Mining and analysis of miRNAs from Eucalyptus camaldulensis under low temperature stress based on high-throughput sequencing
-
摘要:目的
预测、挖掘和分析涉及赤桉Eucalyptus camaldulensis低温胁迫应答的miRNA,为研究其调控赤桉低温胁迫应答的分子网络奠定基础。
方法采用高通量测序对低温处理组和对照(CK)组的赤桉组培苗茎尖进行小RNA测序。以miRBase21.0、Rfam14.1和巨桉E. grandis基因组为参考数据库,利用Bowtie、miREAP和miRDeep2等软件进行miRNA预测,使用RNAfold对预测到的miRNA前体进行二级结构的折叠;采用psRNATarget预测靶基因,通过DEGSeq包分析差异表达的miRNA,并对它们进行GO注释和KEGG富集分析。
结果在赤桉中,共预测到隶属于54个家族的392个已知miRNA和97个新miRNA;其中,CK组共预测到282个已知miRNA,65个新miRNA;低温处理组共预测到329个已知miRNA,51个新miRNA。挖掘到80个在低温处理下显著差异表达的miRNA,包括55个上调和25个下调。GO基因功能注释和KEGG富集分析的结果表明,这些差异表达miRNA可能通过参与代谢通路、次生代谢物的生物合成、细胞膜的改变、信号转导和生物调节等响应低温胁迫。此外,还挖掘到25个可能与ICE1-CBFs-COR通路有关的miRNA。
结论借助高通量测序和生物信息学软件初步得到了低温胁迫下差异表达的赤桉miRNA,为进一步分析这些miRNA在赤桉低温胁迫中的分子功能提供一些参考。
Abstract:ObjectiveTo predict, mine and analyze the miRNAs involved in low temperature stress response of Eucalyptus camaldulensis, and lay a foundation for further study of the molecular network of regulating low temperature stress response.
MethodSmall RNAs were sequenced by high-throughput sequencing using the shoot tips of the tissue cultured seedlings of E. camaldulensis from the low temperature treatment group and the control group (CK). The miRBase21.0, Rfam14.1 and E. grandis genome were taken as reference databases. Bowtie, miREAP as well as miRDeep2 software were used for miRNA prediction. RNAfold was used to fold the secondary structure of the predicted miRNA precursors. psRNATarget was used to predict target genes. The miRNAs with differential expression were analyzed through DEGSeq package, and GO annotation and KEGG enrichment analysis were further performed.
ResultA total of 392 known miRNAs and 97 novel miRNAs belonging to 54 families were predicted in E. camaldulensis. The 282 known miRNAs and 65 novel miRNAs were predicted in CK, while 329 known miRNAs and 51 novel miRNAs were predicted in the low temperature treatment group. At the same time, 80 significantly differentially expressed miRNAs in low temperature treatment group were mined, including 55 up-regulated and 25 down-regulated. The results of GO annotation and KEGG enrichment analysis indicated that these differentially expressed miRNAs might respond to low temperature stress by participating in metabolic pathways, biosynthesis of secondary metabolites, cell membrane changes, signal transduction, and biological regulation. In addition, we found 25 miRNAs that might be associated with the ICE1-CBFs-COR pathway.
ConclusionThe differentially expressed miRNAs are initially obtained by high-throughput sequencing and bioinformatics software under low temperature stress, which can provide some references for further analysis of the molecular functions of these miRNAs in E. camaldulensis under low temperature stress.
-
湿地松Pinus elliottii原产于美国东南部[1],具有速生、干形通直、适应性强、抗旱耐瘠薄、松脂产量高且品质好等优点[2-3],其在原产地高可达30 m,胸径90 cm。20世纪30年代引进我国,经不断改良和推广种植,目前湿地松在我国的种植面积达到300 万hm2,是中国南方主要的材脂两用树种之一[4]。以湿地松为母本,加勒比松P. caribaea为父本的杂交后代湿加松P. elliottii×P. caribaea杂种优势明显,生长和产脂量均优于母本湿地松,是华南地区经济效益较高的人工林树种之一[5]。
在松树繁殖方面,传统的种子繁殖存在育种周期长、杂合度高、种子萌发率低等难题;而现有扦插繁殖方法存在受季节限制、需定期更换采穗母株、苗圃占地面积大等不足之处,致使优良的家系和无性系不能规模化生产[6]。体细胞胚胎发生是植物体细胞在人工控制的培养条件下分化产生体细胞胚胎(体胚),按照类似合子胚的形态发生完成形态建成的过程[7],其与传统的种子繁殖和其他无性繁殖技术相比,具有遗传稳定性高、繁殖效率高、同步化水平高等优点[8]。在松树中,影响体胚发生及植株再生的主要因素有外植体基因型、合子胚成熟度、培养基组成等[9]。通过前人试验研究,湿地松、海岸松P. pinaster、火炬松P. taeda及其与刚松P. rigida杂种均已突破体胚发生技术并获得再生植株[10]。但湿地松体胚发生仍面临以下问题:1)大部分外植体的基因型未经遗传改良;2)前人研究湿地松体胚发生,增殖培养基多为原诱导培养基[6],未考虑胚性愈伤组织在增殖阶段所需矿质元素及生长调节剂的特异性,其愈伤组织的胚性可能受到影响,不利于愈伤组织的增殖、成熟及萌发。本研究以广东改良湿地松及其杂交种为对象,进一步优化其体细胞胚胎发生及植株再生方法,为改良湿地松品种及其杂交种繁殖提供参考。
1. 材料与方法
1.1 试验材料
试验选取广东省台山市红岭种子园内生长良好、无病虫害的4个改良湿地松及其杂交种:EE1、EE2为湿地松自由授粉家系,EH为湿地松与洪都拉斯加勒比松P. elliottii×P. caribaea var. hondurensis杂交F2代,EC为湿地松与古巴加勒比松P. elliottii×P. caribaea var. caribaea杂交F1代,其中,EC母本是EE2,每个家系3株。分别于2016年6月16、23、26和30日采集球果,每次每株树采集3~5个球果,在冰盒中低温保存带回实验室,放在4 ℃条件下的冰箱里冷藏,用于胚的发育阶段观察及体胚发生试验。
1.2 试验方法
1.2.1 合子胚成熟度的显微观察
将采集的球果对半切开,逆种鳞拨开,将种子取出,除去外种皮,得到含合子胚及胚乳的外植体。再将所取外植体移至体视显微镜下,剥离胚乳,在20×显微镜下观察合子胚的形态,拍照记录合子胚的发育情况,参照Pullman等[11]的方法,将合子胚发育划分为8个阶段,统计各家系在不同球果采集时间各发育阶段的比例。
1.2.2 培养基的准备
2014—2015年通过比较DCR、LP等5种培养基的胚性愈伤组织的诱导效果,筛选出3个适宜参试材料的诱导培养基。在此基础上,本试验于2016年进一步对合子胚的愈伤组织诱导、增殖、成熟、萌发,试验采用相应的3个系列培养基配方,具体如下:
系列1采用Pullman等[10]的火炬松培养基配方。诱导培养基(T1)采用2212配方,激素及部分添加物做了调整:NH4NO3调整为603.8 mg·L–1;CuSO4为0.173 mg·L–1;FeSO4·7H2O和Na2EDTA调整为原来的1/2;蔗糖为30.0 g·L–1;肌醇为0.5 g·L–1;生长调节剂ABA为5.0 mg·L–1;激动素Kinetin为0.61 mg·L–1。同时添加:6-BA 0.63 mg·L–1;油菜素内脂0.048 mg·L–1;NAA 2.0 mg·L–1。增殖培养基(T1M)采用2212配方;成熟培养基(T1S)采用1562配方;萌发培养基(T1G)采用397配方。
系列2采用Klimaszewska等[12]北美乔松P. strobus培养基配方。诱导培养基(T2)采用MLV配方,添加:6-BA 0.5 mg·L–1,油菜素内脂0.048 mg·L–1,2,4-D 0.5 mg·L–1;增殖培养基(T2M)、成熟培养基(T2)和萌发培养基(T2G)配方与文献[12]相同。
系列3采用ArborGen公司[13]的针叶树体胚专利配方。诱导培养基(T3)激素及部分添加物做调整:麦芽糖调整为15 g·L–1;ABA为5.0 mg·L–1;添加:6-BA 0.5 mg·L–1,油菜素内脂0.048 mg·L–1,NAA 2.0 mg·L–1。其余步骤采用文献[10]的火炬松培养基配方,增殖培养基(T3M)采用2212配方;成熟培养基(T3S)采用1562配方;萌发培养基(T3G)采用397配方。
1.2.3 外植体表面消毒及诱导接种
以带有胚乳的胚为外植体,按照“1.2.1”的方法将外植体从球果中挑出,在超净工作台转移至灭菌的空瓶内,倒入φ为75%的乙醇,处理45 s后纱布过滤,用无菌水冲洗5次;再倒入1.0 g·L–1的HgCl2,处理15~20 min,再用无菌水冲洗5次。处理后的外植体每次取10粒放到灭菌碟上,剥离内外种皮后,得到类似米粒状的外植体(半透明或乳白色),分别接种于T1、T2和T3诱导培养基上,(24±1) ℃条件下暗培养。
1.2.4 胚性愈伤组织的鉴别与增殖维持
利用光学显微镜对诱导形成的愈伤组织进行胚性鉴别。用解剖刀片剥下2~5 mm愈伤组织,放载玻片上,加若干滴20.0 g·L–1醋酸洋红染色,打散愈伤组织,稍微加热,盖上盖玻片,清洗压片2~3次后,再用5.0 g·L–1伊文思蓝染色30 s,清洗2~3次后拍照。这种情况下胚性愈伤组织的胚柄细胞染成蓝色,胚团染成红色;非胚性愈伤组织只显示伊文思蓝染成的蓝色细胞[14]。选取诱导形成的胚性愈伤组织,转移至T1M、T2M和T3M增殖培养基上进行暗培养,(24±1) ℃条件下每间隔14 d继代1次。
1.2.5 体胚的成熟培养
将增殖培养的200 mg胚性愈伤组织悬浮于20 mL无激素液体成熟培养基中,震荡以形成良好的悬浮体系,获得成熟悬浮液;再用移液器吸取3 mL成熟悬浮液,放在装有定性滤纸的布氏漏斗上,使用真空泵短、低脉冲(5 s,4.6 kPa)真空抽滤,得到吸附有薄薄一层胚团的滤纸,将滤纸放在配制好的T1S、T2S和T3S成熟培养基上进行成熟培养,培养温度为(24±1) ℃,每天光照16 h,采用LED光源(红蓝光比例为4∶1),5 μmol·m–2·s–1微弱光照,直至愈伤组织上陆续长出子叶张开的子叶胚。
1.2.6 成熟胚的萌发及移栽
将子叶胚接种至T1G、T2G和T3G萌发培养皿,先在微弱光强下(1.6 μmol·m–2·s–1)培养1周,而后转到更高光强下(47 μmol·m–2·s–1)继续培养,(25±1) ℃条件下,每天光照16 h。待萌发出子叶与根的胚插入新鲜萌发培养基中以后,继续培养,培养条件与高光强培养条件相同,出现上胚轴与根系发育的植株,即为萌发。将萌发植株转移到V(泥炭)∶V(蛭石)=3∶1的混合基质中,移至人工气候室炼苗,光强为170 μmol·m–2·s–1,温度为(25±1) ℃,起始湿度为80%,每天光照16 h。逐步降至自然环境湿度,2~4周后,转移至黄心土盆栽,即可得到再生植株。2周后,统计再生植株的成活率。
1.3 数据计算与统计分析
愈伤组织诱导率=诱导出愈伤组织的外植体数/接种的外植体数×100%;胚性愈伤组织比率=诱导出胚性愈伤组织的外植体数/诱导出愈伤组织的外植体数×100%;胚性愈伤组织诱导率=诱导出胚性愈伤组织的外植体数/接种的外植体数×100%;成熟效率=胚性愈伤组织产生的子叶胚数/体胚成熟前胚性愈伤组织的鲜质量;萌发率=萌发出上胚轴与根的植株数量/接种的子叶胚数量×100%;移栽成活率=移栽2周后恢复生长的植株数量/移栽的植株总数×100%。
数据统计分析采用SAS9.3软件进行,调用GLM进行方差分析,使用Excel 2013进行作图。
2. 结果与分析
2.1 球果合子胚成熟度的显微观察
用解剖刀小心切开雌配子体,可以观察到胚,合子胚发育早期较难观察到,中期较为明显,可用解剖针小心挑出,在体视显微镜下观察和拍照,后期直接切开已经可以见到子叶的形态(图1)。
根据前人对松属合子胚发育阶段划分标准[6, 11, 15],将本试验湿地松及其杂种合子胚发育划分为8个阶段。阶段Ⅰ:胚柄细胞为长形,且高度液泡化透明细胞(图2A);阶段Ⅱ:多个胚明显发育,胚体仍较为透明(图2B);阶段Ⅲ:胚头清晰,胚体渐变为不透明(图2C);阶段Ⅳ:胚头发育成圆形,胚体整体在显微镜下清晰可见(图2D);阶段Ⅴ:胚头呈圆状,胚体由头至下开始出现乳白色(图2E);阶段Ⅵ:胚头开始子叶组织的发育,圆状消失,胚体一半呈乳白色(图2F);阶段Ⅶ:胚体超过2/3为乳白色,出现合子胚子叶(图2G);阶段Ⅷ:合子胚子叶进一步张开、伸长,高过顶端分生组织(图2H)。显微观察显示,6月16日,采集的球果合子胚均处于阶段Ⅰ~Ⅱ;6月23日,家系EC最早出现阶段Ⅲ合子胚,其余家系仍处于阶段Ⅰ~Ⅱ;6月26日,家系EE2的合子胚发育阶段分布最广,包含阶段I~V;6月30日,家系EH的合子胚处于阶段Ⅲ(图3D)。前人研究指出,针叶树中未成熟合子胚诱导成功率优于成熟合子胚[16],其中阶段Ⅰ胚龄较小;阶段Ⅱ、Ⅲ为未成熟胚,阶段Ⅳ以后为成熟胚,胚龄过大。本试验选择多数合子胚处于阶段Ⅱ、Ⅲ的6月23—30日大量采摘球果,并进行体胚诱导。
2.2 胚性愈伤组织的诱导
外植体诱导培养2~4周后开始膨大,通过胚性鉴定发现存在2种类型的愈伤组织。在显微镜下能观测到愈伤组织内有排列紧密的胚头和长条形细胞组成的胚性胚柄团(ESM)结构(图4A),非胚性愈伤组织则无ESM结构(图4B)。继续培养2~4周,具有ESM结构的愈伤组织发育成透明银耳状黏性愈伤组织,可继续增长;无ESM结构的愈伤组织逐渐呈褐色,质感较硬,生长缓慢,直至停止生长。
不同诱导培养基上形成的愈伤组织及其胚性愈伤所占比例存在较大差异 (表1)。其中,T1培养基上愈伤组织的诱导率相对最高,为49.0%,但胚性愈伤组织占比相对最小;T2培养基上接种1 634个外植体,仅产生223个愈伤组织,胚性愈伤组织占22.4%。不同培养基配方对家系诱导率的影响各异(表2),EH未能在T1培养基中形成胚性愈伤组织;T2培养基对不同家系的诱导率具有显著影响,该配方对家系EE2、EH无诱导作用;家系EE1、EC在该配方中诱导率均高于其在其他配方中的诱导率,且EE1的诱导率最高,达5.82%。参试的湿地松及其杂种在T3培养基中均能诱导成功,平均诱导率最高,为3.75%。
表 1 各培养基上胚性愈伤组织的鉴别情况Table 1. The identification result of embryogenic callus in each medium培养基
Medium接种总数 (QI)
Quantity of inoculation愈伤数 (CQ)
Callus quantity胚性愈伤数 (ECQ)
Embryogenic callus quantity比率/% rate CQ/QI ECQ/CQ T1 2 000 979 44 49.0 4.5 T2 1 634 223 50 13.6 22.4 T3 1 833 773 78 42.2 10.1 合计Total 5 467 1 975 172 36.1 8.7 表 2 不同培养基配方对湿地松及其杂种诱导率的影响1)Table 2. The effects of different culture mediums on embryogenic induction rates of Pinus elliottiiand its hybrids家系
Family诱导率/% Induction rate T1 T2 T3 均值 Mean EE1 2.48±1.17a 5.82±1.68a 4.11±1.44a 4.24 EE2 2.51±1.50a 0b 3.79±1.27a 2.10 EC 2.45±1.56a 3.88±4.75ab 2.14±1.56a 2.82 EH 0b 0b 4.13±2.71a 1.38 均值 Mean 2.28 2.68 3.75 1) 同列数据后的不同小写字母表示差异显著 (P<0.05, Tukey 法)
1) Different lowercase letters in the same column indicated significant difference (P<0.05, Tukey test)不同采集时间的外植体愈伤组织诱导结果(图5)显示,家系EE1、EH随采样时间延后,诱导率逐渐增加,其中,EE1在6月30日采摘球果诱导率达到最高,为5.99%,明显高于其他家系,EH平均诱导率最小,6月23日诱导率为0。家系EE2、EC则相反,体胚诱导率随采样时间延后逐渐降低。体胚诱导率与合子发育阶段基本一致,家系EE1、EH的阶段Ⅲ合子胚均出现较晚,EE2、EC则出现较早。
2.3 胚性愈伤组织的增殖与成熟
选取诱导产生的胚性愈伤组织进行增殖培养,增殖过程产生的愈伤组织包括2种:一种位于愈伤体的外侧,呈透明银耳状,可用于继代增殖;另一种位于愈伤体的内侧,呈褐色,胚性低,不适宜继代。继代24次后,愈伤体内侧褐化严重,外侧透明银耳状失去(图6B),胚活性逐渐降低。
图 6 湿地松及其杂种体胚发生过程A:外植体在诱导培养基T3上培养6周后;B:胚性组织继代24次后;C:胚性愈伤组织在成熟培养基T3S上培养3周后;D:产生子叶胚;E:体胚苗在萌发培养基上培养6周后;F:体胚苗移栽至黄心土1周后生长情况Figure 6. The somatic embryogenesis stages of Pinus elliottii and hybridsA:Megasporophylls after six weeks’ culture on the initiation medium T3; B:Embryogenic tissue after 23 cycles of subculture; C:Embryogenic tissue after three weeks of growth on the maturation medium T3S; D: The cotyledon of somatic embryos came out; E: Somatic embryos after six weeks’ culture on the germination medium; F: Somatic seedlings after one week of growth in the yellow soil成熟培养3周后,吸附在滤纸上薄薄一层胚体积增大(图6C);继续在成熟培养基培养6周,即可得到子叶张开的胚(图6D)。每克T1S成熟培养基平均成熟23.3个子叶胚,每克T3S成熟培养基平均成熟15.9个子叶胚。
2.4 成熟子叶胚的萌发及移栽
成熟培养获得形态正常的子叶胚(图6D)在萌发培养基6~8 d,可得到萌发出子叶与根的胚,转移至新鲜萌发培养基中继续培养6~8周,出现具上胚轴、根系发育的植株(图6E),萌发率为32.1%。将萌发植株转移到混合基质中炼苗(图6F),最后转移至黄心土盆栽,即可得到再生植株。移栽2周后,再生植株的存活率为47.8%,本试验共移植23株,存活11株。
3. 讨论与结论
利用体细胞胚胎发生体系进行种苗繁殖具有快速、高效、不受季节等自然条件制约等优点,是林木优良基因型大规模繁殖的一种有效技术[17]。体胚诱导是体胚发生植株再生最重要的环节[18],研究表明,利用合子胚作为外植体诱导体胚的最直接因素是合子胚的发育阶段[19],同一类型外植体发育的不同阶段对体胚形成有显著影响[20]。丛建民等[21]研究发现,水曲柳体胚发生最适宜的外植体发育阶段是刚进入子叶期的幼嫩合子胚。前人选取2个湿地松家系比较了其在5个球果采样时间的体胚诱导率,结果发现,2个家系以处于Ⅱ、Ⅲ、Ⅳ发育阶段的未成熟合子胚诱导率最高[6]。本试验中,6月16日,采集的球果合子胚均处于阶段Ⅰ~Ⅱ,胚龄过小,参试家系均未诱导成功;6月23日以后,家系EC开始出现阶段Ⅲ合子胚,诱导率在所有家系中最高,为4.90%,家系EE1、EH在6月30日出现阶段Ⅲ合子胚,诱导率也达到最高。家系EE2在6月26、30日也有阶段Ⅲ合子胚出现,但诱导率不高,可能与该采样时间出现阶段Ⅳ及Ⅴ合子胚、合子胚已成熟有关,湿地松及其杂种胚龄过小或过大的合子胚的诱导率均较低,甚至诱导不出胚性愈伤组织,阶段Ⅲ合子胚为体胚发生最佳诱导阶段。
此外,外植体的基因型是影响其体胚诱导的关键因素之一。徐春香等[22]报道了香蕉“大矮蕉”品种Musa AAA cv. Grande Naine的体胚发生植株再生。同时,该研究团队的另一试验指出不同香蕉品种,建立胚性细胞悬浮系的难易程度有所不同,并且,基因组类型为AAB或ABB的香蕉品种未能获得胚性愈伤组织[23]。前人研究了10个火炬松半同胞家系的体胚诱导过程,发现起始愈伤组织最高诱导率为33%,最低仅为3.3%,诱导出的愈伤组织家系平均存活率为0~40%[24]。本试验中,参试的4个家系在3种诱导培养基的平均诱导率存在明显差异,EE1诱导率显著高于EH,EE2与EC的诱导率接近,EE1、EE2、EC和EH的诱导率分别为4.24%、2.10%、2.82%和1.38%。培养基成分中的激素和生长调节剂、矿质营养等是影响体胚发生的另外一关键因素[25],前人以湿地松与洪都拉斯加勒比松杂种为试验材料,基于DCR培养基[26]、MLV配方[27],添加不同种类、浓度的激素,设置6种诱导培养基,诱导率最高的是添加BAP(4.5 μmol·L–1)和2,4−D (9.0 μmol·L–1)的MLV配方,诱导率达到10.22%;诱导率最低的是添加了吡效隆(CPPU)(4 μmol·L–1)的DCR培养基,诱导率为1.67%[28]。本试验选取的3种培养基中,T3对参试的湿地松及其杂种均能诱导成功,且平均诱导率最高,说明T3培养基具有广泛适应性。
有研究指出,植物的胚性愈伤也像其他生命体,存在着衰老的过程[29]。本试验中,继代24次以后,胚活性逐渐降低。产生胚活性降低的原因可能是: 一方面继代次数过多,导致胚体的基因缺失或者发生变异,细胞的全能性受损;另一方面,由于长期处于外界供给的激素及营养条件下,胚体自身的内源激素动态平衡被打破,再分化困难[30]。当前有效保持细胞胚性的主要措施为超低温保存胚性愈伤[31]。
前人报道, 湿地松的离体再生存在较大难度,尽管对湿地松体胚发生体系研究报道较多,但只有少量报道实现了植株再生[32]。Jain等[33]基于DCR培养基培养未成熟合子胚首次实现湿地松体胚发生植株再生。唐巍等[34]报道了不同基因型及胚发育时期的湿地松体胚发生植株再生。然而,湿地松选择未成熟胚作为外植体时,普遍诱导率低,且受到基因型特异性控制。近年来,湿地松与加勒比松杂种也突破体胚发生形成再生植株[28]。前期的研究结果表明,DCR、LP常用配方对广东改良湿地松家系诱导效果不理想,而改良MLV也不能成功诱导家系EE2、EH,本研究利用系列3配方,成功诱导4个家系。成熟阶段中发现,每克T1S、T3S培养基能平均成熟23.3、15.9个子叶胚,均大于前人研究的湿地松杂种的最小成熟效率(每克培养基平均成熟9.95个子叶胚),但与最大成熟效率(每克培养基平均成熟320.90子叶胚)存在一定的差距[28],成熟培养基可能需要做进一步改良。本研究最终获得23株再生植株,其中,11株健康苗木移栽至苗圃。利用体胚发生实现良种湿地松及杂种的规模化生产仍需突破产业化技术。
-
图 4 赤桉部分预测miRNA前体二级结构
A: eca-miR164b-3p, B: eca-miR390b-5p, C: eca-miR395f-3p, D: eca-miR-n40, E: eca-miR-n45, F: eca-miR-n51; A~C: 已知miRNA, D~F: 新miRNA
Figure 4. The secondary structure of some predicted miRNAs in Eucalyptus camaldulensis
A: eca-miR164b-3p, B: eca-miR390b-5p, C: eca-miR395f-3p, D: eca-miR-n40, E: eca-miR-n45, F: eca-miR-n51; A−C: Known miRNAs; D−F: Novel miRNAs
表 1 赤桉小RNA分类统计
Table 1 Classification statistics of small RNAs in Eucalyptus camaldulensis
种类
Type对照 CK 低温处理 Low temperature treatment 数量 Count 占比/% Percentage 数量 Count 占比/% Percentage 核糖体RNA rRNA 4 787 452 30.27 3 769 781 26.08 核内小RNA snRNA 55 640 0.35 32 977 0.23 核仁小RNA snoRNA 33 402 0.21 24 413 0.17 转运RNA tRNA 828 159 5.24 368 918 2.55 其他 Other 10 108 761 63.93 10 259 988 70.97 总计 Total 15 813 414 100.00 14 456 077 100.00 表 2 赤桉ICE1-CBFs-COR通路相关miRNA
Table 2 The miRNAs associated with ICE1-CBFs-COR pathway in Eucalyptus camaldulensis
miRNA1) 长度/nt
Length序列(5′→3′)
Sequence靶基因
Target gene基因ID
Gene ID蛋白质特征
Protein characteristiceca-miR-n33 21 ACGGAAUUGUUCGAGCCGACU ICE1 Eucgr.G01938 转录因子 Transcription factor eca-miR171g-3p 19 UGAGCCGGACCAAUAUCAC MPK6 Eucgr.L00026 蛋白激酶 Protein kinase eca-miR171j-3p 22 GAUGAGCCGGACCAAUAUCACG MPK6 Eucgr.L00026 蛋白激酶 Protein kinase eca-miR5780b-5p 23 UCCAGUCUCUGAUCAAUUUUGAC OST1 Eucgr.E00345 蛋白激酶 Protein kinase eca-miR390b-5p 21 GGCGCUAUCCCUCCUGAGCUU OST1 Eucgr.I00977 蛋白激酶 Protein kinase eca-miR-n51↓ 21 GAAUGUCUCCAAUCUGCCCGA OST1 Eucgr.H04745 蛋白激酶 Protein kinase eca-miR-n60 20 AGCUCAUCCAUCUGUAAGAG OST1 Eucgr.D02135 蛋白激酶 Protein kinase BZR1 Eucgr.H01239 转录因子 Transcription factor eca-miR156m-3p 20 UGCUCUCUCUCUUCUGUCAA BZR1 Eucgr.F01541 转录因子 Transcription factor eca-miR156o-3p 20 UGCUCUCUAUCUUCUGUCAA SOC1 Eucgr.A02846 转录因子 Transcription factor eca-miR156j-5p 21 UUGACAGAAGAGAGAGAGCAC SOC1 Eucgr.D02427 转录因子 Transcription factor 续表 2 Continued table 2 miRNA1) 长度/nt
Length序列(5′→3′)
Sequence靶基因
Target gene基因ID
Gene ID蛋白质特征
Protein characteristiceca-miR159k-3p 19 UUUGGAUUGAAUGGAGUCU SOC1 Eucgr.K00208 转录因子 Transcription factor eca-miR94a-3p 21 UCCCGGGAACAGAAUCAUUAC EIN3 Eucgr.J00631 转录因子 Transcription factor eca-miR845c-3p 20 CCUACAAUUGGUAUCAGAGC PIF3 Eucgr.B01825 转录因子 Transcription factor eca-miR-n38 21 AGGUGAAUUCUUAUAGAUCCA PIF3 Eucgr.B01825 转录因子 Transcription factor eca-miR482f-3p 21 UCUUUCCUAUUCCUCCAUUCC SIZ1 Eucgr.B02470 E3苏素化连接酶 E3 SUMO ligase eca-miR23a-5p 25 UGAGAGUGAGUGUAGAGUAGGGAAU HOS1 Eucgr.E00402 E3泛素化连接酶 E3 ubiquitin ligase eca-miR-n2 21 GCUCCCCAAACUGACUACCAA HOS1 Eucgr.E00402 E3泛素化连接酶 E3 ubiquitin ligase eca-miR-n41↓ 22 UCGGAAGUCUUUGAGGGAGAGA EBF1 Eucgr.C01723 E3泛素化连接酶 E3 ubiquitin ligase eca-miR862a-5p↓ 21 AGUUUCCUUGAAGACAUCCAA EBF1 Eucgr.C01524 E3泛素化连接酶 E3 ubiquitin ligase eca-miR845a-5p 20 AGCUCUGAUACCAAUUGUUG EBF1 Eucgr.C02778 E3泛素化连接酶 E3 ubiquitin ligase eca-miR396a-3p 21 AAGCUCAAGAAAGCUGUGGGA EBF1 Eucgr.C02778 E3泛素化连接酶 E3 ubiquitin ligase eca-miR7782a-5p 19 AGUGGUAUCAGAGCAGGUU BTF3 Eucgr.K02308 NAC蛋白β亚基 β-subunit of NAC protein) eca-miR7782b-5p 23 AGUGGUAUCAGAGCAGGUCGUCG BTF3 Eucgr.K02308 NAC蛋白β亚基 β-subunit of NAC protein) eca-miR827b-5p 22 UUUUGUUGAUGGCCAUCUAAUC CAMTA3 Eucgr.H04783 转录激活子 Transcription activator eca-miR164b-3p 20 UGGAGAAGCAGGGCACGUAA PhyB Eucgr.A00380 光感受器 Photoreceptor 1)“↓”表示在4 ℃低温处理24 h后显著下调
1)“↓” shows significant down-regulation after 4 ℃ low temperature treatment for 24 h -
[1] SHANG X H, ARNOLD R J, WU Z H, et al. Combining quantitative data on growth, wood density and other traits with SSR markers to evaluate genetic diversity and structure in a planted population of Eucalyptus camaldulensis Dehn[J]. Forests, 2019, 10(12): 1090. doi: 10.3390/f10121090
[2] BARTEL D P. MicroRNAs: Genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297. doi: 10.1016/S0092-8674(04)00045-5
[3] HAUSSER J, ZAVOLAN M. Identification and consequences of miRNA-target interactions-beyond repression of gene expression[J]. Nature Reviews Genetics, 2014, 15(9): 599-612. doi: 10.1038/nrg3765
[4] SUN Y H, SHI R, ZHANG X H, et al. MicroRNAs in trees[J]. Plant Molecular Biology, 2012, 80(1): 37-53. doi: 10.1007/s11103-011-9864-z
[5] LI F, PIGNATTA D, BENDIX C, et al. MicroRNA regulation of plant innate immune receptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5): 1790-1795. doi: 10.1073/pnas.1118282109
[6] KNIGHT M R, KNIGHT H. Low-temperature perception leading to gene expression and cold tolerance in higher plants[J]. New Phytologist, 2012, 195(4): 737-751. doi: 10.1111/j.1469-8137.2012.04239.x
[7] SUNKAR R, ZHU J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16(8): 2001-2019. doi: 10.1105/tpc.104.022830
[8] 张紫阳, 刘艳, 魏瑞研, 等. 木本植物miRNAs参与环境胁迫应答的研究进展[J/OL]. 分子植物育种, 2020(2020-09-11) [2020-11-01]. https://kns.cnki.net/kcms/detail/46.1068.S.20200910.1644.004.html. [9] LIN Y Z, ZHENG H Q, ZHANG Q, et al. Functional profiling of EcaICE1 transcription factor gene from Eucalyptus camaldulensis involved in cold response in tobacco plants[J]. Journal of Plant Biochemistry and Biotechnology, 2014, 23(2): 141-150. doi: 10.1007/s13562-013-0192-z
[10] ZHANG Z Y, CHENG L, ZHANG W H, et al. Characterization of transcription activation domain of EcaICE1 and its interaction with EcaSIZ1 in Eucalyptus camaldulensis[J]. Trees, 2020, 34(5): 1243-1253. doi: 10.1007/s00468-020-01994-9
[11] CHENG L, ZHANG W H, HU J L, et al. Characterization of the key region and putative phosphorylation sites of EcaICE1 in its molecular interaction with the EcaHOS1 protein in Eucalyptus camaldulensis[J]. Plant Biology, 2021, 23(2): 400-406. doi: 10.1111/plb.13205
[12] LIN Z, LI Q, YIN Q, et al. Identification of novel miRNAs and their target genes in Eucalyptus grandis[J/OL]. Tree Genetics & Genomes, 2018, 14(2018-07-19)[2020-11-01]. https//doi.org/10.1007/s11295-018-1273-x.
[13] FRIEDLÄNDER M R, MACKOWIAK S D, LI N, et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Research, 2012, 40(1): 37-52. doi: 10.1093/nar/gkr688
[14] 林元震. R与ASReml-R统计学[M]. 北京: 中国林业出版社, 2016: 381-415. [15] WANG L K, FENG Z X, WANG X, et al. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1): 136-138. doi: 10.1093/bioinformatics/btp612
[16] DAI X B, ZHAO P X. psRNATarget: A plant small RNA target analysis server[J]. Nucleic Acids Research, 2011, 39(2): 155-159.
[17] ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: Tool for the unification of biology[J]. Nature Genetics, 2000, 25(1): 25-29. doi: 10.1038/75556
[18] KANEHISA M. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32(22): 277-280.
[19] TIAN T, LIU Y, YAN H Y, et al. agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update[J]. Nucleic Acids Research, 2017, 45(1): 122-129.
[20] XIE C, MAO X Z, HUANG J J, et al. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Research, 2011, 39(2): 316-322.
[21] SHI Y T, DING Y L, YANG S H. Molecular regulation of CBF signaling in cold acclimation[J]. Trends in Plant Science, 2018, 23(7): 623-637. doi: 10.1016/j.tplants.2018.04.002
[22] ZHOU M Q, TANG W. MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells[J]. Molecular Genetics and Genomics, 2019, 294(2): 379-393. doi: 10.1007/s00438-018-1516-4
[23] LU S F, SUN Y H, CHIANG V L. Stress-responsive microRNAs in Populus[J]. Plant Journal, 2008, 55(1): 131-151. doi: 10.1111/j.1365-313X.2008.03497.x
[24] BAO H, CHEN M, CHEN H, et al. Transcriptome-wide identification of miRNA targets and a TAS3-homologous gene in Populus by degradome sequencing[J]. Genes & Genomics, 2019, 41(7): 849-861.
[25] YANG Y T, ZHANG X, SU Y C, et al. miRNA alteration is an important mechanism in sugarcane response to low-temperature environment[J]. BMC Genomics, 2017, 18(1): 818-833.
[26] 郭鹏, 张万筠, 马红玉, 等. 番茄Sly-miR167的抗冷性研究[J]. 西北植物学报, 2014, 34(7): 1371-1376. [27] 薄维平, 曾长英, 宋顺, 等. 木薯耐寒相关microRNA的差异表达分析[J]. 热带作物学报, 2010, 31(8): 1260-1265. [28] GAO N, QIANG X M, ZHAI B N, et al. Transgenic tomato overexpressing ath-miR399d improves growth under abiotic stress conditions[J]. Russian Journal of Plant Physiology, 2015, 62(3): 360-366. doi: 10.1134/S1021443715030061
[29] 张达巍, 王遂, 高源, 等. microRNA在植物响应低温胁迫中的作用[J]. 植物生理学报, 2019, 55(2): 117-124. [30] AGARWAL M, HAO Y, KAPOOR A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. Journal of Biological Chemistry, 2006, 281(49): 37636-37645. doi: 10.1074/jbc.M605895200
[31] DONG, C H, AGARWAL M, ZHANG Y Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(21): 8281-8286. doi: 10.1073/pnas.0602874103
[32] MIURA K, JIN J, LEE J, et al. SIZ1-mediated SUMOylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. Plant Cell, 2007, 19(4): 1403-1414. doi: 10.1105/tpc.106.048397
[33] DING Y L, LI H, ZHANG X Y, et al. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J]. Developmental Cell, 2015, 32(3): 278-289. doi: 10.1016/j.devcel.2014.12.023
[34] LI H, DING Y L, SHI Y T, et al. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis[J]. Developmental Cell, 2017, 43(5): 630-642. doi: 10.1016/j.devcel.2017.09.025
[35] LI H, YE K Y, SHI Y T, et al. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis[J]. Molecular Plant, 2017, 10(4): 545-559. doi: 10.1016/j.molp.2017.01.004
[36] JIANG B C, SHI Y T, ZHANG X Y, et al. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32): E6695-E6702. doi: 10.1073/pnas.1706226114
-
期刊类型引用(9)
1. 柯欣,费琪,夏馨蕊,叶建仁,朱丽华. 抗松针褐斑病湿地松胚性愈伤组织诱导及体胚产量影响因素的研究. 南京林业大学学报(自然科学版). 2025(01): 87-94 . 百度学术
2. 刘阳,郭文冰,薛蕾,王哲,曾明,欧阳曦,伍彩云,车晓亮. 湿地松抗褐变和易褐变无性系胚性愈伤团的生理生化特征. 林业与环境科学. 2025(01): 9-21 . 百度学术
3. 王斯彤,张柏习,王曼,王浩,孟鹏. 樟子松无性系(GS1)胚性愈伤组织的初步诱导. 分子植物育种. 2023(18): 6088-6095 . 百度学术
4. 程方,叶建仁. 抗性湿地松胚性愈伤组织的维持与增殖. 绿色科技. 2023(14): 1-7+27 . 百度学术
5. 程方,孙婷玉,叶建仁. 抗松针褐斑病湿地松未成熟合子胚胚性愈伤组织的诱导. 南京林业大学学报(自然科学版). 2023(06): 175-182 . 百度学术
6. 高启阳,黄宇龙,郭文冰,赵奋成,刘阳. 碳源等因素对湿地松优良无性系胚性愈伤组织增殖的影响. 植物研究. 2022(01): 21-28 . 百度学术
7. 胡珊,杨春霞,谷振军,杜强,肖平江,李火根. 火炬松体细胞胚胎发生体系的优化. 林业科学研究. 2022(03): 9-17 . 百度学术
8. 徐康,程强强,杨春霞,谷振军,丁伟,李火根. 速生湿地松良种胚性愈伤组织诱导与增殖. 广西植物. 2021(02): 283-291 . 百度学术
9. 程子珊,易敏,宋才玲,程强强,黄若,邓诏磊,张莹莹,张露. 湿地松体细胞胚胎发生胚性愈伤组织诱导条件优化. 江西农业大学学报. 2021(05): 1054-1064 . 百度学术
其他类型引用(5)