica Angola JX010234 JX009829 JX010040 JX009474 JX010435 C.queenslandicum ICMP 1778 Carica papaya Australia JX010276 JX009899 JX009934 JX009447 JX010414 C.queenslandicum ICMP 18705 Coffea sp. Fiji JX010185 JX009890 JX010036 JX009490 JX010412 C. siamense NDL13 Millettia speciosa China MT673674 MT683677 MT683679 MT683675 MT683681 C. siamense NDL19 Millettia speciosa China MT673675 MT683678 MT683680 MT683676 MT683682 C. siamense ICMP 17791 Malus domestica USA JX010273 JX009810 JX009933 JX009508 C. siamense ICMP 12567 Persea americana Australia JX010250 JX009761 JX009940 JX009541 JX010387 C. siamense ICMP 18642 Hymenocallis mericana China JX010278 JX009875 JX010019 JX009441 JX010410 1) NDL13和NDL19为本研究所获得的菌株
1) NDL13 and NDL19 were isolates in the present study表 3 4种杀菌剂对美丽崖豆藤炭疽病菌的室内毒力测定结果
Table 3 In vitro toxicity test of four fungicides against Colletotrichum siamense
杀菌剂 Fungicide 回归方程1) Regression equation 相关系数 Correlation coefficient EC50/(mg·L−1) 苯醚甲环唑 Difenoconazole y=16.112x+51.699 0.979 0.060 咪鲜胺 Prochloraz y=23.217x+71.232 0.989 0.015 吡唑醚菌酯 Pyraclostrobin y=199.850x+32.768 0.997 0.055 甲基硫菌灵 Thiophanate-methyl y=329.460x+20.391 0.975 0.066 1) x:杀菌剂的浓度对数;y:杀菌剂对美丽崖豆藤炭疽病菌的抑制率
1) x: Logarithm of fungicide concentration; y: Inhibition rate of fungicide against Colletotrichum siamense -
[1] 方利娟, 宁珊. 药用植物牛大力研究概况[J]. 安徽农学通报, 2017, 23(23): 18-20. doi: 10.3969/j.issn.1007-7731.2017.23.008 [2] 刘丹丹, 唐立海, 王艳, 等. 牛大力祛痰、镇咳和平喘作用的实验研究[J]. 广州中医药大学学报, 2009, 26(3): 266-269. doi: 10.3969/j.issn.1007-3213.2009.03.018 [3] ZENG Q Q, XU D D, HUANG Y C, et al. First report of powdery mildew of beautiful millettia (Millettia speciosa) caused by Erysiphe quercicola in China[J]. Plant Disease, 2019, 103(7): 1791.
[4] O'CONNELL R J, THON M R, HACQUARD S, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics, 2012, 44(9): 1060-1065. doi: 10.1038/ng.2372
[5] YANG L, LU X, LI S, et al. First report of common bean (Phaseolus vulgaris) stem rot caused by Colletotrichum spaethianum in China[J]. Plant Disease, 2019, 103(1): 151.
[6] 孙劲, 徐彪, 周长彬. 西昌地区豆科植物炭疽病的鉴定[J]. 西昌学院学报(自然科学版), 2004, 18(4): 83-84. [7] 李海云, 靳帅, 张学勤, 等. 大豆炭疽病菌Colletotrichum chlorophyti 的鉴定[J]. 植物保护, 2017, 43(2): 163-166. doi: 10.3969/j.issn.0529-1542.2017.02.028 [8] JI J, WANG T, XU X, et al. First report of Colletotrichum siamense causing leaf spot on redbud in China[J]. Plant Disease, 2018, 103(3): 585.
[9] SILVA D N, TALHINHAS P, VÁRZEA V, et al. Application of the Apn2/MAT locus to improve the systematics of the Colletotrichum gloeosporioides complex: An example from coffee (Coffea spp.) hosts[J]. Mycologia, 2012, 104(2): 396-409. doi: 10.3852/11-145
[10] WEIR B S, JOHNSTON P R, DAMM U. The Colletotrichum gloeosporioides species complex[J]. Studies in Mycology, 2012, 73: 115-180. doi: 10.3114/sim0011
[11] WHITE T J, BRUNS T, LEE S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]//INNIS M A, GELFAND D H, SNINSKY J J, et al. PCR protocols: A guide to methods and applications. San Diego: Academic Press, 1990: 315-322.
[12] CARBONE I, KOHN L M. A method for designing primer sets for speciation studies in filamentous ascomycetes[J]. Mycologia, 1999, 91(3): 553-556. doi: 10.1080/00275514.1999.12061051
[13] TEMPLETON M D, RIKKERINK E H A, SOLON S L, et al. Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata[J]. Gene, 1992, 122(1): 225-230. doi: 10.1016/0378-1119(92)90055-T
[14] GLASS N L, DONALDSON G C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes[J]. Applied and Environmental Microbiology, 1995, 61(4): 1323-1330. doi: 10.1128/AEM.61.4.1323-1330.1995
[15] 李沛利, 刘丹, 陈诗瑶, 等. 四川省成都市狭叶十大功劳炭疽病病原菌的鉴定与生物学特性研究[J]. 植物保护, 2018, 44(3): 61-66. [16] 张荣, 邓振权, 刘爱媛, 等. 荔枝叶面、花穗和果实上真菌消长动态[J]. 华南农业大学学报, 2012, 33(2): 159-162. [17] 刘梅, JAYAWARDENA R S, 刘阳, 等. 北京市葡萄炭疽病病原菌的分子鉴定[J]. 植物保护学报, 2018, 45(2): 393-394. [18] WIKEE S, WIKEE S, CAI L, et al. Colletotrichum species from jasmine (Jasminum sambac)[J]. Fungal Diversity, 2011, 46(1): 171-182. doi: 10.1007/s13225-010-0049-x
[19] YANG Y L, LIU Z Y, CAI L L, et al. Colletotrichum anthracnose of Amaryllidaceae[J]. Fungal Diversity, 2009, 39(2): 123-146.
[20] SHARMA G, PINNAKA A K, SHENOY B D. Resolving the Colletotrichum siamense species complex using ApMat marker[J]. Fungal Diversity, 2015, 71(1): 247-264. doi: 10.1007/s13225-014-0312-7
[21] PRIHASTUTI H, CAI L, CHEN H, et al. Characterization of Colletotrichum species associated with coffee berries in northern Thailand[J]. Fungal Diversity, 2009, 39: 89-109.
[22] WU J P, ZHOU J, JIAO Z B, et al. Amorphophallus konjac anthracnose caused by Colletotrichum siamense in China[J]. Journal of Applied Microbiology, 2019, 128(1): 225-231.
[23] LING J F, SONG X B, XI P G, et al. Identification of Colletotrichum siamense causing litchi pepper spot disease in mainland China[J]. Plant Pathology, 2019, 68(8): 1533-1542. doi: 10.1111/ppa.13075
[24] CHECHI A, STAHLECKER J, DOWLING M E, et al. Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples[J]. Pesticide Biochemistry and Physiology, 2019, 158: 18-24. doi: 10.1016/j.pestbp.2019.04.002
[25] LIU F, DAMM U, CAI L, et al. Species of the Colletotrichum gloeosporioides complex associated with anthracnose diseases of Proteaceae[J]. Fungal Diversity, 2013, 61(1): 89-105. doi: 10.1007/s13225-013-0249-2
[26] 李沛利, 李娟, 龚国淑, 等. 四川省鹅掌柴炭疽病病原菌的初步鉴定[J]. 植物病理学报, 2017, 47(3): 296-304. [27] YANG Y, CAI L, YU Z, et al. Colletotrichum species on Orchidaceae in Southwest China[J]. Cryptogamie Mycologie, 2011, 32(3): 229-253. doi: 10.7872/crym.v32.iss3.2011.229
[28] CAO X R, XU X M, CHE H Y, et al. Characteristics and distribution of Colletotrichum species in coffee plantations in Hainan, China[J]. Plant Pathology, 2019, 68(6): 1146-1156. doi: 10.1111/ppa.13028
[29] HU M, GRABKE A, DOWLING M E, et al. Resistance in Colletotrichum siamense from peach and blueberry to thiophanate-methyl and azoxystrobin[J]. Plant Disease, 2015, 99(6): 806-814. doi: 10.1094/PDIS-10-14-1077-RE
-
期刊类型引用(7)
1. 林子钧,尤德安,廖滔,张嘉谋,彭志锋,王红军. 基于GNSS+IMU的草方格固沙机自动巡航控制系统. 农机化研究. 2024(05): 37-44 . 百度学术
2. 何杰,魏正辉,胡炼,汪沛,黄培奎,丁帅奇. 基于两位置法与改进STEKF的农机航向角测量方法. 农业机械学报. 2024(12): 365-372 . 百度学术
3. 陈学深,熊悦淞,齐龙,王宣霖,程楠,梁俊,刘善健. 基于触感引导的小型水田行进底盘自动对行方法. 农业工程学报. 2022(21): 8-15 . 百度学术
4. 曹丽琴,王琪,黄堃,徐成杰,石云波,马宗敏,程林. 基于微机电系统传感器的杆塔倾斜度无线监测系统. 科学技术与工程. 2021(02): 616-622 . 百度学术
5. 张智刚,王明昌,毛振强,王辉,丁凡,李洪开,张天. 基于星基增强精密单点定位的农机自动导航系统开发与测试. 华南农业大学学报. 2021(06): 109-116 . 本站查看
6. 周俊,许建康,王耀羲,梁友斌. 基于GNSS的智能水田旋耕平地机研究. 农业机械学报. 2020(04): 38-43 . 百度学术
7. 苏静. 船舶航向实时控制算法优化. 舰船科学技术. 2020(12): 55-57 . 百度学术
其他类型引用(11)