• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

UV-C处理对人参果贮藏期冷害及风味品质的影响

赵雅琦, 宁明岸, 左进华, 史君彦, 时文林, 黄玉咪, 王清, 封碧红

赵雅琦, 宁明岸, 左进华, 等. UV-C处理对人参果贮藏期冷害及风味品质的影响[J]. 华南农业大学学报, 2021, 42(5): 87-96. DOI: 10.7671/j.issn.1001-411X.202010026
引用本文: 赵雅琦, 宁明岸, 左进华, 等. UV-C处理对人参果贮藏期冷害及风味品质的影响[J]. 华南农业大学学报, 2021, 42(5): 87-96. DOI: 10.7671/j.issn.1001-411X.202010026
ZHAO Yaqi, NING Ming’an, ZUO Jinhua, et al. Effect of UV-C treatment on chilling injury and flavor quality of Solanum muricatum fruit during storage[J]. Journal of South China Agricultural University, 2021, 42(5): 87-96. DOI: 10.7671/j.issn.1001-411X.202010026
Citation: ZHAO Yaqi, NING Ming’an, ZUO Jinhua, et al. Effect of UV-C treatment on chilling injury and flavor quality of Solanum muricatum fruit during storage[J]. Journal of South China Agricultural University, 2021, 42(5): 87-96. DOI: 10.7671/j.issn.1001-411X.202010026

UV-C处理对人参果贮藏期冷害及风味品质的影响

基金项目: 广西自然科学基金(2018GXNSFAA281207);北京市科技计划(Z181100009618033);国家大宗蔬菜产业体系技术项目(CARS-23);北京市农林科学院协同创新中心建设项目(KJCX201915)
详细信息
    作者简介:

    赵雅琦(1996—),女,硕士研究生,E-mail: 1984562763@qq.com

    通讯作者:

    王 清(1979—),女,研究员,博士,E-mail: wangqing@nercv.org

    封碧红(1975—),女,讲师,博士,E-mail: 160390074@qq.com

  • 中图分类号: S379.2

Effect of UV-C treatment on chilling injury and flavor quality of Solanum muricatum fruit during storage

Article Text (iFLYTEK Translation)
  • 摘要:
    目的 

    研究UV-C处理对人参果Solanum muricatum贮藏期间冷害及风味变化的影响,以期为人参果的采后贮藏保鲜及防止低温冷害提供新的技术手段及理论依据。

    方法 

    将人参果置于不同温度(0、5、10、15、20 ℃)下贮藏15 d,通过测定贮藏期间的冷害指数、感官品质、呼吸强度和乙烯释放量的变化,验证人参果在5 ℃及以下贮藏会发生冷害。采用0.25、0.50和1.00 kJ·m−2剂量的UV-C处理人参果,在5 ℃冷库中贮藏15 d,测定贮藏期间其冷害及风味品质的变化,并结合电子鼻测定风味物质的变化情况。

    结果 

    在5 ℃冷胁迫下,不同剂量的UV-C处理均有效地保持了人参果的风味品质,减轻了人参果的冷害症状,抑制了人参果在低温下的呼吸强度和乙烯释放量。在贮藏第15天,1.00 kJ·m−2UV-C处理组乙烯释放量比对照组低46%,1.00、0.50和0.25 kJ·m−2 UV-C处理组的冷害指数分别为30%、70%和67%,均显著低于对照组(81%),且1.00 kJ·m−2 UV-C处理将冷害的发生时间推迟了6 d。通过线性判别法和雷达图分析发现,不同剂量的UV-C处理均保持人参果较好的挥发性香气成分。

    结论 

    在冷胁迫下,不同剂量的UV-C处理均明显减轻人参果的冷害症状,不同程度地保持了人参果贮藏期的风味品质,延缓衰老;与其他处理相比,1.00 kJ·m−2 UV-C处理的人参果在贮藏期间冷害指数较低,处理效果最佳。

    Abstract:
    Objective 

    To study the effects of UV-C treatment on chilling injury and flavor changes of pepino (Solanum muricatum) fruit during storage, and provide a new technique and theoretical basis for postharvest storage and chilling injury prevention of pepino fruit.

    Method 

    Pepino fruits were stored at different temperatures (0, 5, 10, 15, 20 ℃) for 15 days, and the changes in chilling injury index, sensory quality, respiration intensity, and ethylene production during storage were measured to verify pepino fruits would have chilling injury when stored at 5 ℃ and below. Further pepino fruits were treated with UV-C at doses of 0.25, 0.50 and 1.00 kJ·m−2 respectively, and stored at 5 ℃ for 15 days. The changes in chilling injury and flavor quality during storage were measured, combining with measurement of the changes of flavor substances using the electronic nose.

    Result 

    Under 5 ℃ cold stress, the different doses of UV-C treatment effectively maintained the flavor quality, alleviated the symptoms of chilling injury and inhibited the respiration intensity and ethylene production at low temperature of pepino fruits. The ethylene production of 1.00 kJ·m−2 UV-C treatment was 46% lower than that of the control group on the 15th day of storage, and the chilling injury index of 1.00, 0.50 and 0.25 kJ·m−2 UV-C treatments were 30%, 70% and 67% respectively, which were significantly lower than that of the control group (81%). The 1.00 kJ·m−2 UV-C treatment could significantly delay the onset of chilling injury for six days. Through linear discriminant analysis and radar analysis, it was found that the different doses of UV-C treatment kept the volatile aroma components of pepino fruits well.

    Conclusion 

    Under cold stress, the different doses of UV-C treatment could significantly decrease the symptoms of chilling injury, maintain the flavor quality during storage to varying degrees, and delay the senescence of pepino fruits. Compared with other treatments, pepino fruits treated with 1.00 kJ·m−2 UV-C have lower chilling injury index during storage and the treatment effect is the best.

  • 草地贪夜蛾Spodoptera frugiperda为鳞翅目夜蛾科灰翅夜蛾属,该虫源自北美,2019年1月入侵我国云南省,并迅速扩展到全国26个省份[-]。作为联合国粮农组织全球预警的跨国界迁飞性重大害虫,草地贪夜蛾具有寄主范围宽、适生区域广、增殖能力强、扩散速度快、突发危害重等特点[-]

    与其他鳞翅目昆虫一样,草地贪夜蛾主要在幼虫时期为害。目前草地贪夜蛾雌、雄幼虫为害行为性别差异的研究较少,因为缺乏幼虫性别鉴定的快速简便的手段。与许多鳞翅目昆虫一样,草地贪夜蛾在蛹和成虫时期不再取食,因此幼虫时期的取食量对其化蛹、羽化、产卵、迁飞等行为具有重要影响,不同性别的幼虫取食量存在差异。林玉英等[]对椰子织蛾Opisina arenosella 1龄幼虫取食量的研究表明,雌虫取食量显著大于雄虫,结合幼虫取食量可作为其龄期的判断依据之一,从而为制定椰子织蛾防控措施奠定基础;同时,大量研究表明,昆虫幼虫在抵抗高温、抗核型多角体病毒等方面有性别差异[-],成虫在感光、触角结构等方面也存在显著的性别差异[],昆虫在取食、感光、抗病等行为上的性别差异研究,可为农业害虫的精准防控提供理论支持。因此,性别鉴定可以作为研究昆虫雌、雄行为差异的一种便捷有效的工具,有助于制定更加精准高效的农业害虫防控治理策略。

    目前,草地贪夜蛾的性别主要是通过蛹期和成虫时期的外露生殖器及翅上的斑纹差异进行区分[-]。草地贪夜蛾入侵中国后,性信息素诱捕、高空灯诱捕在虫情预测预报中发挥了非常重要的作用。由于缺乏对幼虫形态学有效的判断标准,而田间捕捉的草地贪夜蛾成虫非常活跃,鳞羽容易掉落,给性别鉴定造成了困难,影响了测报结果的准确性。对于鳞羽掉落的草地贪夜蛾样本和未经过性别鉴定的DNA样本,也缺乏有效的性别鉴定手段。因此,根据雌、雄虫性信息素结合蛋白(Pheromone-binding protein, PBP)基因的序列差异,开发简便、准确的功能性分子标记,对鉴定幼虫期乃至成虫期的草地贪夜蛾的性别具有理论和实际应用意义。

    草地贪夜蛾为实验室饲养种群,饲养条件参考王世英等[]方法,温度为(26.0±0.5) ℃;相对湿度为 65%±5%;光周期为16 h光∶8 h暗。

    通过在线网站( https://pfam.xfam.org)寻找并下载PBP隐马尔科夫模型,使用Bio-Linux软件进行生物信息学分析得到草地贪夜蛾PBP基因家族的氨基酸序列,通过在线网站( http://www.omicsclass.com/article/681)手动确认每个蛋白的结构域,总共筛选得到21个PBP,使用Bio-Linux软件进行生物信息学分析获得对应蛋白的CDS序列等相关信息,所得序列与NCBI上已发表的PBP基因序列进行比对,比对结果为本研究的PBP基因的CDS序列与已发表的4个PBP基因(SfruPBP1SfruPBP2、SfruPBP3、SfruPBP4)[]的CDS序列不存在相似性(结果未显示)。对获得的各基因片段进行PCR测序,结果发现Sf-10911基因序列在雌、雄个体中存在较大差异。通过多个已知雌、雄样本检测后,确认该基因为性别差异基因,针对草地贪夜蛾雌、雄虫Sf-10911基因的差异区段设计了3对引物(表1),开发雌、雄性别鉴定的特异标记,引物设计见图1。利用设计合成的引物,对鉴别过已知性别的草地贪夜蛾虫蛹样本进行PCR扩增,筛选得到分子标记。

    表  1  引物序列表
    Table  1.  List of primer sequence
    引物名称1) Primer name 引物序列(5′→3′) Primer sequence
    Sf-F TAGCCGTGAGTTTGAATAGGGT
    Sf-female-R-1 CCTGCCAGTGCCTTATTAATTAA
    Sf-male-R-1 TTTTGGCAGTGCCTTATTGATTA
    Sf-female-R-2 CTCAGAGGTTTTTGATATGGTTT
    Sf-male-R-2 TGTATTCTTCTCAGTGCGAAGAC
    Sf-female-R-3 TTAACAACGCTCCATAATAACCT
    Sf-male-R-3 TAAGAACCAGTTCTTATAAACAC
     1) F、R分别表示正、反向引物
     1) F and R respectively represents forward and reverse primers
    下载: 导出CSV 
    | 显示表格
    图 1 草地贪夜蛾性别鉴定引物设计
    图  1  草地贪夜蛾性别鉴定引物设计
    深蓝色表示相同的核苷酸序列,浅蓝色表示差异位点,黑点表示缺失位点;Sf-male-R:雄虫基因差异区段;Sf-female-R:雌虫基因差异区段;Sf-F:正向引物;Sf-R:反向引物
    Figure  1.  Primers design for sexual identification of Spodoptera frugiperda
    Dark blue represents the same nucleotide sequence, light blue represents the differencial sites and black dots represent the missing sites; SF-male-R: Differential gene segment of male; Sf-female-R: Differential gene segment of female; Sf-F: Forward primer; Sf-R: Reverse primer

    根据草地贪夜蛾蛹期雌、雄虫形态差异区分出雌、雄后(图2),利用微量样品基因组DNA 提取试剂盒进行DNA的提取。采用雌、雄特异性引物对提取的DNA样本进行PCR扩增。扩增产物用琼脂糖凝胶电泳检测,筛选分子标记。PCR 扩增的体系为:PrimerSTAR Max 6.25 μL,上游和下游引物(10 μmol/L)各0.5 μL,模板0.5 μL,加 ddH2O至15 μL。PCR 扩增的反应程序为:98 ℃ 预变性2 min;98 ℃变性 10 s,58 ℃退火 30 s,72 ℃延伸 30 s,35 个循环;72 ℃延伸5 min。

    图 2 草地贪夜蛾蛹期雌、雄虫腹部末端差异对比
    图  2  草地贪夜蛾蛹期雌、雄虫腹部末端差异对比
    a:臀刺;b:肛门;c:第10腹节;d:第9腹节e:半圆形瘤状突起;f:第8腹节;g:产卵孔;h:生殖孔
    Figure  2.  Distinction between abdomen ends of male and female of Spodoptera frugiperda at pupal stage
    a: Buttocks stab; b: Anus; c: The 10th abdominal segment; d: The 9th abdominal segment; e: Semicircular tumor-like protrusion; f: The 8th abdominal segment; g: Spawning hole; h: Genital hole

    针对草地贪夜蛾雌、雄虫Sf-10911基因的性别差异区段设计了3对引物,开发性别鉴定的特异标记。利用设计合成的3对引物,对已知性别的草地贪夜蛾样本进行PCR扩增,筛选得到分子标记,该分子标记可以扩增出450 bp左右的条带。之后,利用筛选出的分子标记对经过形态鉴定的雌、雄虫样本再次进行PCR扩增。

    首先,利用3对标记引物扩增草地贪夜蛾的雌、雄虫DNA样本,所用样本为经过测序鉴定的雌、雄虫DNA样本;图3表明,引物Sf-female-R-1、Sf-male-R-3搭配Sf-F均不能扩增出特异条带;搭配引物Sf-F扩增时,其中雄性样本可以用雄性特异性引物Sf-male-R-2扩增得到特异条带,而雌性样本只有雌性特异性引物Sf-female-R-2可以扩增得到特异条带,与测序结果一致。因此,选择Sf-female-R-2和Sf-male-R-2作为草地贪夜蛾雌、雄虫特异性引物。

    图 3 3对引物对草地贪夜蛾雌、雄虫样本的扩增
    图  3  3对引物对草地贪夜蛾雌、雄虫样本的扩增
    M:2000 DNA marker; m1: Sf-F/ Sf-male-R-1; m2: Sf-F/Sf-male-R-2; m3: Sf-F/Sf-male-R-3; f1: Sf-F/Sf-female-R-1; f2: Sf-F/Sf-female-R-2; f3: Sf-F/Sf-female-R-3
    Figure  3.  Amplification of different sexual samples of Spodoptera frugiperdaby three pairs of primers

    为进一步验证筛选出的标记引物的准确性,对经过形态鉴定的雌、雄虫蛹进行PCR检测(图4)。从图4可以看出,利用雌虫标记引物Sf-female-R-2扩增雌、雄虫DNA样本时,只有雌虫才能扩增出450 bp左右的特异性条带;用雄虫标记引物Sf-male-R-2扩增雌、雄虫DNA样本时,只有雄虫才能扩增出450 bp左右的特异性条带。检测结果与形态鉴定结果一致,说明筛选出的引物适用于草地贪夜蛾的性别鉴定。

    图 4 基于PCR扩增对草地贪夜蛾雌、雄虫蛹性别鉴定
    图  4  基于PCR扩增对草地贪夜蛾雌、雄虫蛹性别鉴定
    F1~F5:雌虫蛹DNA;M1~M5:雄虫蛹DNA;a、c:雌虫标记引物对 Sf-F/Sf-female-R-2;b、d:雄虫标记引物对Sf- F/Sf-male-R-2
    Figure  4.  Sex identification of male and female pupae of Spodoptera frugiperdabased on PCR amplification
    F1−F5: DNA of female pupae; M1−M5: DNA of male pupae; a and c: Pair of female marker primers of Sf-F/Sf-female-R-2; b and d: Pair of male marker primers of Sf-F/Sf-male-R-2

    农业害虫的性别鉴定对于害虫的有效防治和农业生产具有重要意义。不同性别的昆虫在虫体形态上往往存在差异,甜菜夜蛾Spodoptera exigua Hübner、桉袋蛾Acanthopsyche subferalbata Hampson以及凤凰木夜蛾Pericyma cruegri在其蛹及成虫时期的形态存在明显的性别差异[-],利用这种形态上的差异,研究人员可以快速简便地鉴定雌、雄虫,及时为田间种群动态的监测和预测预报提供数据。

    利用雌、雄虫形态差异鉴定性别的方法虽然简单快捷,但却无法对一些不存在性别形态差异或是生长发育早期无形态差异的昆虫进行鉴定。牛宝龙等[]以棉铃虫Helicoverpa armigera雌、雄虫基因组DNA为模板,筛选了1条雌特异随机扩增多态性DNA(Random amplified polymorphic DNA,RAPD),根据该特异性分子标记的核苷酸序列设计雌性特异引物,并对棉铃虫基因组DNA进行PCR扩增,雌性棉铃虫可以扩增出目的条带,可将此标记用于棉铃虫幼虫乃至胚胎的性别鉴定;王慧超等[]也早在2004年运用RADP技术对家蚕Bombyx mori Linnaeus上得到的雌特异性片段设计引物并进行了PCR验证。此外,张利娜[]从外部形态学、血清生化指标建立了鳗鲡Anguilla japonica的性别判定函数,用SRAP分子标记获得F5R2雌性特异DNA序列,根据测序结果设计序列特定扩增区域(Sequence characterized amplified regions,SCAR)特异引物并进行性别鉴定;Masaru等[]用日本青鳉Oryzias latipes的雄性Y特异性DM结构域基因开发引物鉴定了弓背青鳉Oryzias curvinotus的遗传性别;中国大鲵Andrias davidianus、双须骨舌鱼Osteoglossum bicirrhosum的性别鉴定也利用雌、雄虫基因差异序列开发分子标记引物并进行了有效的验证[-]

    PBP在草地贪夜蛾的信息素识别过程中发挥着重要作用,雄虫通过触角感受雌虫性腺释放的性信息素,寻找合适的交配对象。PBP的功能特征决定了其基因序列以及表达模式在雌、雄虫之间必然存在差异,具有明显的性二型性[]。牛小慧[]对甜菜夜蛾的不同PBP进行RT-PCR检测发现,PBP在雌、雄虫之间的表达量存在显著差异;刘苏等[]通过对草地贪夜蛾4个PBP基因的克隆及表达模式分析发现,定位于成虫触角上的SfruPBP1和SfruPBP2蛋白在雄虫中具有更高的表达量。本研究发现草地贪夜蛾雌、雄虫中的PBP基因Sf-10911存在核苷酸序列差异,进而根据该差异设计了针对雌、雄虫扩增的引物对,通过琼脂糖凝胶电泳检测出450 bp左右的特异条带,作为其性别鉴定的分子标记,以期为研究草地贪夜蛾某些性状可能存在的性别差异提供快速有效的手段。

  • 图  1   人参果冷害指数判定参考图片

    Figure  1.   Reference picture for judgment of chilling injury index of pepino fruit

    图  2   不同温度下贮藏的人参果的冷害指数

    相同时间的不同小写字母表示差异显著(P<0.05,LSD法)

    Figure  2.   Chilling injury indexes of pepino fruits stored under different temperatures

    Different lowercase letters of the same time indicate significant differences(P<0.05, LSD method)

    图  3   不同温度下贮藏的人参果的感官评分

    相同时间的不同小写字母表示差异显著(P<0.05,LSD法)

    Figure  3.   Sensory scores of pepino fruits stored under different temperatures

    Different lowercase letters of the same time indicate significant differences(P<0.05, LSD method)

    图  4   不同温度下贮藏的人参果的呼吸强度和乙烯释放量

    相同时间的不同小写字母表示差异显著(P<0.05,LSD法)

    Figure  4.   Respiration intensities and ethylene emission in pepino fruits stored under different temperatures

    Different lowercase letters of the same time indicate significant differences(P<0.05, LSD method)

    图  5   不同贮藏温度下的人参果电子鼻数据分析

    A:传感器对UV-C处理前人参果香气的响应图,B:传感器载荷分析,C:贮藏第15天传感器响应值的雷达图分析,D:相关性分析图;R:对应传感器的相对电阻率,Rr:呼吸强度,EP:乙烯释放量,CI:冷害指数; “*”和“**”分别表示在0.05和0.01水平显著相关

    Figure  5.   Analysis of electronic nose data for pepino fruits under different storage temperatures

    A: The sensor response graph of pepino fruits before UV-C treatment, B: Sensor load analysis, C: Radar graph of sensor response on the 15th day of storage, D: Correlation analysis diagram; R: Relative resistance of the corresponding sensor, Rr: Respiration intensity, EP: Ethylene production, CI: Chilling injury index; “*”and“**”indicate significant correlation at 0.05 and 0.01 levels respectively

    图  6   不同剂量UV-C处理后的人参果的冷害指数

    相同时间的不同小写字母表示差异显著(P<0.05,LSD法)

    Figure  6.   Chilling injury indexes of pepino fruits treated by different doses of UV-C

    Different lowercase letters of the same time indicate significant differences(P<0.05, LSD method)

    图  7   不同剂量UV-C处理后的人参果的感官评分

    相同时间的不同小写字母表示差异显著(P<0.05,LSD法)

    Figure  7.   Sensory scores of pepino fruits treated by different doses of UV-C

    Different lowercase letters of the same time indicate significant differences(P<0.05, LSD method)

    图  8   不同剂量UV-C处理后的人参果的呼吸强度和乙烯释放量

    相同时间的不同小写字母表示差异显著(P<0.05,LSD法)

    Figure  8.   Respiration intensities and ethylene emission of pepino fruits treated by different doses of UV-C

    Different lowercase letters of the same time indicate significant differences(P<0.05, LSD method)

    图  9   不同剂量UV-C处理后人参果贮藏第3、15天的LDA分析

    Figure  9.   LDA analysis on pepino fruits stored for 3 and 15 days after UV-C treatment at different doses

    图  10   不同剂量UV-C处理后人参果贮藏第3、15天的雷达图分析

    R:对应传感器的相对电阻率

    Figure  10.   Radar chart analysis on pepino fruits stored for 3 and 15 days after UV-C treatment at different doses

    R:  Relative resistance of the corresponding sensor

    图  11   1.00 kJ·m−2 UV-C和对照处理人参果在贮藏期间测量指标之间的相关性分析

    Rr:呼吸强度;EP:乙烯释放量;CI:冷害指数;R:对应传感器的相对电阻率;“*”和“**”分别表示在0.05和0.01水平显著相关

    Figure  11.   Analysis of correlation between the measurement data of pepino fruits from 1.00 kJ·m−2 UV-C and control treatments during storage

    Rr: Respiration intensity; EP: Ethylene production; CI: Chilling injury index; R: Relative resistance of the corresponding sensor; “*”and“**”indicate significant correlation at 0.05 and 0.01 levels respectively

    表  1   PEN3型便携式电子鼻标准传感器阵列与性能

    Table  1   Standard sensor arrays and performance of PEN3 electronic nose

    传感器编号 Sensor number 传感器名称 Sensor name 主要敏感化合物 Major sensitive compounds
    S1 W1C 芳香族有机化合物 Aromatic organic compounds
    S2 W5S 氮氧化合物 Nitrogen oxides
    S3 W3C 氨类、芳香成分 Ammonia, aromatic compounds
    S4 W6S 氢化物 Hydrogen
    S5 W5C 短链烷烃、芳香成分 Short chain alkanes, aromatic compounds
    S6 W1S 甲基类化合物 Methyl compounds
    S7 W1W 无机硫化物 Inorganic sulfide
    S8 W2S 醇类 Alcohols
    S9 W2W 有机硫化物、芳香成分 Organic sulfide, aromatic compounds
    S10 W3S 长链烷烃 Long chain alkanes
    下载: 导出CSV
  • [1] 杨世鹏, 蒋晓婷, 许盼盼, 等. 人参果营养成分、采后生理及贮藏保鲜方式研究进展[J]. 西北农业学报, 2020, 29(10): 1447-1456.
    [2]

    KOLA O, SIMSEK M, DURAN H, et al. HPLC determination of carotenoid, organic acid, and sugar content in pepino (Solanum muricatum) fruit during the ripening period[J]. Chemistry of Natural Compounds, 2015, 51(1): 132-136. doi: 10.1007/s10600-015-1219-6

    [3]

    REDGWELL R J, TURNER N A. Pepino (Solanum muricatum): Chemical composition of ripe fruit[J]. Journal of the Science of Food and Agriculture, 1986, 37(12): 1217-1222. doi: 10.1002/jsfa.2740371211

    [4]

    SHIOTA H, YOUNG H, PATERSON V, et al. Volatile aroma constituents of pepino fruit[J]. Journal of the Science of Food and Agriculture, 2010, 43(4): 343-354.

    [5]

    CONTRERAS C, SCHWAB W, MAYERSHOFER M, et al. Study of physiological and quality parameters during development and ripening of pepino (Solanum muricatum Aiton) fruit[J]. Chilean Journal of Agricultural Research, 2019, 79(3): 385-395. doi: 10.4067/S0718-58392019000300385

    [6]

    SANCHEZ M, CAMARA M, PROHENS J, et al. Variation in carbohydrate content during ripening in two clones of pepino[J]. Journal of the Science of Food and Agriculture, 2000, 80(13): 1985-1991. doi: 10.1002/1097-0010(200010)80:13<1985::AID-JSFA744>3.0.CO;2-K

    [7] 陵军成. 化肥减量和增施生物有机肥对人参果产量、品质和耐贮性的影响[J]. 保鲜与加工, 2020, 20(4): 77-82. doi: 10.3969/j.issn.1009-6221.2020.04.012
    [8] 朱娜, 潘磊庆, 邬慧颖, 等. 基于电子鼻检测“霞晖5号”桃果实的冷害[J]. 食品科学, 2014, 35(4): 95-100. doi: 10.7506/spkx1002-6630-201404020
    [9]

    LIZANA L, LEVANO B. Caracterizacion y comportamiento de post-cosecha del pepino dulce, Solanum muricatum,Ait[J]. Proceedings of the American Society for Horticultural Science, 1977, 21: 11-15.

    [10] 姚昕, 涂勇. 壳聚糖涂膜对人参果贮藏保鲜效果的研究[J]. 农产品加工(学刊), 2012(12): 56-58.
    [11]

    El-ZEFTAWI B M, BROHIER L, DOOLEY L, et al. Some maturity indices for tamarillo and pepino fruits[J]. Journal of the Science of Food and Agriculture, 1988, 63(1): 163-169.

    [12]

    SUSANNE H, HERU W, LÜDDERS P, et al. Postharvest quality of pepino (Solanum muricatum Ait.) fruit in controlled atmosphere storage[J]. Journal of Food Engineering, 2006, 77(3): 628-634. doi: 10.1016/j.jfoodeng.2005.07.028

    [13] 马丽丽, 左进华, 王清, 等. UV-C处理对青椒色泽和生理品质的影响[J]. 食品科学, 2021, 42(3): 281-288. doi: 10.7506/spkx1002-6630-20200216-165
    [14] 李玉娟. 采后短波紫外线处理对苹果抗病性及品质的影响[D]. 杨凌: 西北农林科技大学, 2015.
    [15] 徐艳群. 短波紫外光(UV-C)采前辐照调控草莓果实品质和植株抗病性机理研究[D]. 杭州: 浙江大学, 2019.
    [16]

    SAMPEDRO F, PHILLIPS J, FAN X T. Use of response surface methodology to study the combined effects of UV-C and thermal processing on vegetable oxidative enzymes[J]. LWT - Food Science and Technology, 2014, 55(1): 189-196. doi: 10.1016/j.lwt.2013.07.010

    [17] 尹建云. UV-C结合热处理调控黄瓜冷害机理研究[D]. 杭州: 浙江农林大学, 2013.
    [18] 王涛, 郝利平, 李月圆, 等. 壳聚糖及UV-C处理对长山药冷害和品质的影响[J]. 核农学报, 2019, 33(4): 732-738. doi: 10.11869/j.issn.100-8551.2019.04.0732
    [19] 陈奕兆, 刚成诚, 王亦佳, 等. UV-C处理对水蜜桃果实冷害及贮藏品质的影响[J]. 中国南方果树, 2013, 42(1): 16-21.
    [20]

    WILSON A D, BAIETTO M. Applications and advances in electronic-nose technologies[J]. Sensors, 2009, 9(7): 5099-5148. doi: 10.3390/s90705099

    [21]

    NAHID A, MOHAMMAD J D, ADIEH A. Detection of ripeness grades of berries using an electronic nose[J]. Food Science & Nutrition, 2020, 8(9): 4919-4928.

    [22]

    YANG Y Q, HUA J, DENG Y L, et al. Aroma dynamic characteristics during the process of variable-temperature final firing of Congou black tea by electronic nose and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry[J]. Food Research International, 2020, 137: 109656. doi: 10.1016/j.foodres.2020.109656

    [23]

    JIA W, LIANG G, JIANG Z, et al. Advances in electronic nose development for application to agricultural products[J]. Food Analytical Methods, 2019, 12(10): 2226-2240. doi: 10.1007/s12161-019-01552-1

    [24] 葛东颖, 李华佳, 杨成聪, 等. 不同处理工艺对猕猴桃果酒品质的影响[J]. 中国酿造, 2019, 38(4): 70-74. doi: 10.11882/j.issn.0254-5071.2019.04.014
    [25]

    BEGHI R, BURATTI S, GIOVENZANA V, et al. Electronic nose and visible-near infrared spectroscopy in fruit and vegetable monitoring[J]. Reviews in Analytical Chemistry, 2017, 36(4). doi: 10.1515/revac-2016-0016.

    [26]

    DOMINGO M, SERRRANO M, VALERO D. Physiological changes in pepino (Solanum muricatum Ait.) fruit stored at chilling and non-chilling temperatures[J]. Postharvest Biology and Technology, 2003, 30(2): 177-186. doi: 10.1016/S0925-5214(03)00106-6

    [27]

    PLUDA D, RABINOWITCH H D, KAFKAI U. Pepino dulce (Solanum muricatum Ait.) quality characteristics respond to nitrogen nutrition and salinity[J]. Journal of the American Society for Horticultural Science, 1993, 118(1): 86-91. doi: 10.21273/JASHS.118.1.86

    [28] 刘泽松, 史君彦, 左进华, 等. UV-C和LED红光复合处理对西兰花贮运品质的影响[J]. 食品科学, 2019, 41(17): 1-14. doi: 10.7506/spkx1002-6630-20180910-092
    [29] 范林林, 王清, 左进华, 等. 外源NO处理对茄子贮藏品质的影响[J]. 中国食品学报, 2017, 17(1): 186-192.
    [30] 刘瑶, 徐冬颖, 刘婧, 等. 基于电子鼻的运输振动蔬菜气味品质检测[J]. 北方园艺, 2019(18): 100-109.
    [31] 陈辰, 鲁晓翔, 张鹏, 等. 基于电子鼻技术的玫瑰香葡萄贮藏期快速判别[J]. 食品与机械, 2015, 31(6): 137-141.
    [32] 千春录, 朱芹, 高姗, 等. 外源褪黑素处理对采后水蜜桃冷藏品质及冷害发生的影响[J]. 江苏农业学报, 2020, 36(3): 702-708. doi: 10.3969/j.issn.1000-4440.2020.03.024
    [33] 郭雨萱, 郝利平, 卢银洁. 不同处理对茄子采后冷害及相关酶活性的影响[J]. 山西农业大学学报(自然科学版), 2016, 36(9): 668-672.
    [34] 金鹏, 王静, 朱虹, 等. 果蔬采后冷害控制技术及机制研究进展[J]. 南京农业大学学报, 2012, 35(5): 167-174.
    [35] 邵青旭, 高湘荃, 时晓雪, 等. 低温贮藏对薄皮甜瓜果实风味品质的影响[J]. 沈阳农业大学学报, 2020, 51(1): 62-69.
    [36]

    MAUL F, SARGENT S A, SIMS C A, et al. Tomato flavor and aroma quality as affected by storage temperature[J]. Journal of Food Science, 2000, 65(7): 1228-1237. doi: 10.1111/j.1365-2621.2000.tb10270.x

    [37]

    ZHANG B, TIEMAN D M, JIAO C, et al. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(44): 12580-12585. doi: 10.1073/pnas.1613910113

    [38] 唐国冬, 廖欣怡, 郑雅轩, 等. 低温对赤霞珠葡萄香气和单体酚含量的影响[J]. 食品科学, 2017, 38(20): 48-54.
    [39] 任伟, 郝利平. UV-C处理对贡橘冷害的影响[J]. 核农学报, 2016, 30(6): 1111-1116. doi: 10.11869/j.issn.100-8551.2016.06.1111
图(11)  /  表(1)
计量
  • 文章访问数:  777
  • HTML全文浏览量:  7
  • PDF下载量:  787
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-24
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2021-09-09

目录

Corresponding author: FENG Bihong, 160390074@qq.com

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回