Effects of inoculating arbuscular mycorrhizal fungi on growth and phosphorus uptake of soybean under low phosphorus conditions
-
摘要:目的
阐明不同磷(P)高效基因型大豆在不同生育期对接种丛枝菌根真菌的反应及其与P效率的关系,为接种丛枝菌根真菌提高作物P效率的研究提供理论依据。
方法以3个基因型大豆‘威廉姆斯82’‘粤春04-5’和‘巴西10号’为试验材料,设置接种和不接种丛枝菌根真菌2个处理,在开花期和结荚期采样,分析接种丛枝菌根真菌对大豆植株干质量、菌根侵染率、P营养状况、根系性状以及菌根诱导的P转运蛋白基因表达的影响。
结果不同基因型大豆在不同生育期对接种丛枝菌根真菌的菌根反应存在显著差异。与不接菌相比,接菌在开花期显著提高了3个菌根诱导表达的P转运蛋白基因GmPT8、GmPT9和GmPT10在3个基因型大豆根系中的表达,从而显著提高了3个基因型大豆根部的P浓度;接菌在结荚期显著提高了3个基因型大豆的根部干质量,以及‘巴西10号’的地上部干质量、P浓度和总P吸收量;此外,在开花期,不接菌的‘威廉姆斯82’和‘粤春04-5’的地上部干质量、总P吸收量、总根长和根表面积均显著高于‘巴西10号’,而接菌的‘巴西10号’的菌根生长反应和菌根P反应显著高于‘威廉姆斯82’和‘粤春04-5’。
结论‘威廉姆斯82’和‘粤春04-5’具有更高的P效率,而‘巴西10号’具有更高的菌根依赖性;大豆生育期的延长有利于菌根植物吸收的P转化为生物量,促进大豆与菌根真菌的有益共生。
Abstract:ObjectiveTo illuminate the response of different P-efficient soybean genotypes to arbuscular mycorrhizal fungi inoculation at different growth stages and the relationship with P efficiency, and provide a theoretical basis for research of arbuscular mycorrhizal fungi inoculation improving crop P efficiency.
MethodThe experiments were conducted using three soybean genotypes of ‘Weilianmusi 82’ ‘Yuechun 04-5’ and ‘Baxi 10’ under mycorrhizal and non-mycorrhizal inoculation treatments at flowering and podding stages. The effects of arbuscular mycorrhizal fungi inoculation on soybean plant dry weight, arbuscular mycorrhizal colonization rate, P nutrition status, root traits, and expression of arbuscular mycorrhizal inducible phosphate transporter genes were analyzed.
ResultThe mycorrhizal responses of different soybean genotypes to arbuscular mycorrhizal fungi inoculation were significantly different at different growth stages. Compared with non-mycorrhizal inoculation treatment, the inoculation treatment significantly improved the expression levels of three arbuscular mycorrhizal inducible P transporter genes of GmPT8, GmPT9 and GmPT10 in the roots of three soybean genotypes at flowering stage, which resulted in the significant increase of P concentrations in roots of these three soybean genotypes, and the inoculation treatment significantly improved the root dry weight of these three soybean genotypes, as well as shoot dry weight, P concentration and total P uptake amount of ‘Baxi 10’ at podding stage. At flowering stage, non-mycorrhizal ‘Weilianmusi 82’ and ‘Yuechun 04-5’ plants had significantly higher shoot dry weight, total P uptake, total root length and root surface area than ‘Baxi 10’, while mycorrhizal growth response and mycorrhizal P response of arbuscular mycorrhizal fungi inoculated ‘Baxi 10’ were significantly higher than those of ‘Weilianmusi 82’ and ‘Yuechun 04-5’.
Conclusion‘Weilianmusi 82’ and ‘Yuechun 04-5’ have higher P efficiency, while ‘Baxi 10’ has higher mycorrhizal dependence. The prolonged growth period from flowering stage to podding stage promotes the transformation of acquired P by mycorrhizal plants into biomass, which further stimulates the beneficial symbiosis between soybean and arbuscular mycorrhizal fungi.
-
妊娠母猪膘情体况与繁殖性能密切相关,母猪膘情较差会因为体储不足导致排卵数下降、泌乳量减少,淘汰几率增加,终生繁殖成绩下降;母猪膘情过肥会使母猪维持营养需求增加,饲料转化率降低,难产风险增加,同时降低泌乳期采食量。大量研究表明,母猪膘情适中有利于提高窝产总仔数、健仔数以及初生均重[1]。因此,在母猪妊娠期进行精准饲喂,控制好膘情能将繁殖性能最优化。
即使是同一品种(系),不同研究者得出的适宜背膘也存在差异,这可能是由配方结构、营养水平和饲养管理等方面的差异造成的[2]。因此,在广东温氏种猪科技有限公司饲养体系下探索其母系种猪的合理背膘以发挥母猪的最大繁殖性能显得尤为重要。本研究通过在温氏WS501配套系母系种猪中开展为期1年的测膘调料工作,精准控制母猪膘情,从母猪体况、妊娠期采食量、繁殖性能等角度对测膘调料的效果进行分析。
1. 材料与方法
1.1 试验材料
本研究在温氏种猪公司旗下的母系种猪场开展,试验母猪为温氏WS501猪配套系的大白原种猪,试验从2017年4月1日开始,到2018年4月结束。
测膘调料前繁殖性能数据时间节点为2016年10月—2017年3月,测膘调料后繁殖性能数据时间节点为2017年10月—2018年3月。
1.2 方法
1.2.1 背膘测定
使用超声波背膘仪测量母猪4个节点的背膘,测量节点分别为配种前(开配)、妊娠期28 d(4周)、妊娠期80 d(11周)和妊娠期110 d(临产),初产和经产母猪背膘测定位置分别为倒数最后一根肋骨距背中线4.5 cm和6.5 cm处。
1.2.2 饲养管理
日常饲养管理严格遵照温氏种猪公司《种猪饲养管理作业指导书》进行,妊娠母猪饲养在半漏缝地板的猪舍,限位栏饲养,妊娠期自由饮水,免疫、消毒等常规程序按猪场相关规定及制度进行。临产前4 d将母猪转入产房,妊娠期喂怀孕母猪料,日喂2餐,饲粮组成及营养水平见表 1,测膘调料后的饲喂量见表 2,测膘调料前的饲喂量见表 3。
表 1 妊娠母猪饲粮组成及营养水平饲料原料及比例/% 营养成分及比例/% 消化能/
(kJ·kg-1)玉米 小麦
麸豆粕
(43%)棕榈
仁粕大豆
油石粉 磷酸
氢钙预混
料粗蛋
白粗纤
维中性洗
涤纤维钙 总磷 有效
磷赖氨
酸533.2 188 137 70 21.8 16.2 13.8 20 14.4 4.5 18.78 1.00 0.68 0.30 0.81 12 744 表 2 妊娠母猪测膘调料后饲喂量kg 妊娠期 背膘厚≤13 mm 背膘厚14~15 mm 背膘厚16 mm 背膘厚17~19 mm 背膘厚≥20 mm 经产 初产 经产 初产 经产 初产 经产 初产 经产 初产 1~28 d 4.0 3.2 3.6 3.0 3.2 2.8 2.6 2.2 2.0 2.0 29~80 d 3.4 2.8 3.0 2.6 2.8 2.4 2.2 2.2 2.0 2.0 81~112 d 3.8 3.0 3.6 3.0 3.2 2.8 2.8 2.4 2.8 2.4 表 3 妊娠母猪测膘喂料前饲喂量kg 妊娠期 经产母猪 后备母猪 1~28 d 2.7 2.4 29~84 d 2.3 2.4 85~98 d 3.0 2.9 99~112 d 3.6 3.4 1.3 数据处理
母猪分娩后收集相应的繁殖数据,包括总仔数、健仔数(初生重≥0.8 kg)、弱仔数、死胎数等,并计算无效仔率。
$$ 无效仔率 = \left( {总仔数 - 健仔数} \right)/总仔数{\rm{ \times }}100\% 。 $$ Excel 2013初步整理数据,采用SAS 9.2统计软件对试验数据进行单因素方差分析,并用Duncan's法进行多重比较。结果用平均值±标准误表示。
2. 结果与分析
2.1 初产母猪测膘调料后妊娠期背膘变化
由表 4可知,初产母猪经过一个妊娠期的测膘调料后,开配背膘≤18 mm的猪背膘有所增加,开配背膘≥19 mm的猪背膘有所下降,这表明测膘调料的效果较好,背膘处于两端的猪群经过调膘后背膘向中间集中。从开配背膘的分布来看,初产母猪开配背膘多为13~21 mm,背膘分布较为集中,经过调膘后,临产背膘多为15~20 mm,背膘分布更加集中。从背膘变化来看,怀孕前期(开配~4周)的背膘变化幅度与怀孕中期(4~11周)的背膘变化幅度接近,这意味着怀孕前期是调膘的主要时期,中期可进行适度调膘,而怀孕后期(11周~临产)不需要调膘,保证母猪营养需求即可,因此,背膘变化幅度较小。
表 4 初产母猪妊娠期背膘厚mm 样本/头 开配 4周 11周 临产 背膘变化 76 12.00 13.29 14.48 14.72 2.71 373 13.00 14.11 15.16 15.24 2.26 462 14.00 14.95 15.90 15.88 1.92 598 15.00 15.86 16.64 16.56 1.55 559 16.00 16.45 17.19 17.19 1.19 523 17.00 17.32 17.70 17.70 0.72 483 18.00 17.96 18.43 18.23 0.27 310 19.00 18.93 19.15 18.91 -0.02 220 20.00 19.71 19.84 19.77 -0.21 162 21.00 20.30 20.17 19.90 -1.07 86 22.00 21.34 21.28 20.64 -1.26 51 23.00 21.86 21.65 21.59 -1.38 2.2 经产母猪测膘调料后妊娠期背膘变化
由表 5可知,经产母猪开配背膘≤18 mm的猪经过一个妊娠期的调膘,背膘有所增加,且开配背膘越低,背膘增幅越大;开配背膘≥19 mm的猪经过一个妊娠期的调膘,背膘有所下降,且开配背膘越高背膘降幅越大,这表明经过一个妊娠期的调膘,临产背膘的集中度得到加强。从背膘分布来看,开配背膘集中为12~21 mm,临产背膘集中在14~20 mm,调膘效果较好。与初产母猪类似,经产母猪怀孕前期与怀孕中期的背膘增幅接近,由于怀孕前期的时间只有不到怀孕中期的一半,怀孕前期是调膘的主要阶段,怀孕中期继续调膘,怀孕后期不需要大幅度调膘,保证胎儿的生长发育即可。
表 5 经产母猪妊娠期背膘mm 样本/头 开配 4周 11周 临产 背膘变化 508 12.00 13.29 14.35 14.51 2.50 948 13.00 14.11 15.30 15.44 2.46 1 194 14.00 14.71 15.76 15.89 1.94 1 260 15.00 15.61 16.47 16.55 1.55 1 147 16.00 16.29 16.98 17.08 1.08 1 157 17.00 16.89 17.37 17.48 0.50 769 18.00 17.77 18.06 18.04 0.08 655 19.00 18.52 18.80 18.71 -0.22 500 20.00 19.32 19.72 19.59 -0.39 257 21.00 20.21 20.25 20.38 -0.61 164 22.00 21.26 21.47 21.17 -0.76 101 23.00 21.89 21.84 21.65 -1.30 2.3 测膘调料后各节点背膘变化
由表 6可知,从2017年4月开始执行测膘调料操作,该月妊娠期母猪各节点的膘情偏肥,临产背膘高达19.12 mm,每隔3个月汇总当月各节点的背膘数值,通过当月各节点背膘的平均值来反映群体背膘变化的趋势,经过1年的测膘调料工作,临产背膘由之前的19.12 mm下降到17.19 mm,下降幅度为1.93 mm,临产母猪膘情偏肥的情况得到了改善。同样的,妊娠4周、11周的背膘均得到了大幅度降低,妊娠母猪各阶段的体况由以前的偏肥变得更为合理,膘情的合理有利于后续繁殖性能的提高。
表 6 测膘调料后各节点母猪背膘变化mm 节点 2017-04 2017-07 2017-10 2018-01 2018-04 开配 16.46 15.16 15.71 16.55 16.17 妊娠4周 17.45 16.87 16.15 16.44 16.59 妊娠11周 18.60 18.12 16.83 17.02 17.10 临产 19.12 18.46 17.41 17.35 17.19 2.4 测膘调料后妊娠期平均采食量变化
由表 7可知,测膘调料后怀孕期采食量分配与之前存在明显区别,怀孕前期采食量显著提高,怀孕后期采食量显著降低,怀孕中期采食量略降,带来的是整个怀孕平均采食量显著下降。怀孕期平均采食量的下降意味着精准喂料得以实现,饲料成本得到了控制。
表 7 测膘调料后妊娠期母猪平均采食量变化1)kg 项目 怀孕
前期怀孕
中期怀孕
后期均值 测膘调料前 2.68b 2.59 3.52a 2.73a 测膘调料后 2.80a 2.53 2.91b 2.65b 平均标准误 0.02 0.02 0.05 0.02 P 0.006 2 0.084 4 < 0.000 1 0.014 9 1)同列数据后相同小写字母者表示差异不显著(P>0.05,Duncan's法) 2.5 测膘调料后的繁殖性能
测膘调料前繁殖性能采集时间节点为2016年10月至2017年3月,测膘调料后繁殖性能采集时间节点为2017年10月至2018年3月。由表 8可知,测膘调料后总仔数提高0.60头,健仔数提高1.08头,弱仔、死胎数分别降低0.29和0.22头,无效仔率下降4.49%,繁殖成绩明显得到了提升。
表 8 测膘调料前后母猪繁殖成绩项目 配种
窝数分娩
窝数分娩
率/%胎均
总仔/头胎均
健仔/头胎均
弱仔/头胎均
死胎/头胎均
畸形/头胎均木
乃伊/头无效
仔率/%测膘调料前 45 240 37 890 88.66 13.54 9.94 1.61 1.39 0.16 0.44 26.56 测膘调料后 44 104 39 617 89.71 14.14 11.02 1.32 1.17 0.23 0.39 22.07 3. 结论与讨论
妊娠期母猪背膘是反映母猪营养状况的重要指标。就妊娠母猪的生产和管理而言,在整个妊娠期管理好母猪的体况,合理控制好母猪妊娠期的背膘,对于维持胎盘正常功能、提高母猪产仔性能均具有积极作用。母猪维持适宜的背膘是满足胎儿营养需求、保证母猪繁殖性能的前提[3]。本试验母猪为大白种猪,前期研究得出的适宜背膘为16~18 mm,即最佳繁殖性能的开配、临产背膘分别为16、18 mm。为了保证母猪达到适宜的背膘,精准喂料必不可少,基于不同背膘给予不同的饲喂量,结合母猪在妊娠期的生理特点,制定“高低高”饲喂程序,基于背膘控制目标和“高低高”饲喂程序来实现精准喂料和精准调膘。
本研究表明初产母猪和经产母猪经过测膘调料后,低背膘(≤18 mm)母猪在妊娠期会增膘,母猪开配背膘越低,妊娠期背膘增加越多;高背膘母猪(≥19 mm)在妊娠期会掉膘,开配背膘越高,妊娠期背膘减少得越多。背膘处于两端的猪只经过测膘调料后,背膘全部都往中间靠近,膘情的集中度得以加强,从现场来看,测膘调料后母猪的体况比较整齐,妊娠期的调料效果符合预期,也进一步验证了饲喂程序的可靠性。测膘调料是个长期的过程,效果需要几个繁殖周期才能显现出来,2017年4月为测膘调料工作的起始月,各阶段背膘处于偏肥的状态,特别是临产背膘高达19.12 mm,偏离目标背膘较远,需要持续控制母猪的背膘。经过1年的测膘调料工作,妊娠4周、11周和临产背膘得到持续控制,母猪背膘偏肥问题得到解决。
本研究表明测膘调料后母猪妊娠期平均采食量显著下降,日均下降幅度为0.08 kg,1头母猪在整个妊娠期的饲料消耗量会减少约9.00 kg,测膘调料后的分娩窝数为39 617,开展测膘调料后饲料消耗量减少356 t,妊娠饲料成本以每t 2 200元计,减少的饲料成本可达78.3万元。测膘调料的饲料分配模式和之前的饲料分配模式明显区别在于怀孕前期和怀孕后期,怀孕前期饲料量显著提高可以恢复母猪的体况,提高排卵数和减少胚胎死亡率;怀孕后期饲料量显著降低,可在保证胎儿生长发育的前提下,避免母猪体况过肥,有利于减少死胎和弱仔数。
本研究表明测膘调料后的母猪繁殖性能得到明显提高,分娩率提高,总健仔数增加,无效仔率下降,饲料成本也降低了,这表明基于背膘的精准喂料有利于提高母猪的生产成绩和降低饲料成本,从而有助于提高猪场的经济效益。
-
图 1 接种丛植菌根真菌时不同基因型大豆在不同生育期的菌根侵染率、菌根生长反应和菌根P反应
各小图柱子上方不同小写字母表示不同基因型大豆在不同生育期间差异显著(P<0.05,Duncan’s法)
Figure 1. Mycorrhizal colonization rate, mycorrhizal growth response and mycorrhizal phosphorus response of different soybean genotypes at different growth stages while inoculating arbuscular mycorrhizal fungi
Different lowercase letters on the columns in each figure indicate significant differences among different soybean genotypes at different growth stages (P<0.05, Duncan’s method)
表 1 不同生育期、接菌处理和基因型对大豆生理和分子指标影响的三因素方差分析
Table 1 Three-way ANOVA of the effects of different growth stages, inoculation treatments and genotypes on physiological and molecular indicators of soybean
指标 Indicator F1) S I G S×I S×G I×G S×I×G 地上部干质量 Shoot dry weight 538.68*** 1.24 14.91*** 5.10* 3.53* 0.12 0.64 根部干质量 Root dry weight 239.65*** 34.72*** 12.19*** 10.91** 8.81** 0.47 0.95 地上部P浓度 Shoot P concentration 43.56*** 10.56** 3.30* 0.04 0.38 0.30 0.21 根部P浓度 Root P concentration 0.24 15.56*** 2.57 9.78 0.43 0.38 0.67 总P吸收量 Total P uptake amount 70.84*** 25.10*** 3.36* 2.74 4.31* 2.31 0.32 总根长 Total root length 219.27*** 7.17* 11.40*** 2.59 2.92 0.33 2.65 根表面积 Root surface area 118.70*** 11.40** 0.45 1.35 11.55*** 0.34 1.23 根系体积 Root volume 52.18*** 11.38** 2.82 0.48 26.59*** 0.45 0.57 GmPT8表达量 Expression of GmPT8 0.49 36.72*** 2.67 1.12 0.02 1.08 0.10 GmPT9表达量 Expression of GmPT9 0.24 36.88*** 0.22 1.79 0.91 0.65 0.06 GmPT10表达量 Expression of GmPT10 0.17 4.82* 0.64 1.66 0.27 1.35 1.35 1) S:生育期,I:接菌处理,G:基因型,×:不同因素之间的交互作用;“*”:P<0.05,“**”:P<0.01,“***”:P<0.001
1) S: Stage, I: Inoculation, G: Genotype, ×: Interactions between different factors; “*”: P<0.05,“**”:P<0.01,“***”:P<0.001表 2 接菌处理对不同基因型大豆在不同生育期的地上部和根部干质量的影响1)
Table 2 Effects of inoculation treatments on plant shoot and root dry weight of different soybean genotypes at different growth stages
m/g 植株部位
Plant part生育期
Growth stage不接菌 No inoculation 接菌 Inoculation 威廉姆斯82
Weilianmusi 82粤春04-5
Yuechun 04-5巴西10号
Baxi 10威廉姆斯82
Weilianmusi 82粤春04-5
Yuechun 04-5巴西10号
Baxi 10地上部
ShootⅠ 1.87±0.19a 1.85±0.21a 1.20±0.06b 1.63±0.13ab 1.65±0.15ab 1.38±0.07b Ⅱ 3.53±0.03ab 3.22±0.01bc 2.96±0.19c 3.87±0.13a 3.23±0.05bc 3.37±0.11b 根部
RootⅠ 0.71±0.08a 0.60±0.04ab 0.47±0.03b 0.72±0.08a 0.75±0.60a 0.59±0.05ab Ⅱ 1.18±0.06b 0.88±0.06c 1.00±0.07bc 1.52±0.09a 1.13±0.02b 1.39±0.04a 1)Ⅰ:开花期,Ⅱ:结荚期;同行数据后不同小写字母表示相同生育期不同基因型大豆在不同接菌处理间差异显著(P<0.05,Duncan’s法)
1) Ⅰ: Flowering stage, Ⅱ: Podding stage; Different lowercase letters in the same line indicate significant differences between different inoculation treatments and among different soybean genotypes (P<0.05, Duncan’s test)表 3 接菌处理对不同基因型大豆在不同生育期的P营养状况的影响1)
Table 3 Effects of inoculation on P nutrition status of different soybean genotypes at different growth stages
指标
Index生育期
Growth stage不接菌 No inoculation 接菌 Inoculation 威廉姆斯82
Weilianmusi 82粤春04-5
Yuechun 04-5巴西10号
Baxi 10威廉姆斯82
Weilianmusi 82粤春04-5
Yuechun 04-5巴西10号
Baxi 10地上部P质量分数/(mg·g−1)
Shoot P concentrationⅠ 0.63±0.09a 0.70±0.08a 0.53±0.01a 0.73±0.09a 0.75±0.05a 0.68±0.03a Ⅱ 0.44±0.03bc 0.45±0.03bc 0.39±0.00c 0.52±0.02ab 0.54±0.02a 0.49±0.02ab 根部P质量分数/(mg·g−1)
Root P concentrationⅠ 0.59±0.05b 0.56±0.06b 0.65±0.04b 0.97±0.05a 1.01±0.14a 1.08±0.13a Ⅱ 0.83±0.11a 0.71±0.05a 0.83±0.10a 0.78±0.08a 0.71±0.12a 1.16±0.31a 总P吸收量/mg
Total P uptake amountⅠ 1.62±0.34a 1.64±0.26a 0.93±0.03b 1.88±0.22a 1.94±0.10a 1.57±0.18a Ⅱ 2.53±0.12bc 2.09±0.16c 2.00±0.22c 3.20±0.11ab 2.55±0.05bc 3.26±0.36a 1)Ⅰ:开花期,Ⅱ:结荚期;同行数据后不同小写字母表示相同生育期不同基因型大豆在不同接菌处理间差异显著(P<0.05,Duncan’s法)
1) Ⅰ: Flowering stage, Ⅱ: Podding stage; Different lowercase letters in the same line indicate significant differences between different inoculation treatments and among different soybean genotypes (P<0.05, Duncan’s test)表 4 接菌处理对不同基因型大豆在不同生育期的根系性状的影响1)
Table 4 Effects of inoculation on root characteristics of different soybean genotypes at different growth stages
指标
Index生育期
Growth stage不接菌 No inoculation 接菌 Inoculation 威廉姆斯82
Weilianmusi 82粤春04-5
Yuechun 04-5巴西10号
Baxi 10威廉姆斯82
Weilianmusi 82粤春04-5
Yuechun 04-5巴西10号
Baxi 10总根长/m
Total root lengthⅠ 2.84±0.02ab 2.74±0.19ab 2.11±0.09c 2.58±0.21abc 3.10±0.19a 2.45±0.15bc Ⅱ 4.70±0.24b 4.63±0.34b 3.82±0.23b 5.74±0.36a 4.72±0.49b 4.47±0.12b 根表面积/dm2
Root surface areaⅠ 4.38±0.35ab 4.46±0.39ab 3.27±0.14c 4.30±0.59ab 5.08±0.19a 4.12±0.45bc Ⅱ 6.42±0.45bc 5.79±0.43c 6.86±0.43abc 7.90±0.68ab 6.85±0.66bc 8.26±0.21a 根系体积/cm3
Root volumeⅠ 5.44±0.87abc 5.86±0.61ab 3.49±0.46c 5.73±0.67ab 7.40±0.65a 4.90±0.75bc Ⅱ 6.98±0.63cd 5.91±0.83d 9.81±0.72b 8.68±0.97bc 6.80±0.62cd 12.15±0.41a 1)Ⅰ:开花期,Ⅱ:结荚期;同行数据后不同小写字母表示相同生育期不同基因型大豆在不同接菌处理间差异显著(P<0.05,Duncan’s法)
1) Ⅰ: Flowering stage, Ⅱ: Podding stage; Different lowercase letters in the same line indicate significant differences between different inoculation treatments and among different soybean genotypes (P<0.05, Duncan’s test)表 5 接菌处理对不同基因型大豆在不同生育期的根系菌根诱导P转运蛋白基因表达的影响1)
Table 5 Effects of inoculation on the expression of arbuscular mycorrhizal-inducible P transporter genes in roots of different soybean genotypes at different growth stages
基因
Gene生育期
Growth
stage不接菌 No inoculation 接菌 Inoculation 威廉姆斯82
Weilianmusi 82粤春04-5
Yuechun 04-5巴西10号
Baxi 10威廉姆斯82
Weilianmusi 82粤春04-5
Yuechun 04-5巴西10号
Baxi 10GmPT8 Ⅰ 1.07±0.17b 1.07±0.17b 0.27±0.07c 8.52±2.10a 10.02±2.19a 5.46±2.50a Ⅱ 2.37±1.73bc 1.08±0.13bc 0.31±0.10c 6.38±1.46ab 8.27±4.23b 3.97±0.87abc GmPT9 Ⅰ 2.33±1.41b 2.58±0.26b 2.49±1.17b 1 149.44±278.42a 1 896.10±588.61a 1 617.45±630.78a Ⅱ 475.87±471.67ab 64.82±38.09b 2.17±0.71b 1 265.27±160.46a 1 296.43±647.04a 955.27±235.69ab GmPT10 Ⅰ 10.42±10.42b 2.40±0.98b 2.75±0.66b 68.20±19.46a 384.27±154.98a 261.38±193.35a Ⅱ 141.34±128.79ab 208.36±203.52ab 5.69±3.46b 117.56±24.20a 112.45±103.24ab 306.82±175.38a 1)Ⅰ:开花期,Ⅱ:结荚期;同行数据后不同小写字母表示相同生育期不同基因型大豆在不同接菌处理间差异显著(P<0.05,Duncan’s法)
1) Ⅰ: Flowering stage, Ⅱ: Podding stage; Different lowercase letters in the same line indicate significant differences between different inoculation treatments and among different soybean genotypes (P<0.05, Duncan’s test)表 6 生育期和基因型对大豆菌根生长指标影响的双因素方差分析
Table 6 Two-way ANOVA of the effects of growth stages and genotypes on soybean mycorrhizal growth indicators
指标
IndexF1) 生育期
Growth stage基因型
Genotype生育期×基因型
Growth stage × genotype菌根侵染率 Mycorrhizal colonization rate 14.93** 0.18 0.16 菌根生长反应 Mycorrhizal growth response 5.86* 5.66* 1.84 菌根P反应 Mycorrhizal phosphorus response 0.07 8.05** 0.18 1)“*”:P<0.05,“**”:P<0.01 -
[1] SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 2011, 62(1): 227-250. doi: 10.1146/annurev-arplant-042110-103846
[2] 张淑彬, 王幼珊, 殷晓芳, 等. 不同施P水平下AM真菌发育及其对玉米氮P吸收的影响[J]. 植物营养与肥料学报, 2017, 23(3): 649-657. doi: 10.11674/zwyf.16406 [3] 冯艳梅, 冯固, 王敬国, 等. 植物P营养状况对丛枝菌根真菌生长及代谢活性的调控[J]. 菌物系统, 2003, 22(4): 589-598. doi: 10.3969/j.issn.1672-6472.2003.04.016 [4] PARNISKE M. Arbuscular mycorrhiza: The mother of plant root endosymbioses[J]. Nature Reviews Microbiology, 2008, 6(10): 763-775. doi: 10.1038/nrmicro1987
[5] CHIU C H, PASZKOWSKI U. Mechanisms and impact of symbiotic phosphate acquisition[J]. Cold Spring Harbor Perspectives in Biology, 2019, 11(6): a034603. doi: 10.1101/cshperspect.a034603
[6] MISSION J, THIBAUD M C, BECHTOLD N, et al. Transcriptional regulation and functional properties of Arabidopsis Pht1; 4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants[J]. Plant Molecular Biology, 2004, 55(5): 727-741. doi: 10.1007/s11103-004-1965-5
[7] SHIN H, SHIN H S, DEWBRE G R, et al. Phosphate transport in Arabidopsis: Pht1; 1 and Pht1; 4 play a major role in phosphate acquisition from both low- and high-phosphate environments[J]. Plant Journal, 2004, 39(4): 629-642. doi: 10.1111/j.1365-313X.2004.02161.x
[8] SMITH S E, READ D J. Mycorrhizal symbiosis[J]. Quarterly Review of Biology, 2008, 3(3): 273-281.
[9] SMITH S E, SMITH F A, JAKOBSEN I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses[J]. Plant Physiology, 2003, 133(1): 16-20. doi: 10.1104/pp.103.024380
[10] SMITH S E, SMITH F A, JAKOBSEN I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake[J]. New Phytologist, 2004, 162(2): 511-524. doi: 10.1111/j.1469-8137.2004.01039.x
[11] LI H Y, SMITH S E, HOLLOWAY R E, et al. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses[J]. New Phytologist, 2006, 172(3): 536-543. doi: 10.1111/j.1469-8137.2006.01846.x
[12] YANG S Y, GRONLUND M, JAKOBSEN I, et al. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family[J]. Plant Cell, 2012, 24(10): 4236-4251. doi: 10.1105/tpc.112.104901
[13] MAHERALI H. Is there an association between root architecture and mycorrhizal growth response?[J]. New Phytologist, 2014, 204(1): 192-200.
[14] SMITH F A, GRACE E J, SMITH S E. More than a carbon economy: Nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses[J]. New Phytologist, 2009, 182(2): 347-358. doi: 10.1111/j.1469-8137.2008.02753.x
[15] ZHU Y G, SMITH S E, BARRITT A R, et al. Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars[J]. Plant and Soil, 2001, 237(2): 249-255.
[16] ZHU Y G, SMITH F A, SMITH S E. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil[J]. Mycorrhiza, 2003, 13(2): 93-100.
[17] SENSOY S, DEMIR S , TURKMEN O, et al. Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi[J]. Scientia Horticulturae, 2007, 113(1): 92-95.
[18] WRIGHT D P, READ D J, SCHOLES J D. Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L[J]. Plant Cell and Environment, 1998, 21(9): 881-891.
[19] ZHU Y G, SMITH S E. Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi[J]. Plant and Soil, 2001, 231(1): 105-112. doi: 10.1023/A:1010320903592
[20] QIN J, WANG H, CAO H, et al. Combined effects of phosphorus and magnesium on mycorrhizal symbiosis through altering metabolism and transport of photosynthates in soybean[J]. Mycorrhiza, 2020, 30(2/3): 285-298.
[21] WANG X, ZHAO S, BÜCKING H. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency[J]. Annals of Botany, 2016, 118(1): 11-21. doi: 10.1093/aob/mcw074
[22] 辜晓婷, 覃金转, 王秀荣. 接种菌根真菌对不同P效率基因型大豆生长和P吸收的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 357-364. [23] 崔广娟, 曹华元, 陈康, 等. 镉胁迫对4种基因型大豆生长和体内元素分布的影响[J]. 华南农业大学学报, 2020, 41(5): 49-57. doi: 10.7671/j.issn.1001-411X.201911023 [24] CUI G, AI S, CHEN K, et al. Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements, and related gene expression[J]. Ecotoxicology and Environmental Safety, 2019, 171: 231-239. doi: 10.1016/j.ecoenv.2018.12.093
[25] ZHAO S P, CHEN A, CHEN C, et al. Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean[J]. Physiologia Plantarum, 2019, 166(3): 712-728. doi: 10.1111/ppl.12847
[26] 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007. [27] TAWARAYA K. Arbuscular mycorrhizal dependency of different plant species and cultivars[J]. Soil Science and Plant Nutrition, 2003, 49(5): 655-668.
[28] JANOS D P. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas[J]. Mycorrhiza, 2007, 17(2): 75-91. doi: 10.1007/s00572-006-0094-1
[29] PENG S, EISSENSTAT D M, GRAHAM J H, et al. Growth depression in mycorrhizal citrus at high-phosphorus supply[J]. Plant Physiology, 1993, 101(3): 1063-1071. doi: 10.1104/pp.101.3.1063
[30] KAHILUOTO H, KETOJA E, VESTBERG M. Plant-available P supply is not the main factor determining the benefit from arbuscular mycorrhiza to crop P nutrition and growth in contrasting cropping systems[J]. Plant and Soil, 2012, 350: 85-98. doi: 10.1007/s11104-011-0884-x
[31] 赵静, 刘嘉儿, 严小龙, 等. P有效性对大豆碳代谢的生理调控及基因型差异[J]. 华南农业大学学报, 2010, 31(3): 1-4. doi: 10.3969/j.issn.1001-411X.2010.03.001 [32] ZHAO J, FU J B, LIAO H, et al. Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm[J]. Chinese Science Bulletin, 2004, 49(15): 1611-1620. doi: 10.1007/BF03184131
[33] 程凤娴, 涂攀峰, 严小龙, 等. 酸性红壤中P高效大豆新种质的P营养特性[J]. 植物营养与肥料学报, 2009, 16(1): 71-81. [34] YAO Q, LI X L, CHRISTIE P. Factors affecting arbuscular mycorrhizal dependency of wheat genotypes with different phosphorus efficiencies[J]. Journal of Plant Nutrition, 2001, 24(9): 1409-1419. doi: 10.1081/PLN-100106991
[35] PASZKOWSKI U, KROKEN S, ROUX C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 13324-13329.
[36] JAVOT H, PENMETSA R V, TERZAGHI N, et al. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(5): 1720-1725.
[37] ZHANG S, ZHOU J, WANG G H, et al. The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10225-10235. doi: 10.1007/s00253-015-6913-6