低磷条件下接种丛枝菌根真菌对大豆生长和磷吸收的影响

    杨国玲, 邓璐璐, 陈康, 王幼娟, 王秀荣

    杨国玲, 邓璐璐, 陈康, 等. 低磷条件下接种丛枝菌根真菌对大豆生长和磷吸收的影响[J]. 华南农业大学学报, 2021, 42(4): 42-50. DOI: 10.7671/j.issn.1001-411X.202010024
    引用本文: 杨国玲, 邓璐璐, 陈康, 等. 低磷条件下接种丛枝菌根真菌对大豆生长和磷吸收的影响[J]. 华南农业大学学报, 2021, 42(4): 42-50. DOI: 10.7671/j.issn.1001-411X.202010024
    YANG Guoling, DENG Lulu, CHEN Kang, et al. Effects of inoculating arbuscular mycorrhizal fungi on growth and phosphorus uptake of soybean under low phosphorus conditions[J]. Journal of South China Agricultural University, 2021, 42(4): 42-50. DOI: 10.7671/j.issn.1001-411X.202010024
    Citation: YANG Guoling, DENG Lulu, CHEN Kang, et al. Effects of inoculating arbuscular mycorrhizal fungi on growth and phosphorus uptake of soybean under low phosphorus conditions[J]. Journal of South China Agricultural University, 2021, 42(4): 42-50. DOI: 10.7671/j.issn.1001-411X.202010024

    低磷条件下接种丛枝菌根真菌对大豆生长和磷吸收的影响

    基金项目: 广东省重点领域研发计划(2018B020205003)
    详细信息
      作者简介:

      杨国玲(1995—),女,硕士研究生,E-mail: 1277621818@qq.com

      邓璐璐(1995—),女,硕士研究生,E-mail: 328171322@qq.com;†表示同等贡献

      通讯作者:

      王秀荣(1971—),女,研究员,博士,E-mail: xrwang@scau.edu.cn

    • 中图分类号: S565.1

    Effects of inoculating arbuscular mycorrhizal fungi on growth and phosphorus uptake of soybean under low phosphorus conditions

    • 摘要:
      目的 

      阐明不同磷(P)高效基因型大豆在不同生育期对接种丛枝菌根真菌的反应及其与P效率的关系,为接种丛枝菌根真菌提高作物P效率的研究提供理论依据。

      方法 

      以3个基因型大豆‘威廉姆斯82’‘粤春04-5’和‘巴西10号’为试验材料,设置接种和不接种丛枝菌根真菌2个处理,在开花期和结荚期采样,分析接种丛枝菌根真菌对大豆植株干质量、菌根侵染率、P营养状况、根系性状以及菌根诱导的P转运蛋白基因表达的影响。

      结果 

      不同基因型大豆在不同生育期对接种丛枝菌根真菌的菌根反应存在显著差异。与不接菌相比,接菌在开花期显著提高了3个菌根诱导表达的P转运蛋白基因GmPT8GmPT9GmPT10在3个基因型大豆根系中的表达,从而显著提高了3个基因型大豆根部的P浓度;接菌在结荚期显著提高了3个基因型大豆的根部干质量,以及‘巴西10号’的地上部干质量、P浓度和总P吸收量;此外,在开花期,不接菌的‘威廉姆斯82’和‘粤春04-5’的地上部干质量、总P吸收量、总根长和根表面积均显著高于‘巴西10号’,而接菌的‘巴西10号’的菌根生长反应和菌根P反应显著高于‘威廉姆斯82’和‘粤春04-5’。

      结论 

      ‘威廉姆斯82’和‘粤春04-5’具有更高的P效率,而‘巴西10号’具有更高的菌根依赖性;大豆生育期的延长有利于菌根植物吸收的P转化为生物量,促进大豆与菌根真菌的有益共生。

      Abstract:
      Objective 

      To illuminate the response of different P-efficient soybean genotypes to arbuscular mycorrhizal fungi inoculation at different growth stages and the relationship with P efficiency, and provide a theoretical basis for research of arbuscular mycorrhizal fungi inoculation improving crop P efficiency.

      Method 

      The experiments were conducted using three soybean genotypes of ‘Weilianmusi 82’ ‘Yuechun 04-5’ and ‘Baxi 10’ under mycorrhizal and non-mycorrhizal inoculation treatments at flowering and podding stages. The effects of arbuscular mycorrhizal fungi inoculation on soybean plant dry weight, arbuscular mycorrhizal colonization rate, P nutrition status, root traits, and expression of arbuscular mycorrhizal inducible phosphate transporter genes were analyzed.

      Result 

      The mycorrhizal responses of different soybean genotypes to arbuscular mycorrhizal fungi inoculation were significantly different at different growth stages. Compared with non-mycorrhizal inoculation treatment, the inoculation treatment significantly improved the expression levels of three arbuscular mycorrhizal inducible P transporter genes of GmPT8, GmPT9 and GmPT10 in the roots of three soybean genotypes at flowering stage, which resulted in the significant increase of P concentrations in roots of these three soybean genotypes, and the inoculation treatment significantly improved the root dry weight of these three soybean genotypes, as well as shoot dry weight, P concentration and total P uptake amount of ‘Baxi 10’ at podding stage. At flowering stage, non-mycorrhizal ‘Weilianmusi 82’ and ‘Yuechun 04-5’ plants had significantly higher shoot dry weight, total P uptake, total root length and root surface area than ‘Baxi 10’, while mycorrhizal growth response and mycorrhizal P response of arbuscular mycorrhizal fungi inoculated ‘Baxi 10’ were significantly higher than those of ‘Weilianmusi 82’ and ‘Yuechun 04-5’.

      Conclusion 

      ‘Weilianmusi 82’ and ‘Yuechun 04-5’ have higher P efficiency, while ‘Baxi 10’ has higher mycorrhizal dependence. The prolonged growth period from flowering stage to podding stage promotes the transformation of acquired P by mycorrhizal plants into biomass, which further stimulates the beneficial symbiosis between soybean and arbuscular mycorrhizal fungi.

    • 图  1   接种丛植菌根真菌时不同基因型大豆在不同生育期的菌根侵染率、菌根生长反应和菌根P反应

      各小图柱子上方不同小写字母表示不同基因型大豆在不同生育期间差异显著(P<0.05,Duncan’s法)

      Figure  1.   Mycorrhizal colonization rate, mycorrhizal growth response and mycorrhizal phosphorus response of different soybean genotypes at different growth stages while inoculating arbuscular mycorrhizal fungi

      Different lowercase letters on the columns in each figure indicate significant differences among different soybean genotypes at different growth stages (P<0.05, Duncan’s method)

      表  1   不同生育期、接菌处理和基因型对大豆生理和分子指标影响的三因素方差分析

      Table  1   Three-way ANOVA of the effects of different growth stages, inoculation treatments and genotypes on physiological and molecular indicators of soybean

      指标 Indicator F1)
      S I G S×I S×G I×G S×I×G
      地上部干质量 Shoot dry weight 538.68*** 1.24 14.91*** 5.10* 3.53* 0.12 0.64
      根部干质量 Root dry weight 239.65*** 34.72*** 12.19*** 10.91** 8.81** 0.47 0.95
      地上部P浓度 Shoot P concentration 43.56*** 10.56** 3.30* 0.04 0.38 0.30 0.21
      根部P浓度 Root P concentration 0.24 15.56*** 2.57 9.78 0.43 0.38 0.67
      总P吸收量 Total P uptake amount 70.84*** 25.10*** 3.36* 2.74 4.31* 2.31 0.32
      总根长 Total root length 219.27*** 7.17* 11.40*** 2.59 2.92 0.33 2.65
      根表面积 Root surface area 118.70*** 11.40** 0.45 1.35 11.55*** 0.34 1.23
      根系体积 Root volume 52.18*** 11.38** 2.82 0.48 26.59*** 0.45 0.57
      GmPT8表达量 Expression of GmPT8 0.49 36.72*** 2.67 1.12 0.02 1.08 0.10
      GmPT9表达量 Expression of GmPT9 0.24 36.88*** 0.22 1.79 0.91 0.65 0.06
      GmPT10表达量 Expression of GmPT10 0.17 4.82* 0.64 1.66 0.27 1.35 1.35
       1) S:生育期,I:接菌处理,G:基因型,×:不同因素之间的交互作用;“*”:P<0.05,“**”:P<0.01,“***”:P<0.001
       1) S: Stage, I: Inoculation, G: Genotype, ×: Interactions between different factors; “*”: P<0.05,“**”:P<0.01,“***”:P<0.001
      下载: 导出CSV

      表  2   接菌处理对不同基因型大豆在不同生育期的地上部和根部干质量的影响1)

      Table  2   Effects of inoculation treatments on plant shoot and root dry weight of different soybean genotypes at different growth stages m/g

      植株部位
      Plant part
      生育期
      Growth stage
      不接菌 No inoculation 接菌 Inoculation
      威廉姆斯82
      Weilianmusi 82
      粤春04-5
      Yuechun 04-5
      巴西10号
      Baxi 10
      威廉姆斯82
      Weilianmusi 82
      粤春04-5
      Yuechun 04-5
      巴西10号
      Baxi 10
      地上部
      Shoot
      1.87±0.19a 1.85±0.21a 1.20±0.06b 1.63±0.13ab 1.65±0.15ab 1.38±0.07b
      3.53±0.03ab 3.22±0.01bc 2.96±0.19c 3.87±0.13a 3.23±0.05bc 3.37±0.11b
      根部
      Root
      0.71±0.08a 0.60±0.04ab 0.47±0.03b 0.72±0.08a 0.75±0.60a 0.59±0.05ab
      1.18±0.06b 0.88±0.06c 1.00±0.07bc 1.52±0.09a 1.13±0.02b 1.39±0.04a
       1)Ⅰ:开花期,Ⅱ:结荚期;同行数据后不同小写字母表示相同生育期不同基因型大豆在不同接菌处理间差异显著(P<0.05,Duncan’s法)
       1) Ⅰ: Flowering stage, Ⅱ: Podding stage; Different lowercase letters in the same line indicate significant differences between different inoculation treatments and among different soybean genotypes (P<0.05, Duncan’s test)
      下载: 导出CSV

      表  3   接菌处理对不同基因型大豆在不同生育期的P营养状况的影响1)

      Table  3   Effects of inoculation on P nutrition status of different soybean genotypes at different growth stages

      指标
      Index
      生育期
      Growth stage
      不接菌 No inoculation 接菌 Inoculation
      威廉姆斯82
      Weilianmusi 82
      粤春04-5
      Yuechun 04-5
      巴西10号
      Baxi 10
      威廉姆斯82
      Weilianmusi 82
      粤春04-5
      Yuechun 04-5
      巴西10号
      Baxi 10
      地上部P质量分数/(mg·g−1)
      Shoot P concentration
      0.63±0.09a 0.70±0.08a 0.53±0.01a 0.73±0.09a 0.75±0.05a 0.68±0.03a
      0.44±0.03bc 0.45±0.03bc 0.39±0.00c 0.52±0.02ab 0.54±0.02a 0.49±0.02ab
      根部P质量分数/(mg·g−1)
      Root P concentration
      0.59±0.05b 0.56±0.06b 0.65±0.04b 0.97±0.05a 1.01±0.14a 1.08±0.13a
      0.83±0.11a 0.71±0.05a 0.83±0.10a 0.78±0.08a 0.71±0.12a 1.16±0.31a
      总P吸收量/mg
      Total P uptake amount
      1.62±0.34a 1.64±0.26a 0.93±0.03b 1.88±0.22a 1.94±0.10a 1.57±0.18a
      2.53±0.12bc 2.09±0.16c 2.00±0.22c 3.20±0.11ab 2.55±0.05bc 3.26±0.36a
       1)Ⅰ:开花期,Ⅱ:结荚期;同行数据后不同小写字母表示相同生育期不同基因型大豆在不同接菌处理间差异显著(P<0.05,Duncan’s法)
       1) Ⅰ: Flowering stage, Ⅱ: Podding stage; Different lowercase letters in the same line indicate significant differences between different inoculation treatments and among different soybean genotypes (P<0.05, Duncan’s test)
      下载: 导出CSV

      表  4   接菌处理对不同基因型大豆在不同生育期的根系性状的影响1)

      Table  4   Effects of inoculation on root characteristics of different soybean genotypes at different growth stages

      指标
      Index
      生育期
      Growth stage
      不接菌 No inoculation 接菌 Inoculation
      威廉姆斯82
      Weilianmusi 82
      粤春04-5
      Yuechun 04-5
      巴西10号
      Baxi 10
      威廉姆斯82
      Weilianmusi 82
      粤春04-5
      Yuechun 04-5
      巴西10号
      Baxi 10
      总根长/m
      Total root length
      2.84±0.02ab 2.74±0.19ab 2.11±0.09c 2.58±0.21abc 3.10±0.19a 2.45±0.15bc
      4.70±0.24b 4.63±0.34b 3.82±0.23b 5.74±0.36a 4.72±0.49b 4.47±0.12b
      根表面积/dm2
      Root surface area
      4.38±0.35ab 4.46±0.39ab 3.27±0.14c 4.30±0.59ab 5.08±0.19a 4.12±0.45bc
      6.42±0.45bc 5.79±0.43c 6.86±0.43abc 7.90±0.68ab 6.85±0.66bc 8.26±0.21a
      根系体积/cm3
      Root volume
      5.44±0.87abc 5.86±0.61ab 3.49±0.46c 5.73±0.67ab 7.40±0.65a 4.90±0.75bc
      6.98±0.63cd 5.91±0.83d 9.81±0.72b 8.68±0.97bc 6.80±0.62cd 12.15±0.41a
       1)Ⅰ:开花期,Ⅱ:结荚期;同行数据后不同小写字母表示相同生育期不同基因型大豆在不同接菌处理间差异显著(P<0.05,Duncan’s法)
       1) Ⅰ: Flowering stage, Ⅱ: Podding stage; Different lowercase letters in the same line indicate significant differences between different inoculation treatments and among different soybean genotypes (P<0.05, Duncan’s test)
      下载: 导出CSV

      表  5   接菌处理对不同基因型大豆在不同生育期的根系菌根诱导P转运蛋白基因表达的影响1)

      Table  5   Effects of inoculation on the expression of arbuscular mycorrhizal-inducible P transporter genes in roots of different soybean genotypes at different growth stages

      基因
      Gene
      生育期
      Growth
      stage
      不接菌 No inoculation 接菌 Inoculation
      威廉姆斯82
      Weilianmusi 82
      粤春04-5
      Yuechun 04-5
      巴西10号
      Baxi 10
      威廉姆斯82
      Weilianmusi 82
      粤春04-5
      Yuechun 04-5
      巴西10号
      Baxi 10
      GmPT8 1.07±0.17b 1.07±0.17b 0.27±0.07c 8.52±2.10a 10.02±2.19a 5.46±2.50a
      2.37±1.73bc 1.08±0.13bc 0.31±0.10c 6.38±1.46ab 8.27±4.23b 3.97±0.87abc
      GmPT9 2.33±1.41b 2.58±0.26b 2.49±1.17b 1 149.44±278.42a 1 896.10±588.61a 1 617.45±630.78a
      475.87±471.67ab 64.82±38.09b 2.17±0.71b 1 265.27±160.46a 1 296.43±647.04a 955.27±235.69ab
      GmPT10 10.42±10.42b 2.40±0.98b 2.75±0.66b 68.20±19.46a 384.27±154.98a 261.38±193.35a
      141.34±128.79ab 208.36±203.52ab 5.69±3.46b 117.56±24.20a 112.45±103.24ab 306.82±175.38a
       1)Ⅰ:开花期,Ⅱ:结荚期;同行数据后不同小写字母表示相同生育期不同基因型大豆在不同接菌处理间差异显著(P<0.05,Duncan’s法)
       1) Ⅰ: Flowering stage, Ⅱ: Podding stage; Different lowercase letters in the same line indicate significant differences between different inoculation treatments and among different soybean genotypes (P<0.05, Duncan’s test)
      下载: 导出CSV

      表  6   生育期和基因型对大豆菌根生长指标影响的双因素方差分析

      Table  6   Two-way ANOVA of the effects of growth stages and genotypes on soybean mycorrhizal growth indicators

      指标
      Index
      F1)
      生育期
      Growth stage
      基因型
      Genotype
      生育期×基因型
      Growth stage × genotype
      菌根侵染率 Mycorrhizal colonization rate 14.93** 0.18 0.16
      菌根生长反应 Mycorrhizal growth response 5.86* 5.66* 1.84
      菌根P反应 Mycorrhizal phosphorus response 0.07 8.05** 0.18
       1)“*”:P<0.05,“**”:P<0.01
      下载: 导出CSV
    • [1]

      SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 2011, 62(1): 227-250. doi: 10.1146/annurev-arplant-042110-103846

      [2] 张淑彬, 王幼珊, 殷晓芳, 等. 不同施P水平下AM真菌发育及其对玉米氮P吸收的影响[J]. 植物营养与肥料学报, 2017, 23(3): 649-657. doi: 10.11674/zwyf.16406
      [3] 冯艳梅, 冯固, 王敬国, 等. 植物P营养状况对丛枝菌根真菌生长及代谢活性的调控[J]. 菌物系统, 2003, 22(4): 589-598. doi: 10.3969/j.issn.1672-6472.2003.04.016
      [4]

      PARNISKE M. Arbuscular mycorrhiza: The mother of plant root endosymbioses[J]. Nature Reviews Microbiology, 2008, 6(10): 763-775. doi: 10.1038/nrmicro1987

      [5]

      CHIU C H, PASZKOWSKI U. Mechanisms and impact of symbiotic phosphate acquisition[J]. Cold Spring Harbor Perspectives in Biology, 2019, 11(6): a034603. doi: 10.1101/cshperspect.a034603

      [6]

      MISSION J, THIBAUD M C, BECHTOLD N, et al. Transcriptional regulation and functional properties of Arabidopsis Pht1; 4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants[J]. Plant Molecular Biology, 2004, 55(5): 727-741. doi: 10.1007/s11103-004-1965-5

      [7]

      SHIN H, SHIN H S, DEWBRE G R, et al. Phosphate transport in Arabidopsis: Pht1; 1 and Pht1; 4 play a major role in phosphate acquisition from both low- and high-phosphate environments[J]. Plant Journal, 2004, 39(4): 629-642. doi: 10.1111/j.1365-313X.2004.02161.x

      [8]

      SMITH S E, READ D J. Mycorrhizal symbiosis[J]. Quarterly Review of Biology, 2008, 3(3): 273-281.

      [9]

      SMITH S E, SMITH F A, JAKOBSEN I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses[J]. Plant Physiology, 2003, 133(1): 16-20. doi: 10.1104/pp.103.024380

      [10]

      SMITH S E, SMITH F A, JAKOBSEN I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake[J]. New Phytologist, 2004, 162(2): 511-524. doi: 10.1111/j.1469-8137.2004.01039.x

      [11]

      LI H Y, SMITH S E, HOLLOWAY R E, et al. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses[J]. New Phytologist, 2006, 172(3): 536-543. doi: 10.1111/j.1469-8137.2006.01846.x

      [12]

      YANG S Y, GRONLUND M, JAKOBSEN I, et al. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family[J]. Plant Cell, 2012, 24(10): 4236-4251. doi: 10.1105/tpc.112.104901

      [13]

      MAHERALI H. Is there an association between root architecture and mycorrhizal growth response?[J]. New Phytologist, 2014, 204(1): 192-200.

      [14]

      SMITH F A, GRACE E J, SMITH S E. More than a carbon economy: Nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses[J]. New Phytologist, 2009, 182(2): 347-358. doi: 10.1111/j.1469-8137.2008.02753.x

      [15]

      ZHU Y G, SMITH S E, BARRITT A R, et al. Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars[J]. Plant and Soil, 2001, 237(2): 249-255.

      [16]

      ZHU Y G, SMITH F A, SMITH S E. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil[J]. Mycorrhiza, 2003, 13(2): 93-100.

      [17]

      SENSOY S, DEMIR S , TURKMEN O, et al. Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi[J]. Scientia Horticulturae, 2007, 113(1): 92-95.

      [18]

      WRIGHT D P, READ D J, SCHOLES J D. Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L[J]. Plant Cell and Environment, 1998, 21(9): 881-891.

      [19]

      ZHU Y G, SMITH S E. Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi[J]. Plant and Soil, 2001, 231(1): 105-112. doi: 10.1023/A:1010320903592

      [20]

      QIN J, WANG H, CAO H, et al. Combined effects of phosphorus and magnesium on mycorrhizal symbiosis through altering metabolism and transport of photosynthates in soybean[J]. Mycorrhiza, 2020, 30(2/3): 285-298.

      [21]

      WANG X, ZHAO S, BÜCKING H. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency[J]. Annals of Botany, 2016, 118(1): 11-21. doi: 10.1093/aob/mcw074

      [22] 辜晓婷, 覃金转, 王秀荣. 接种菌根真菌对不同P效率基因型大豆生长和P吸收的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 357-364.
      [23] 崔广娟, 曹华元, 陈康, 等. 镉胁迫对4种基因型大豆生长和体内元素分布的影响[J]. 华南农业大学学报, 2020, 41(5): 49-57. doi: 10.7671/j.issn.1001-411X.201911023
      [24]

      CUI G, AI S, CHEN K, et al. Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression[J]. Ecotoxicology and Environmental Safety, 2019, 171: 231-239. doi: 10.1016/j.ecoenv.2018.12.093

      [25]

      ZHAO S P, CHEN A, CHEN C, et al. Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean[J]. Physiologia Plantarum, 2019, 166(3): 712-728. doi: 10.1111/ppl.12847

      [26] 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007.
      [27]

      TAWARAYA K. Arbuscular mycorrhizal dependency of different plant species and cultivars[J]. Soil Science and Plant Nutrition, 2003, 49(5): 655-668.

      [28]

      JANOS D P. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas[J]. Mycorrhiza, 2007, 17(2): 75-91. doi: 10.1007/s00572-006-0094-1

      [29]

      PENG S, EISSENSTAT D M, GRAHAM J H, et al. Growth depression in mycorrhizal citrus at high-phosphorus supply[J]. Plant Physiology, 1993, 101(3): 1063-1071. doi: 10.1104/pp.101.3.1063

      [30]

      KAHILUOTO H, KETOJA E, VESTBERG M. Plant-available P supply is not the main factor determining the benefit from arbuscular mycorrhiza to crop P nutrition and growth in contrasting cropping systems[J]. Plant and Soil, 2012, 350: 85-98. doi: 10.1007/s11104-011-0884-x

      [31] 赵静, 刘嘉儿, 严小龙, 等. P有效性对大豆碳代谢的生理调控及基因型差异[J]. 华南农业大学学报, 2010, 31(3): 1-4. doi: 10.3969/j.issn.1001-411X.2010.03.001
      [32]

      ZHAO J, FU J B, LIAO H, et al. Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm[J]. Chinese Science Bulletin, 2004, 49(15): 1611-1620. doi: 10.1007/BF03184131

      [33] 程凤娴, 涂攀峰, 严小龙, 等. 酸性红壤中P高效大豆新种质的P营养特性[J]. 植物营养与肥料学报, 2009, 16(1): 71-81.
      [34]

      YAO Q, LI X L, CHRISTIE P. Factors affecting arbuscular mycorrhizal dependency of wheat genotypes with different phosphorus efficiencies[J]. Journal of Plant Nutrition, 2001, 24(9): 1409-1419. doi: 10.1081/PLN-100106991

      [35]

      PASZKOWSKI U, KROKEN S, ROUX C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 13324-13329.

      [36]

      JAVOT H, PENMETSA R V, TERZAGHI N, et al. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(5): 1720-1725.

      [37]

      ZHANG S, ZHOU J, WANG G H, et al. The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10225-10235. doi: 10.1007/s00253-015-6913-6

    • 期刊类型引用(8)

      1. 黎武元,黄诗宸,林会. 根瘤菌和丛枝菌根真菌单双接种对不同品系大豆生长的影响. 华中农业大学学报. 2024(04): 140-149 . 百度学术
      2. 黄亦雄. VA菌根接种及外源钙对大叶相思抗旱性影响. 陕西林业科技. 2024(06): 13-18 . 百度学术
      3. 黄活志,刘洋,陈阿,陈康,王秀荣. 接种丛枝菌根真菌促进磷高效基因型大豆生长和磷吸收. 植物营养与肥料学报. 2024(12): 2354-2365 . 百度学术
      4. 李秋桦,尹敏,裴妍,陈秀,任禛,夏体渊,徐胜光. 健康与患黑胫病烟株根内AMF多样性和群落结构差异分析. 云南大学学报(自然科学版). 2023(01): 186-198 . 百度学术
      5. 胡湘云,王奕文,方幽文,邵烨瑶,姚慧,唐星宇,连旖晴,谭莹,朱怡杰,江帆,李春俣,吴玉环,蔡妙珍,徐根娣,刘鹏. 酸性土壤下缓解大豆铝胁迫的研究进展. 科学通报. 2023(33): 4517-4531 . 百度学术
      6. 温云英,张金莲,许诗萍,曾诗媛,陈廷速. 不同丛枝菌根真菌对长春花生长和养分吸收的影响. 南方农业. 2023(18): 1-4 . 百度学术
      7. 赖明丽,董晓全,谢姗宴,冯嘉仪,邢鹤严,曾曙才,吴道铭. 污泥施用下园林植物生长适应性和重金属吸收. 华南农业大学学报. 2022(04): 47-57 . 本站查看
      8. 李干蓉,张友,方小宁. 茶园土壤磷生物活化研究. 绿色科技. 2022(18): 23-27+32 . 百度学术

      其他类型引用(5)

    图(1)  /  表(6)
    计量
    • 文章访问数:  982
    • HTML全文浏览量:  62
    • PDF下载量:  734
    • 被引次数: 13
    出版历程
    • 收稿日期:  2020-10-23
    • 网络出版日期:  2023-05-17
    • 刊出日期:  2021-07-09

    目录

      Corresponding author: WANG Xiurong, xrwang@scau.edu.cn

      1. On this Site
      2. On Google Scholar
      3. On PubMed

      /

      返回文章
      返回