Alternations of mammary gland morphology, and marker protein expression, related hormones and signaling pathways of mammary gland development during gestation in Tibetan pigs
-
摘要:目的
研究藏猪妊娠期乳腺形态和乳腺发育标志蛋白、相关激素及信号通路的变化。
方法选取妊娠33、50、75和90 d的藏猪,屠宰后采集血清和第3、4对乳腺。利用HE染色观察乳腺形态变化;使用ELISA试剂盒检测血清中雌二醇(E2)、孕酮(P)和催乳素(PRL)等乳腺发育相关激素的水平;利用Western blot方法检测乳腺发育标志蛋白[包括ETS相关的转录因子5 (Elf-5)和脂滴包被蛋白2 (PLIN2)],以及激素受体[包括雌激素受体(ERα)、催乳素受体(PRLR)和孕酮受体(PR)]的表达,并检测乳腺发育相关信号通路PI3K/AKT和Jak2/STAT5的激活情况。
结果从乳腺形态观察可知,妊娠33 d时乳腺中主要是导管结构,50 d时出现少量腺泡结构,75 d时腺泡快速发育、腺泡增多,90 d时乳腺中主要是腺泡结构;乳腺发育标志蛋白Elf-5和PLIN2在妊娠50 d蛋白表达开始升高,75和90 d时均具有很高的表达量;血清中E2、P和PRL质量浓度随着妊娠的进行而升高,90 d时E2达到42.82 ng/L,P达到36.76 μg/L,PRL达到66.53 μg/L;ERα和PRLR在妊娠50 d时表达量升高,PR在75 d时表达量升高。此外,Jak2/STAT5和PI3K/AKT信号通路在妊娠75和90 d时被显著激活。
结论藏猪妊娠过程中,乳腺在50 d时开始腺泡发育、75 d时乳腺进入腺泡快速发育期、90 d时发育程度更高,同时,伴随着血清中乳腺发育相关激素和乳腺中激素受体表达的显著升高,以及乳腺发育相关通路PI3K/AKT和Jak2/STAT5的激活。
Abstract:ObjectiveTo investigate the alternations of the mammary gland morphology and of the marker protein expression, related hormones and signaling pathways of mammary gland development during gestation in Tibetan pigs.
MethodThe pigs were slaughtered, and serum and the mammary glands of the third and fourth pairs were collected at 33, 50, 75 and 90 days of gestation. HE staining was used to observe the changes in mammary gland morphology. The ELISA kit was used to detect the serum levels of hormones related to mammary gland development such as estradiol (E2), progesterone (P) and prolactin (PRL). Western blot method was used to examine the expressions of marker proteins such as E74-like factor 5 (Elf- 5) and perilipin 2(PLIN2) in mammary gland development, and of hormone receptors such as estrogen receptor (ERα), prolactin receptor (PRLR) and progesterone receptor (PR), as well as the activations of PI3K/AKT and Jak2/STAT5 signal pathways which were related to mammary gland development.
ResultMorphologically, the mammary glands at 33 days of gestation were mainly composed of ductal structures, and a small amount of alveolar structures appeared at 50 days. At 75 days, the alveoli developed rapidly in the mammary glands. Notably, the mammary glands were mainly composed of alveolar structures at 90 days. Correspondingly, the expression levels of the marker proteins Elf-5 and PLIN2 in mammary gland development began to increase at 50 days of gestation, with high expression levels at 75 and 90 days. Meanwhile, serum levels of E2, P and PRL all increased with the progress of gestation. The contents of E2, P and PRL reached 42.82 ng/L, 36.76 and 66.53 μg/L respectively at 90 days. In addition, the expression levels of ERα and PRLR increased at 50 days and the PR expression increased at 75 days. Furthermore, the Jak2/STAT5 and PI3K/AKT signaling pathways were significantly activated at 75 and 90 days of gestation.
ConclusionDuring gestation in Tibetan pigs, the mammary glands begin to develop alveolar at 50 days, enter the rapid alveolar development stage at 75 days, with higher developmental degree at 90 days. The alternations of mammary gland morphology are accompanied with the significant increase of hormones related to mammary gland development in serum and of hormone receptor expression in mammary glands, and with the activations of the PI3K/AKT and Jak2/STAT5 pathways which are closely related to mammary gland development.
-
Keywords:
- Tibetan pig /
- mammary gland development /
- hormone /
- gestation /
- signaling pathway
-
动物的采食行为是维持机体能量稳态的基础,畜禽生产中获得充足的食物是其生长发育的前提。动物采食量受中枢调控,其中胃肠道状态是决定畜禽食欲的关键部位。揭示饥饿状态下鸡食欲调控的潜在肠−脑轴机制可为如何提高鸡采食量提供理论依据。下丘脑弓状核作为食欲调控中枢[1-2]存在大量的促采食的刺鼠相关蛋白(Agouti-related protein,AgRP)/神经肽 Y(Neuropeptide Y,NPY)神经元和抑采食的前阿片黑色皮质素(Proopiomelanocortin,POMC)/可卡因−苯丙胺调节转录肽(Cocaine and amphetamine regulated transcript,CART)神经元[3-6]。影响动物食欲的因素有很多,遗传、环境因素、机体健康以及肠道充盈状态等均能影响动物采食量[7]。其中胃肠道作为营养物质暂时储存和消化吸收的关键部位,存在大量食欲调控信号[8]。这些食欲调控信号一方面通过血液循环被中枢所感应[2, 9],另一方面被肠道迷走感觉传入神经元直接感应,经脑干孤束核最终将信号投递至食欲调控中枢,肠道和中枢间的这种信息传递被称为“肠−脑轴” [8, 10]。肠道迷走感觉神经作为假单极双向神经元,位于结状神经节处的胞体分别向中枢孤束核和肠道发出轴突,其中肠道迷走神经末梢存在多种受体感应肠道各种理化信号,例如游离脂肪酸受体2 (FFAR2)、生长激素促分泌素受体(GHSR)、胆囊收缩素受体(CCKR),以及炎症受体TLR4等 [10-12]。
肠道健康对机体维持高食欲具有重要作用,维持肠道平衡可以维持机体正常食欲,反之肠道菌群紊乱等原因导致肠道健康受损则会引起采食量降低[13-14],而肠道屏障是肠道发挥其正常生物学功能的重要前提[15-16],肠道黏膜屏障包括肠上皮细胞及胞间连接,其中,紧密连接是肠上皮细胞间的细胞旁通路的主要屏障,闭合(Occludin)和紧密连接(Claudin)家族成员是影响其功能的主要封闭蛋白,二者与胞浆蛋白相互作用维持紧密蛋白的完整性[17-18]。当肠道出现炎症时,会导致Claudin蛋白结构变化,进而引起肠道屏障功能性障碍,并且受致病菌侵害也会导致肠道屏障通透性增加[19];动物炎症性肠病会导致肠道隐窝改变、小肠绒毛萎缩或变平以及一系列的形态学变化[20]。大量研究发现间歇性饥饿有助于维持肠道及肠道屏障的完整性[21-22]。
此外,胃肠道中上皮基质和微生物群落共调控生成活性氧,导致生成H2O2;而H2O2是维持正常细胞稳态和生理功能所必需的第二信使[23]。Miller等[24]研究发现,结肠内壁中的细胞会释放H2O2(而非氧气)来限制微生物的生长,H2O2可以协同其他物质在肠道黏膜上形成保护,防止菌群紊乱或肠道炎症对机体造成损伤,并且可以治疗肠道炎症,恢复机体正常生理功能。然而,目前并不清楚短期饥饿是否影响肠道炎症水平和屏障功能、是否被迷走感觉神经所感应。本研究旨在揭示禁食后肠道炎症水平和肠道屏障变化,以及提高食欲的潜在机制,并提供理论基础和试验依据。
1. 材料与方法
1.1 试验动物与试验设计
选用20只1日龄初生黄羽肉鸡[25-28](购于广东省清远市凤翔麻鸡发展有限公司生产基地),试验前称体质量并排序,随后按配对随机设计的原则将体质量相近的小鼠分为2组:对照组和禁食组,每组10只黄羽肉鸡,正常饲喂饲料至5日龄并采样。采样前12 h,禁食组禁食,对照组正常采食。禁食12 h后收集小肠肠道内容物检测H2O2水平,采集黄羽肉鸡结状神经节(Nodose ganglia,NG),检测炎症和食欲相关受体的表达;采集十二指肠、空肠和回肠及其肠道黏膜,检测黄羽肉鸡肠道形态、闭锁小带蛋白−1 (Zonula,ZO-1)、闭合蛋白 (Occludens-1,OCC)、紧密连接蛋白(Claudin-1) 以及炎症因子的表达。
1.2 测定指标与方法
1.2.1 小肠肠道内容物
分离小肠,区分十二指肠、空肠和回肠,取部分肠道轻轻挤压,将内容物收集于 2 mL 离心管中,使用过氧化氢测定试剂盒(A064-1-1,南京建成生物工程研究所)检测H2O2水平。
1.2.2 扫描电子显微镜(SEM)
取一段1 cm长的空肠,剪开后平铺,用生理盐水轻轻清洗内容物,而后修剪为5 mm边长的正方形放于保存液中,于4 ℃条件下保存。而后脱水、干燥,进行电镜扫描。
1.2.3 苏木精−伊红(HE) 染色
小肠分离后剪取约 3 cm 空肠中段放于 40 g/L 的多聚甲醛中固定,按照常规方法制作石蜡切片,HE染色,光学显微镜下拍照,然后用Image软件测取肠道绒毛长度(lv)和隐窝深度(dc),每个切片取 3~5 个视野,取其平均值计算绒毛长度与隐窝深度比值(lv/dc)。
1.2.4 小肠黏膜及 NG 的 RNA 提取、逆转录和荧光定量PCR (q-PCR)
小肠黏膜及NG总 RNA 使用 RNA 提取试剂盒(R4130-02,广州美基生物科技有限公司)和 TRIzol 试剂提取。1 g 总 RNA 按试剂盒说明书用 4× Reverse Transcription Master Mix(EZB-RT2GQ,美国 EZBioscience 生物技术有限公司)逆转录成 cDNA。引物序列见表1,按照2× SYBR Green qPCR Master Mix(A0012-R2,美国 EZBioscience 生物技术有限公司)说明书配制反应体系:10 μL 的体系中含有 5 μL 2× Color SYBR Green qPCR Master Mix、3.6 μL dd H2O、1 μL cDNA、0.4 μL 引物工作液;使用 Applied Biosystems QuantStudio 3 实时 PCR 系统并按照以下程序反应:95 ℃预热 5 min;95 ℃ 10 s,60 ℃ 30 s,循环 40 次。根据对照组 β-actin mRNA 表达进行归一化处理[15]。
表 1 实时荧光定量PCR所用引物Table 1. Primers used for quantitative real-time PCR基因
Gene上游引物序列(5′→3′)
Forward primer sequence下游引物序列(5′→3′)
Reverse primer sequence序列号
Accession numberβ-actin CTGTGCCCATCTATGAAGGCTA ATTTCTCTCTCGGCTGTGGTG L08165 AgRP CTCTTCCCAGGCCAGACTTG GCAGAAGGCGTTGAAGAACC XM_046925680.1 CCKAR AGCTCTTCTGCCAACCTGAT GTGTAGGACAGCAGGTGGAT NM_001081501.2 Claudin-1 TGGAGGATGACCAGGTGAAG TGTGAAAGGGTCATAGAAGG NM_001013611.2 CART CGAGAGAAGGAGCTGATCGA AGAAAGGAGTTGCACGAGGT XM_046937244.1 FFAR2 GCACTCTCTTTATGGCTGCC GGATTCCCTGGTCTTGGTCA XM_040693461.2 IL-1 CCTCCTCCAGCCAGAAAGTG CGGTAGAAGATGAAGCGGGT XM_015297469.3 IL-4 CCCCAGGTGTAGGCTCTAGT ACTCTGTCATTGCTGCTCCC XM_040683457.2 IL-6 ACCCGAGCTCTTTGGTGATG CGTGCCCTCTGTTTGTACCT XM_025143427.3 IL-10 GCTGCCAAGCCCTGTT CCTCAAACTTCACCCTCA NM_001004414.4 GHSR ATTAGTGCTGGCCCCATCTT CGGACCGATGTTCTTCCTCT XM_046923539.1 MC4R AGGGGTCATCATCACATGCA GATGGCCCCTTTCATGTTGG NM_001031514.2 NPY GTGCTGACTTTCGCCTTGTC ATCTCTGCCTGGTGATGAGG NM_205473.2 Occludin TGGAGGAGTGGGTGAAGAAC ATCCTTCCCCTTCTCCTCCT XM_046904540.1 POMC AGAGGAAGGCGAGGAGGAAA GTAGGCGCTTTTGACGATGG XM_046914234.1 TLR-4 GGCTCAACCTCACGTTGGTA AGTCCGTTCTGAAATCCCGT NM_001030693.2 TNF-α TTCTATGACCGCCCAGTT CAGAGCATCCAACGCAAAA XM_046920820.1 NPY2R GGCCATCATCTCCTATGCCT GGAAGCCAACTGACAGCAAA NM_001398092.1 ZO-1 TCATCCTTACCGCCGCATAT GTTGACTGCTCGTACTCCCT XM_046925214.1 1.3 数据统计与分析
所有数据均以平均值±标准误差(Mean±SE)表示。用GraphPad Prism 8.0 软件进行统计分析。采用 t 检验对2组均值进行差异显著性分析。
2. 结果与分析
2.1 禁食后下丘脑内食欲肽相关受体表达变化
通过 q-PCR 检测下丘脑内食欲肽相关基因表达,结果发现,与对照组相比,雏鸡禁食12 h后促采食食欲肽基因AgRP (P<0.05)和 NPY (P<0.01)的 mRNA 相对表达量均显著上调(图1),提示雏鸡饥饿模型构建成功。
2.2 禁食对黄羽肉鸡空肠肠道形态的影响
空肠肠绒毛电镜扫描及分析结果如图2A、3A、3B 所示,观察发现雏鸡禁食12 h 后,同对照组相比空肠肠绒毛表面更加完整,单位面积内绒毛总数更多、受损更少并且排列更加整齐。空肠 HE 染色及分析结果如图2B、3C、3D 所示,与正常采食的雏鸡相比,禁食后雏鸡的隐窝深度和lv/dc均无明显变化,但是对照组绒毛有明显损伤,而禁食组绒毛排列整齐、长度更长。
图 3 黄羽肉鸡禁食12 h后空肠肠道绒毛形态变化的电镜扫描结果(A、B)和HE 染色结果(C、D)统计Ⅰ:对照组,Ⅱ:禁食组;“*”和“**”分别表示差异达到 0.05和0.01的显著水平(t检验)Figure 3. Statistics of the scanning electron microscopy results (A, B) and HE staining results (C, D) for the morphological changes of jejunum intestinal villi of yellow-feathered broilers after fasting for 12 hⅠ: Control, Ⅱ: Fasting group; “*” and “**” indicate that the difference reaches 0.05 and 0.01 significance levels respectively (t test)2.3 禁食对黄羽肉鸡肠道屏障的影响
由图4 可知,与对照组相比,禁食12 h后雏鸡小肠黏膜中紧密蛋白标志性基因ZO-1和Occludin mRNA的相对表达量均显著上调(P<0.05),在十二指肠中,Claudin-1 的mRNA相对表达量也显著上调(P<0.05)。
图 4 黄羽肉鸡禁食12 h后小肠肠道黏膜紧密蛋白的mRNA相对表达量变化“*”和“**”分别表示差异达到 0.05和0.01的显著水平(t检验)Figure 4. mRNA relative expression changes of intestinal mucosal compact protein in small intestine of yellow-feathered broilers after 12 h fasting“*” and “**” indicate that the difference reaches 0.05 and 0.01 significance levels respectively (t test)2.4 禁食对黄羽肉鸡肠道炎症水平的影响
由图5可知,黄羽肉鸡禁食12 h后,与对照组相比,十二指肠、空肠和回肠黏膜上炎症因子IL-1、IL-6和TNF-α的 mRNA表达量无明显变化,但是空肠黏膜抗炎因子IL-4和IL-10的 mRNA表达量均有显著升高(P<0.01)。并且空肠和回肠内容物中H2O2浓度均有不同程度的增加(图3 D )。
图 5 黄羽肉鸡禁食12 h后小肠炎症因子mRNA相对表达量及H2O2浓度变化图D中,DU:十二指肠,Anterior JE:空肠前段,Middle JE:空肠中段,Posterior JE:空肠后段,Anterior IL:回肠前段,Posterior IL:回肠后段;“*”和“**”分别表示差异达到 0.05和0.01的显著水平(t检验)Figure 5. Changes in mRNA relative expressions of intestinal inflammatory factors and H2O2 concentrations in yellow-feathered broilers after 12 h of fastingIn figure D, DU: Duodenum, Anterior JE: Anterior jejunum, Middle JE: Middle jejunum, Posterior JE: Posterior jejunum, Anterior IL: Anterior ileum , Posterior IL: Posterior ileum; “*” and “**” indicate that the difference reaches 0.05 and 0.01 significance levels respectively (t test)2.5 禁食后雏鸡NG内受体表达的变化
由图6A 可知,与对照组相比,雏鸡禁食12 h后 NG 内肠道炎症因子IL-4的受体基因IL-4R的mRNA相对表达量显著上调(P<0.01)。由图6B 可知,禁食组雏鸡NG内食欲相关受体基因的mRNA相对表达量有所增加,其中FFAR2和神经肽2受体(NPY2R)表达量增加显著(P<0.01)。
图 6 黄羽肉鸡禁食12 h后结状神经节内炎症(A)与食欲(B)相关受体mRNA相对表达量“**”表示差异达到0.01的显著水平(t检验)Figure 6. mRNA relative expression of inflammation-related (A) and orexin-related (B) receptors in nodose ganglia of yellow-feathered broilers after 12 h of fasting“**” indicates that the difference reaches 0.01 significance level (t test)3. 讨论与结论
已有研究发现,特异性激活下丘脑弓状核AgRP神经元显著提高动物采食量[29],诱导肥胖发生[30],而消除AgRP神经元则会导致厌食症[31]。因此,本研究首先检测了下丘脑弓状核食欲肽表达变化,结果发现短期禁食后黄羽肉鸡下丘脑 AgRP/NPY表达显著上调(P < 0.05),而POMC有下降趋势(P = 0.07),提示黄羽肉鸡饥饿模型构建成功。
肠道健康对机体维持高食欲具有重要作用,而肠道炎症则会影响肠道代谢水平、破坏微生物平衡[32]以及肠道屏障的完整性[33],甚至会影响中枢神经系统中神经肽的分泌,大量研究发现间歇性饥饿有助于维持肠道及肠道屏障的完整性[21-22]。据报道,胃肠道中上皮基质和微生物群落共调控生成活性氧,导致H2O2形成;而H2O2是维持正常细胞稳态和生理功能所必需的第二信使[23]。本试验通过检测小肠不同肠段内容物的H2O2浓度发现,短期禁食导致禁食组空肠和回肠内容物中H2O2浓度均有不同程度的增加,推测饥饿状态下肠道可能通过生成适量H2O2维持肠道稳定。为进一步验证这一假设,我们通过电镜扫描、HE染色以及q-PCR结果发现,短期禁食并未对肠道形态造成损伤,且由于缺少食物影响,肠道绒毛排列更加紧凑整齐。我们推测,机体短期禁食后尚未引发肠道疾病,并且在肠道饥饿状态下,因肠道营养物质缺乏,机体可能出于自我保护机制防止肠道毒素等有害因子进入机体,从而紧密连接增强,即肠道物理屏障增强,且抗炎因子的表达增加,降低空肠损伤比例,避免肠道受损,以抵抗禁食给机体带来的不良影响,维持肠道正常的生理功能,这对维持较高食欲至关重要。
大量研究报道,肠道食欲调控信号不仅可以通过血液信号被中枢所识别,还可以被肠道迷走感觉传入神经元直接感应,经肠−脑轴最终将信号投递至食欲调控中枢[10-12]。本试验结果发现,与对照组相比,雏鸡禁食12 h后结状神经节内IL-4受体基因的mRNA相对表达量显著上调,和肠道黏膜抗炎因子表达变化相对应;提示机体在饥饿状态下,可能通过提高肠道抗炎能力以及增强物理屏障来抵抗由禁食所导致的轻微炎症,维持肠道健康。
此外,结状神经节内食欲相关受体基因的mRNA相对表达量有所增加,其中FFAR2和NPY2R表达量增加显著(P < 0.01),推测黄羽肉鸡饥饿后由于AgRP和NPY表达量增加[4],并且FFAR2和NPY2R表达增加,二者将肠道饥饿信号传递至中枢神经系统,提高动物食欲进而促进采食量增加。
综上所述,饥饿可引起肠道抗炎因子水平升高,并维持肠道屏障完整性,同时促进迷走感觉神经末梢抗炎因子受体表达,最终引起食欲增强。
-
图 3 藏猪妊娠期不同时间点乳腺发育标志蛋白相对表达量
相同标志蛋白柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’s法)
Figure 3. Relative expressions of marker proteins for mammary gland development at different time points during gestation in Tibetan pigs
Different lowercase letters on bars of the same marker protein indicate significant differences (P<0.05,Duncan’s method)
图 5 藏猪妊娠期不同时间点乳腺中激素受体蛋白相对表达量
相同激素受体柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’s法)
Figure 5. Relative expressions of the hormone receptors at different time points during gestation in mammary glands of Tibetan pigs
Different lowercase letters on bars of the same hormone receptor indicate significant differences (P<0.05,Duncan’s method)
图 7 藏猪妊娠期不同时间点乳腺中Jak2/STAT5和PI3K/AKT信号通路的蛋白相对表达量
相同信号通路柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’s法)
Figure 7. Relative expressions of proteins from Jak2/STAT5 and PI3K/AKT signaling pathways at different time points during gestation in mammary glands of Tibetan pigs
Different lowercase letters on bars of the same signaling pathway indicate significant differences (P<0.05,Duncan’s method)
表 1 藏猪妊娠期不同时间点的血清激素水平1)
Table 1 Serum hormone levels at different time points during gestation in Tibetan pigs
t妊娠/d
Days of gestationρ(E2)/
(ng·L−1)ρ(P)/
(μg·L−1)ρ(PRL)/
(μg·L−1)33 14.56±0.82a 31.55±1.15a 44.86±1.36a 50 22.30±0.71b 32.36±0.62a 54.12±2.73b 75 27.56±0.91c 35.19±0.90b 52.91±1.31b 90 42.82±2.25d 36.76±0.94b 66.53±2.87c 1)同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s 法)
1) Different lowercase letters in the same column indicate significant differences (P<0.05,Duncan’s method) -
[1] 唐建华, 冯静, 陈晓英, 等. 藏猪种质资源保护与利用研究[J]. 养猪, 2016(1): 68-70. [2] 张浩, 吴常信, 强巴央宗, 等. 藏猪3个繁殖性状主效基因多态性研究[J]. 遗传, 2007(8): 939-944. [3] JI F, HURLEY W L, KIM S W. Characterization of mammary gland development in pregnant gilts[J]. Journal of Animal Science, 2006, 84(3): 579-587. doi: 10.2527/2006.843579x
[4] MACIAS H, HINCK L. Mammary gland development[J]. Wiley Interdisciplinary Reviews Developmental Biology, 2012, 1(4): 533-557. doi: 10.1002/wdev.35
[5] HILTON H N, CLARKE C L, GRAHAM J D. Estrogen and progesterone signalling in the normal breast and its implications for cancer development[J]. Molecular and Cellular Endocrinology, 2018, 466: 2-14. doi: 10.1016/j.mce.2017.08.011
[6] ZIELNIOK K, SOBOLEWSKA A, GAJEWSKA M. Mechanisms of autophagy induction by sex steroids in bovine mammary epithelial cells[J]. Journal of Molecular Endocrinology, 2017, 59(1): 29. doi: 10.1530/JME-16-0247
[7] TIAN L, ZHANG L, CUI Y, et al. miR-142-3p regulates milk synthesis and structure of murine mammary glands via PRLR-mediated multiple signaling pathways[J]. Journal of Agricultural and Food Chemistry, 2019, 67(34): 9532-9542. doi: 10.1021/acs.jafc.9b03734
[8] O’LEARY K A, SHEA M P, SALITURO S, et al. Prolactin alters the mammary epithelial hierarchy, increasing progenitors and facilitating ovarian steroid action[J]. Stem Cell Reports, 2017, 9(4): 1167-1179. doi: 10.1016/j.stemcr.2017.08.011
[9] RÄDLER P D, WEHDE B L, WAGNER K U. Crosstalk between STAT5 activation and PI3K/AKT functions in normal and transformed mammary epithelial cells[J]. Molecular and Cellular Endocrinology, 2017, 451: 31-39. doi: 10.1016/j.mce.2017.04.025
[10] MENG Y, YUAN C, ZHANG J, et al. Stearic acid suppresses mammary gland development by inhibiting PI3K/Akt signaling pathway through GPR120 in pubertal mice[J]. Biochemical And Biophysical Research Communications, 2017, 491(1): 192-197. doi: 10.1016/j.bbrc.2017.07.075
[11] MENG Y, ZHANG J, ZHANG F, et al. Lauric acid stimulates mammary gland development of pubertal mice through activation of GPR84 and PI3K/Akt signaling pathway[J]. Journal of Agricultural and Food Chemistry, 2017, 65(1): 95-103. doi: 10.1021/acs.jafc.6b04878
[12] VOLKER S E, HEDRICK S E, FEENEY Y B, et al. Cyclophilin a function in mammary epithelium impacts Jak2/Stat5 signaling, morphogenesis, differentiation, and tumorigenesis in the mammary gland[J]. Cancer Research, 2018, 78(14): 3877-3887. doi: 10.1158/0008-5472.CAN-17-2892
[13] ZHANG M C, ZHAO S G, WANG S S, et al. d-Glucose and amino acid deficiency inhibits casein synthesis through JAK2/STAT5 and AMPK/mTOR signaling pathways in mammary epithelial cells of dairy cows[J]. Journal of Dairy Science, 2018, 101(2): 1737-1746. doi: 10.3168/jds.2017-12926
[14] JI F, WU G, BLANTON J R, et al. Changes in weight and composition in various tissues of pregnant gilts and their nutritional implications1[J]. Journal of Animal Science, 2005, 83(2): 366-375. doi: 10.2527/2005.832366x
[15] KENSINGER R S, COLLIER R J, BAZER F W, et al. Nucleic acid, metabolic and histological changes in gilt mammary tissue during pregnancy and lactogenesis[J]. Journal of Animal Science, 1982, 54(6): 1297-1308. doi: 10.2527/jas1982.5461297x
[16] 高慧杰, 郑惠玲. WGCNA鉴定奶山羊妊娠至泌乳期乳腺发育关键基因[J]. 畜牧兽医学报, 2020, 51(11): 2679-2688. [17] 苏启明, 曲鑫建, 伍会健. ELF5在正常乳腺发育和乳腺肿瘤发生中的作用[J]. 生命科学研究, 2017, 21(3): 262-267. [18] OAKES S R, NAYLOR M J, ASSELIN-LABAT M-L, et al. The Ets transcription factor Elf5 specifies mammary alveolar cell fate[J]. Genes & Development, 2008, 22(5): 581-586.
[19] SHI H B, YU K, LUO J, et al. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells[J]. Journal of Dairy Science, 2015, 98(10): 6954-6964. doi: 10.3168/jds.2015-9452
[20] KELLY P A, BACHELOT A, KEDZIA C, et al. The role of prolactin and growth hormone in mammary gland development[J]. Molecular and Cellular Endocrinology, 2002, 197(1): 127-131.
[21] 方莉莉, 安玲, 荆海霞, 等. 孕激素受体在不同发育期牦牛乳腺组织内的分布及表达[J]. 黑龙江畜牧兽医, 2019(11): 141-146. [22] HORIGAN K C, TROTT J F, BARNDOLLAR A S, et al. Hormone interactions confer specific proliferative and histomorphogenic responses in the porcine mammary gland[J]. Domestic Animal Endocrinology, 2009, 37(2): 124-138. doi: 10.1016/j.domaniend.2009.04.002
[23] CHAI X, SUN D, HAN Q, et al. Hypoxia induces pulmonary arterial fibroblast proliferation, migration, differentiation and vascular remodeling via the PI3K/Akt/p70S6K signaling pathway[J]. International Journal of Molecular Medicine, 2018, 41(5): 2461-2472.
[24] PALIN M F, BEAUDRY D, ROBERGE C, et al. Expression levels of STAT5A and STAT5B in mammary parenchymal tissue from Upton-Meishan and Large White gilts[J]. Canadian Journal of Animal Science, 2002, 82(4): 507-518. doi: 10.4141/A01-091