Identification of an antagonistic strain Bacillus amyloliquefaciens E3 against Dickeya zeae and its antimicrobial activity
-
摘要:目的
纯化和鉴定从柑橘根际土壤分离得到的可抑制水稻基腐病菌Dickeya zeae EC1生长的解淀粉芽孢杆菌Bacillus amyloliquefaciens,并解析其抑菌机制。
方法采用平板扩散法从根际土壤中筛选出1株拮抗D. zeae EC1的B. amyloliquefaciens E3菌株;根据细菌菌落表型、生理生化特征结合16S rDNA序列分析等方法对E3菌株进行分类鉴定;检测无菌E3培养液对D. zeae EC1侵染水稻种子能力的影响;盐酸沉淀结合丙酮抽提法提取E3菌株脂肽粗提物;采用平板对峙法测定E3菌株脂肽粗提物对病原真菌的抑菌活性,琼脂扩散法测定E3菌株脂肽粗提物对病原细菌的抑菌活性及最小抑菌浓度(Minimum inhibitory concentration, MIC);用Durashell C18柱对脂肽粗提物进行HPLC分离纯化;通过液相色谱−质谱联用(LC-ESI-MS)分析,鉴定抑菌物质的相对分子质量并推测其化学组成。
结果B. amyloliquefaciens E3菌株对茄病镰刀菌Fusarium solani、香蕉基腐病菌、茄科劳尔氏菌Ralstonia solanacearum等多种植物病原菌生长具有抑制作用,表现为广谱抗性;B. amyloliquefaciens E3菌株的无菌培养液能够抑制D. zeae EC1侵染萌发的水稻种子,显著提高水稻种子的萌芽率;B. amyloliquefaciens E3菌株的脂肽粗提物可以抑制D. zeae EC1的生长,其MIC为348.97 µg/mL;HPLC分离纯化结合LC-ESI-MS分析发现,B. amyloliquefaciens E3菌株分泌的主要抑菌活性物质包括Surfactin、Fengycin和Iturin 3类脂肽类抗生素。
结论B. amyloliquefaciens E3菌株具有作为生防菌的潜力,它可能通过分泌Surfactin、Fengycin和Iturin 3种脂肽类抑菌活性物质,拮抗水稻基腐病菌、茄科劳尔氏菌、茄病镰刀菌等多种植物病原菌。研究结果可为该菌的生物防治应用提供理论依据。
Abstract:ObjectiveTo isolate and identify Bacillus amyloliquefaciens strain which can inhibit the growth of Dickeya zeae EC1 from the rhizosphere soil of citrus plants, and analyze its antibacterial mechanism.
MethodThe B. amyloliquefaciens E3 strain antagonizing the growth of D. zeae EC1 was screened from the rhizosphere soil by plate diffusion method. The E3 strain was classified and identified based on colony phenotype, physiological and biochemical characteristics of bacteria and 16S rDNA sequence analysis. Effects of E3 sterile culture medium on the seeds germination ability of rice infected by D. zeae EC1 was detected. The crude lipopeptides of E3 strain was extracted by hydrochloric acid precipitation combined with acetone extraction. The antimicrobial activity of crude lipopeptides against pathogenic fungi were determined by plate confrontation method. The antimicrobial activity of crude lipopetides against pathogenic bacteria were determined by agar diffusion method, and the minimum inhibitory concentration (MIC) was obtained. The crude lipopeptides were separated and purified by HPLC with Durashell C18 column. Liquid chromatography-mass spectrometry (LC-ESI-MS) analysis was used to identify the molecular weights of the antimicrobial substances and speculate its chemical composition.
ResultB. amyloliquefaciens E3 strain had an inhibitory effect against Fusarium solani, D. zeae MS1 and Ralstonia solanacearum, etc, indicating that it had broad-spectrum resistance. The sterile culture medium of B. amyloliquefaciens E3 strain inhibited the infection of germinating rice seeds by D. zeae EC1 and significantly increased the seed germination rate. The crude lipopeptides of E3 strain inhibited the growth of D. zeae EC1 with the MIC of 348.97 µg/mL. HPLC combined with LC-ESI-MS analysis showed that the main antibacterial substances secreted by E3 strain included surfactin, fengycin and iturin.
ConclusionThe B. amyloliquefaciens E3 strain is potential to be a biocontrol agent. It can antigonize a variety of plant pathogens such as D. zeae EC1, R. solanacearum and F. solani by secreting three kinds of lipopeptides including surfactin, fengycin and iturin. The results provide a theoretical basis for the application of B. amyloliquefaciens E3 in biological control.
-
图 5 Bacillus amyloliquefacions E3菌株无菌培养液对Dickeya zeae EC1抑制水稻种子萌芽率的拮抗效果
“*”、“**”、“***”分别表示0.05、0.01和0.000 1水平的差异显著性(t检验)
Figure 5. Antagonism effect of the sterile culture medium of Bacillus amyloliquefaciens E3 strain on the inhibition of rice seeds germination by Dickeya zeae EC1
“*”,“**”,“***” indicate significance differences at the levels of 0.05,0.01 and 0.000 1 respectively (t test)
图 7 Bacillus amyloliquefaciens E3菌株脂肽粗提物对Dickeya zeae EC1的抑制作用
“*”、“**”分别表示0.05和0.000 1水平的差异显著性(t检验)
Figure 7. Inhibitory effect of crude lipopeptides extracted from Bacillus amyloliquefaciens E3 strain against Dickeya zeae EC1
“*”,“**” indicate significance differences at the levels of 0.05 and 0.000 1 respectively (t test)
图 8 Bacillus amyloliquefaciens E3菌株的抗真菌谱
A:茄病镰刀菌Fusarium solani;B:黄曲霉Aspergillus flavus;C:黑曲霉Aspergillus niger;D:雪腐镰刀菌Fusarium nival;E:大肠埃希菌Escherichia coli;F:柑橘溃疡菌Xanthomonas citri pv. citri;G:水稻基腐病菌 Dickeya zeae EC1;H:茄科劳尔氏菌Ralstonia solanacearum;I:洋葱伯克氏菌Burkholderia cenocepacia;J:香蕉基腐病菌Dickeya zeae MS1
Figure 8. The antimicrobial spectrum of strain Bacillus amyloliquefaciens E3 strain
表 1 水稻基腐病菌拮抗菌 E3菌株的主要生理生化特性
Table 1 The main physiological and biochemical characteristics of Bacillus amyloliquefaciens E3 strain
测定指标
Detected index生化反应
Biochemical
reaction测定指标
Detected index生化反应
Biochemical
reaction接触酶 Contact enzyme 阳性 Positive 苯丙氨酸脱氢酶 Phenylalanine dehydrogenase 阴性 Negative 氧化酶 Oxidase 阴性 Negative 2%(w) NaCl耐盐试验 Salt tolerance test with 2% NaCl 阳性 Positive 明胶水解 Gelatin hydrolysis 阴性 Negative 5%(w) NaCl耐盐试验 Salt tolerance test with 5% NaCl 阳性 Positive V-P试验 V-P test 阳性 Positive 7%(w) NaCl耐盐试验 Salt tolerance test with 7% NaCl 阳性 Positive 丙酸盐利用 Propionate utilization 阴性 Negative 10%(w) NaCl耐盐试验 Salt tolerance test with 10% NaCl 阳性 Positive 脲酶试验 Urease test 阴性 Negative 淀粉水解 Starch hydrolysis 阳性 Positive 吲哚试验 Indole test 阴性 Negative 葡萄糖产酸 Glucose acidogenesis 阳性 Positive 硝酸盐还原 Nitrate reduction 阳性 Positive 柠檬酸盐利用 Citrate utilization 阳性 Positive 酪氨酸水解 Tyrosine hydrolysis 阴性 Negative 酪素水解 Casein hydrolysis 阳性 Positive pH5.7肉汤 pH5.7 Broth 阳性 Positive pH6.8肉汤 pH6.8 Broth 阳性 Positive -
[1] 冯成玉. 水稻细菌性基腐病发生情况与研究进展[J]. 中国稻米, 2009(4): 21-23. doi: 10.3969/j.issn.1006-8082.2009.04.007 [2] 刘琼光, 张庆, 魏楚丹. 水稻细菌性基腐病研究进展[J]. 中国农业科学, 2013, 46(14): 2923-2931. doi: 10.3864/j.issn.0578-1752.2013.14.008 [3] PU X M, ZHOU J N, LIN B R, et al. First report of bacterial foot rot of rice caused by a Dickeya zeae in China[J]. Plant Disease, 2012, 96(12): 1818.
[4] 张蝶. 浙江省水稻细菌性基腐病发生因素及化学防治研究[D]. 金华: 浙江师范大学, 2016. [5] SANSINENEA E, VACA J, ELENA ROJAS N, et al. A wide spectrum of antibacterial activity of secondary metabolites from Bacillus amyloliquefaciens ELI149[J]. Bioscience Journal, 2020, 36(1): 235-244.
[6] BEN ABDALLAH D, TOUNSI S, GHARSALLAH H, et al. Lipopeptides from Bacillus amyloliquefaciens strain 32a as promising biocontrol compounds against the plant pathogen Agrobacterium tumefaciens[J]. Environmental Science and Pollution Research, 2018, 25(36): 36518-36529.
[7] STEIN T. Bacillus subtilis antibiotics: Structures, syntheses and specific functions[J]. Molecular Microbiology, 2005, 56(4): 845-857. doi: 10.1111/j.1365-2958.2005.04587.x
[8] WU L M, WU H J, CHEN L N, et al. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens[J]. Scientific Reports, 2015, 5(1). doi: http://doi.org/10.1038/srep12975.
[9] LIU Y F, CHEN Z Y, NG T B, et al. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916[J]. Peptides, 2007, 28(3): 553-559. doi: 10.1016/j.peptides.2006.10.009
[10] TAO Y, BIE X M, LV F X, et al. Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer[J]. Journal of Microbiology, 2011, 49(1): 146-150. doi: 10.1007/s12275-011-0171-9
[11] CHO S J, LEE S K, CHA B J, et al. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03[J]. FEMS Microbiology Letters, 2003, 223(1): 47-51. doi: 10.1016/S0378-1097(03)00329-X
[12] CAO H Y, JIAO Y, YIN N, et al. Analysis of the activity and biological control efficacy of the Bacillus subtilis strain Bs-1 against Meloidogyne incognita[J]. Crop Protection, 2019, 122: 125-135. doi: 10.1016/j.cropro.2019.04.021
[13] ZHAO P, QUAN C, WANG Y, et al. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp spinaciae[J]. Journal of Basic Microbiology, 2014, 54(5): 448-456. doi: 10.1002/jobm.201200414
[14] ARGUELLES-ARIAS A, ONGENA M, HALIMI B, et al. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens[J]. Microbial Cell Factories, 2009, 8: 63.
[15] ONGENA M, JACQUES P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol[J]. Trends in Microbiology, 2008, 16(3): 115-125. doi: 10.1016/j.tim.2007.12.009
[16] CAWOY H, MARIUTTO M, HENRY G, et al. Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production[J]. Molecular Plant-Microbe Interactions, 2014, 27(2): 87-100. doi: 10.1094/MPMI-09-13-0262-R
[17] ZHOU J, CHENG Y, LV M, et al. The complete genome sequence of Dickeya zeae EC1 reveals substantial divergence from other Dickeya strains and species[J]. BMC Genomics, 2015, 16(1): 571. doi: 10.1186/s12864-015-1545-x
[18] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 267-294. [19] 布坎南, 等. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, 1984: 729-758. [20] REDBURN A C, PATEL B K. Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA[J]. FEMS Microbiology Letters, 1993, 113(1): 81-86. doi: 10.1111/j.1574-6968.1993.tb06492.x
[21] 刘勇, 毛爱军, 李辉, 等. 枯草芽孢杆菌群β-甘露聚糖酶基因克隆及同源性分析[J]. 基因组学与应用生物学, 2009, 28(5): 845-850. doi: 10.3969/gab.028.000845 [22] 韩玉竹, 邓钊, 张宝, 等. 解淀粉芽孢杆菌H15产抗菌肽的发酵条件优化和提取方法比较研究[J]. 食品科学, 2015, 36(15): 135-141. doi: 10.7506/spkx1002-6630-201515025 [23] 张睿佳, 胡杰, 陆建忠, 等. 不同成熟度对水稻种子萌发的影响[J]. 上海农业科技, 2017(5): 62-63. doi: 10.3969/j.issn.1001-0106.2017.05.029 [24] LI S B, XU S R, ZHANG R N, et al. The antibiosis action and rice-induced resistance, mediated by a lipopeptide from Bacillus amyloliquefaciens B014, in controlling rice disease caused by Xanthomonas oryzae pv. oryzae[J]. Journal of Microbiology and Biotechnology, 2016, 26(4): 748-756. doi: 10.4014/jmb.1510.10072
[25] 朱弘元, 康健, 范昕, 等. 解淀粉芽孢杆菌B15产脂肽的分离鉴定及抑菌机理[J]. 江苏农业科学, 2016, 44(5): 186-189. [26] 张玉胜, 谭亚男. 油菜核盘菌拮抗菌的筛选及鉴定[J]. 生命科学仪器, 2009, 7(8): 27-28. [27] 陈华, 王丽, 袁成凌, 等. 高效液相色谱-电喷雾质谱法分离和鉴别枯草芽孢杆菌产生的脂肽类化合物[J]. 色谱, 2008(3): 343-347. doi: 10.3321/j.issn:1000-8713.2008.03.016 [28] CHEN M C, WANG J P, ZHU Y J, et al. Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain FJAT-2349[J]. Journal of General and Applied Microbiology, 2019, 126(5): 1519-1529. doi: 10.1111/jam.14213
[29] 周海亮. 水稻细菌性基腐病病原学及检测技术的研究[D]. 武汉: 华中农业大学, 2012. [30] VATER J, GAO X, HITZEROTH G, et al. "Whole cell"--matrix-assisted laser desorption ionization-time of flight-mass spectrometry, an emerging technique for efficient screening of biocombinatorial libraries of natural compounds-present state of research[J]. Combinatorial Chemistry& High Throughput Screening, 2003, 6(6): 557-567.
[31] AERON A, KHARE E, JHA C K, et al. Revisiting the plant growth-promoting rhizobacteria: Lessons from the past and objectives for the future[J]. Archives of Microbiology, 2020, 202(4): 665-676. doi: 10.1007/s00203-019-01779-w
[32] GOUDA S, KERRY R G, DAS G, et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture[J]. Research in Microbiology, 2018, 206: 131-140. doi: 10.1016/j.micres.2017.08.016
[33] KHAYALETHU N, LESIBA K L, MOLEMI E R, et al. The mode of action of bacillus species against Fusarium graminearum, tools for investigation, and future prospects[J]. Toxins, 2019, 11(10). doi: http://doi.org/10.3390/toxins11100606.
[34] 严婉荣, 肖敏, 陈圆, 等. 解淀粉芽孢杆菌抗菌脂肽研究进展[J]. 北方园艺, 2018(7): 162-167. [35] FAN B, WANG C, SONG X, et al. Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol[J]. Frontiers in Microbiology, 2018, 9: 2491. doi: 10.3389/fmicb.2018.02491
[36] CHOWDHURY S P, UHL J, GROSCH R, et al. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani[J]. Molecular Plant-Microbe Interactions, 2015, 28(9): 984-995. doi: 10.1094/MPMI-03-15-0066-R
[37] 向亚萍, 周华飞, 刘永锋, 等. 解淀粉芽孢杆菌B1619脂肽类抗生素的分离鉴定及其对番茄枯萎病菌的抑制作用[J]. 中国农业科学, 2016, 49(15): 2935-2944. doi: 10.3864/j.issn.0578-1752.2016.15.008 [38] FIRA D, DIMKIC I, BERIC T, et al. Biological control of plant pathogens byBacillus species[J]. Biotechnology Journal, 2018, 285: 44-55. doi: 10.1016/j.jbiotec.2018.07.044
[39] ZERIOUH H, ROMERO D, GARCIA-GUTIERREZ L, et al. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits[J]. Molecular Plant-Microbe Interactions, 2011, 24(12): 1540-1552. doi: 10.1094/MPMI-06-11-0162
[40] CAO Y, PI H L, CHANDRANGSU P, et al. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum[J]. Scientific Reports, 2018, 8(1). doi: http://doi.org/10.1038/S41598-018-22782-Z.
[41] HADIZADEH I, PEIVASTEGAN B, HANNUKKALA A, et al. Biological control of potato soft rot caused by Dickeya solani and the survival of bacterial antagonists under cold storage conditions[J]. Plant Pathology, 2019, 68(2): 297-311. doi: 10.1111/ppa.12956
[42] CHEN J, LIU T, WEI M, et al. Macrolactin a is the key antibacterial substance of Bacillus amyloliquefaciens D2WM against the pathogen Dickeya chrysanthemi[J]. European Journal of Plant Pathology, 2019, 155(2): 393-404. doi: 10.1007/s10658-019-01774-3
[43] LI J, HU M, XUE Y, et al. Screening, identification and efficacy evaluation of antagonistic bacteria for biocontrol of soft rot disease caused by Dickeya zeae[J]. Microorganisms, 2020, 8(6975). doi: 10.3390/microorganisms8050697.
-
期刊类型引用(6)
1. 邱心洋,袁惠君,李梅,程建新,田世龙,李志忠. 马铃薯营养特性及其功能性产品开发研究进展. 中国食品添加剂. 2024(01): 272-278 . 百度学术
2. 张露,王新惠,冉凌云,杨婷婷,赵乐乐,吴明阳. 富含花青素紫马铃薯汁护色研究及酶解工艺优化. 中国酿造. 2024(02): 238-242 . 百度学术
3. 樊玉婷,李智昊,李月垣,张俊霞,张李一如,王璐,周鹏辉,李进,陈可钦,房玉林,张克坤. 不同品种葡萄添加量对果啤香气、理化指标及抗氧化活性的影响. 食品科学. 2024(13): 164-172 . 百度学术
4. 王蕾,赵进修,刘明亮,李博鹏,卢庆华,张玲,李雅丽. 响应面法优化百香果艾尔精酿啤酒发酵工艺. 中国酿造. 2024(11): 187-193 . 百度学术
5. 王琼,吴晓杰,郭华春,李俊,肖继坪. 滇紫甘薯新品种抗氧化物质含量及活性测定. 江苏农业科学. 2023(17): 179-185 . 百度学术
6. 庞莹莹,陈亮,徐绍丝,黄鹭强. 精酿啤酒特色辅料的应用概况. 福建轻纺. 2021(07): 2-6+10 . 百度学术
其他类型引用(2)