• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

猪O型口蹄疫病毒抗原表位/VP1蛋白的融合表达及免疫原性研究

刘家勐, 宋丹, 罗朝唯, 吴珂珂, 易琳, 赵明秋, 陈金顶, 丁红星

刘家勐, 宋丹, 罗朝唯, 等. 猪O型口蹄疫病毒抗原表位/VP1蛋白的融合表达及免疫原性研究[J]. 华南农业大学学报, 2021, 42(3): 1-8. DOI: 10.7671/j.issn.1001-411X.202009034
引用本文: 刘家勐, 宋丹, 罗朝唯, 等. 猪O型口蹄疫病毒抗原表位/VP1蛋白的融合表达及免疫原性研究[J]. 华南农业大学学报, 2021, 42(3): 1-8. DOI: 10.7671/j.issn.1001-411X.202009034
LIU Jiameng, SONG Dan, LUO Chaowei, et al. Fusion expression and immunogenicity of the antigen epitope/VP1 protein against swine O-type foot-and-mouth disease virus[J]. Journal of South China Agricultural University, 2021, 42(3): 1-8. DOI: 10.7671/j.issn.1001-411X.202009034
Citation: LIU Jiameng, SONG Dan, LUO Chaowei, et al. Fusion expression and immunogenicity of the antigen epitope/VP1 protein against swine O-type foot-and-mouth disease virus[J]. Journal of South China Agricultural University, 2021, 42(3): 1-8. DOI: 10.7671/j.issn.1001-411X.202009034

猪O型口蹄疫病毒抗原表位/VP1蛋白的融合表达及免疫原性研究

基金项目: 国家重点研发计划(2017YFD0500600,2017YFD0501104);广州市科技计划(201803020005);广东省普通高校重点研究项目(2019KZDXM026)
详细信息
    作者简介:

    刘家勐(1996—),男,硕士研究生,E-mail: gemini1996@stu.scau.edu.cn

    通讯作者:

    丁红星(1973—),男,副研究员,硕士,E-mail: dinghx@scau.edu.cn

  • 中图分类号: S855.3

Fusion expression and immunogenicity of the antigen epitope/VP1 protein against swine O-type foot-and-mouth disease virus

  • 摘要:
    目的 

    获得可稳定表达猪O型口蹄疫病毒(Foot-and-mouth disease virus,FMDV)抗原表位融合结构蛋白VP1的中国仓鼠卵巢细胞株(CHO-K1),制备亚单位疫苗。

    方法 

    设计合成含FMDV抗原表位与VP1基因序列的重组基因RP1,将其克隆到表达载体pCDH-CMV-MCS-EF1-Puro中,将构建的重组质粒与辅助质粒PLP1、PLP2和PLP3共转染HEK-293T细胞,获得重组慢病毒HIV-RP1;将收获的病毒液感染CHO-K1细胞,经筛选获得单克隆细胞株,通过间接免疫荧光试验(Indirect immunofluorescence assay,IFA)和Western blot鉴定,获得可表达RP1的阳性细胞株,命名为CHO-K1-RP1;将CHO-K1-RP1连续传30代,每隔5代收获相同数量的细胞样品进行Western blot鉴定。

    结果 

    IFA结果显示,表达RP1的细胞发出绿色荧光,而空白对照无绿色荧光;Western blot结果显示,在约55 kU处能观察到清晰的条带;表明成功获得了融合蛋白。将获得的融合蛋白与佐剂等体积混合制备成亚单位疫苗免疫BALB/c雌鼠,抗体检测结果显示,二次免疫后,该亚单位疫苗组与口蹄疫(Foot-and-mouth disease,FMD)商品化灭活疫苗组小鼠之间抗体水平无显著差异,两者抗体水平均显著高于对照组(P<0.05)。

    结论 

    本研究构建的亚单位疫苗能有效刺激小鼠机体产生免疫应答反应,为猪口蹄疫新型疫苗的研制提供了参考。

    Abstract:
    Objective 

    To obtain Chinese hamster ovary cell line (CHO-K1) which can stably express antigen epitope fusing VP1 protein of swine O-type foot-and-mouth disease virus (FMDV), and prepare subunit vaccine.

    Method 

    A recombinant gene RP1 containing FMDV antigen epitope and its VP1 gene sequence was designed, synthesized and cloned into expression vector pCDH-CMV-MCS-EF1-Puro. The constructed recombinant plasmid was co-transfected into HEK-293T cells with helper plasmids PLP1, PLP2 and PLP3 to obtain recombinant lenti virus HIV-RP1. CHO-K1 cells were infected by the harvested virus solution, and the monoclonal cell lines were obtained by screening. The expressing RP1 positive cell line named CHO-K1-RP1 was obtained by indirect immunofluorescence assay (IFA) and Western blot identification. The CHO-K1-RP1 was passed on continuously for 30 generations, and the same number of cell samples were collected every five generations for Western blot identification.

    Result 

    IFA results showed that the cells expressing RP1 emitted green fluorescence, while the blank control had no green fluorescence. Western blot results showed that a clear band was observed at about 55 kU. The above results indicated that the fusion protein was successfully obtained. Female BALB/c mice were immunized with subunit vaccine prepared by mixing equal volumes of fusion protein and adjuvant. The antibody titer identification results showed that after the second immunization, foot-and-mouth disease (FMD) subunit vaccine group and FMD commercial inactivated vaccine group had no significant difference at antibody levels, but both were significantly higher than those of control (P<0.05).

    Conclusion 

    The subunit vaccine constructed in this study can effectively stimulate the immune response in mice, which provides a reference for the development of a new vaccine against FMD in pigs.

  • 巴戟天Morinda officinalis别名巴戟、三蔓草、鸡肠风,是双子叶植物纲Dicotyledoneae、茜草目Rubiales、茜草科Rubiaceae多年生攀援木质藤本植物,是我国“四大南药”之一,以肉质根入药,其主要药效成分为寡糖、多糖蒽醌类、环烯醚萜类等活性物质[1-2],具有补肝肾、强筋骨、祛风湿、抗衰老、抗肿瘤和治疗糖尿病、精神疾病以及细菌和病毒感染等作用[3-7]。巴戟天种植成本较高,且种植过程中存在开垦山林及乱采滥挖现象,这严重破坏了巴戟天的生长环境[8]。虽然巴戟天是第1批受到《广东省岭南中药材保护条例》保护的岭南药材,但其种植面积在逐年减少。土壤养分是影响巴戟天生长的重要环境因素之一,肉桂Cinnamomum cassia成林速度快,林内土壤动物、微生物种类更为丰富,可有效改善林地内土壤结构,从而提高土壤的肥力,营造出适宜巴戟天生长的种植环境[9]

    近年来,一些学者从巴戟天的药材化学成分及代谢组学[3, 10-12]、种植条件[13-14]、种植模式[15-16]等方面对巴戟天的有效成分含量进行比较研究,发现合理增加肉桂林种植地的光照量,可抑制藤苗生长,从而提高巴戟天肉质根的产量和有效成分积累,有效成分含量均随种植时间的延长呈上升趋势[16]。林下种植方式是控制种植地光照条件的重要途径之一,而且巴戟天林下种植具有较好的经济效益,解决了坡地连片种植带来的潜在山地环境破坏和水土流失问题,并且提高了巴戟天的产量和药效品质[8, 15]。这一林下生态种植方式为区域中药材的产业化发展提供了新思路。

    广东省肇庆市德庆县是巴戟天的主产区,种植巴戟天有着悠久历史,是目前我国种植面积最大、产量最多和品质最好的巴戟天生产基地。本文研究了道地产区土壤养分和生长年限与巴戟天品质的关系,以及林下和非林下种植方式对巴戟天有效成分的影响,以期为巴戟天林下规范化种植提供基础数据和理论支持。

    本研究试验地位于广东省肇庆市德庆县,调查采样点分布于N 23°13′30″~N 23°17′37″,E 111°53′52″~E111°55′45″,海拔62~166 m。地处亚热带地区,热量丰富、雨热同期、夏长冬短,年平均温度20~25 ℃,年降雨量600~2 000 mm,土壤以红壤为主,其次是黄壤。德庆县当地农户种植的巴戟天有2个品种,分别是小叶品种‘黑幼籽’与大叶品种‘广宁特’,以小叶品种‘黑幼籽’最为常见。本次研究调查的品种均为‘黑幼籽’,种植密度普遍为株行距20 cm×30 cm,农家肥与大田复合肥为巴戟天施肥最常用肥料。大田复合肥的施肥量较低,通常为224~230 kg·hm−2,施肥频率为每年2~3次。

    于2018年10月,选取广东省德庆县高良镇以及邻近镇作为研究区域,根据该区域巴戟天种植面积和分布,选取18个具有代表性的非林下巴戟天种植点(表1),调查分析土壤养分和种植年限对巴戟天寡糖含量的影响。另外,为了调查分析林下和非林下种植巴戟天的品质差异,在其中8个非林下巴戟天种植点的相邻林地上(相关信息见表2),采集了林下种植点样品,巴戟天品种和种植年限以及土壤、坡度、坡向、海拔等均与对应的非林下种植点一致。在选定的地点,采用随机多点(5~8个点)采样法,在根系外围采集0~20 cm深的土壤,将土壤混匀并用四分法采集分析样品。土壤样品自然风干后,去除植物根系、落叶及石块等杂质,研磨,分别过1.00和0.25 mm筛,保存备用。同时在采样点随机整株挖取5株巴戟天。巴戟天肉质根用自来水清洗3次、去离子水润洗1次后,擦干。去除肉质根的木心部分,烘干,粉碎,过0.25 mm筛,待用。

    表  1  道地产区非林下种植巴戟天采样点基本信息
    Table  1.  Basic information of sample plot for no understory planting of Morinda officinalis in genuine producing areas
    采样点编号
    Sample plot number
    经纬度
    Longitude and latitude
    村或镇
    Village or town
    生长年限
    Growth year
    1 111°58′3″ E,23°18′25″ N 回村 Hui Village 1
    2 112°2′12″ E,23°20′49″ N 莫村镇 Mocun Town 5
    3 112°7′23″ E,23°20′51″ N 南田村 Nantian Village 4
    4 112°2′20″ E,23°20′46″ N 莫村镇 Mocun Town 4
    5 112°2′24″ E,23°20′47″ N 莫村镇 Mocun Town 2
    6 112°2′22″ E,23°20′39″ N 莫村镇 Mocun Town 2
    7 112°2′36″ E,23°20′44″ N 莫村镇 Mocun Town 5
    8 112°5′49″ E,23°20′50″ N 荔枝村 Litchi Village 3
    9 112°2′36″ E,23°20′53″ N 莫村镇 Mocun Town 5
    10 112°2′39″ E,23°20′59″ N 莫村镇 Mocun Town 6
    11 112°2′40″ E,23°21′0″ N 莫村镇 Mocun Town 2
    12 112°2′54″ E,23°21′2″ N 莫村镇 Mocun Town 3
    13 112°3′5″ E,23°21′23″N 莫村镇 Mocun Town 3
    14 111°55′21″ E,23°15′55″ N 高良镇 Gaoliang Town 5
    15 111°55′45″E,23°14′18″ N 榃浪村 Tanlang Village 5
    16 111°55′11″ E,23°13′36″ N 中雄村 Zhongxiong Village 4
    17 111°55′31″ E,23°13′42″ N 中雄村 Zhongxiong Village 4
    18 111°54′54″ E,23°15′0″ N 年宅村 Nianzhai Village 5
    下载: 导出CSV 
    | 显示表格
    表  2  林下种植巴戟天采样点基本信息
    Table  2.  Basic information of sample plot for understory planting of Morinda officinalis
    采样点编号
    Sample plot
    number
    经纬度
    Longitude
    and latitude
    村或镇
    Village
    or town
    伴生植物
    Associated plant
    透光度/%
    Transparency
    生长年限
    Growth
    year
    1 111°55′45″E,
    23°17′37″N
    降底村
    Jiangdi Village
    杉木 Cunninghamia lanceolata
    马尾松 Pinus massoniana
    57.59 2
    2 111°54′8″E,
    23°17′34″N
    大揽村
    Dalan Village
    火炬松 Pinus taeda
    山菅兰 Dianella ensifolia
    37.91 2
    3 111°53′52″E,
    23°15′29″N
    高良镇
    Gaoliang Town
    肉桂 Cinnamomum cassia
    青皮竹 Bambusa textilis
    25.34 3
    4 111°55′45″E,
    23°14′18″N
    榃浪村
    Tanlang Village
    肉桂 C. cassia
    马尾松 P. massoniana
    山苍子 Litsea cubeba
    35.89 5
    5 111°55′31″E,
    23°14′11″N
    榃浪村
    Tanlang Village
    肉桂 C. cassia、火炬松 P. taeda
    五指毛桃 Ficus simplicissima
    36.15 5
    6 111°55′11″E,
    23°13′36″N
    中雄村
    Zhongxiong Village
    杉木 C. lanceolata
    乌毛蕨 Blechnum orientale
    33.39 4
    7 111°55′10″E,
    23°13′30″N
    中雄村
    Zhongxiong Village
    橄榄 Canarium album
    山麻黄 Psilopeganum sinense
    五指毛桃 F. simplicissima
    79.07 4
    8 111°54′54″E,
    23°15′0″N
    年宅村
    Nianzhai Village
    阴香 Cinnamomum burmanni
    肉桂 C. cassia、荔枝 Litchi chinensis
    乌毛蕨 B. orientale
    61.38 5
    下载: 导出CSV 
    | 显示表格

    土壤样品的养分含量分析按照《土壤农化分析》[17]进行,具体为:称取10 g过1 mm筛的土壤,加入25 mL无二氧化碳去离子水浸提,利用pH计测定土壤pH;称取1 g过0.25 mm筛的土壤,采用凯氏定氮法测定土壤全氮含量;称取2 g过1 mm筛的土壤,采用碱解扩散法测定土壤碱解氮含量;称取1 g过0.25 mm筛的土壤,采用高氯酸−氢氟酸消煮−钼锑抗比色法测定土壤全磷含量;称取2 g过1 mm筛的土壤,采用氟化铵−盐酸浸提−钼锑抗比色法测定速效磷含量;称取0.25 g过0.25 mm筛的土壤,采用高氯酸−氢氟酸消煮−火焰光度法测定土壤全钾含量;称取5 g过1 mm筛的土壤,采用乙酸铵浸提–火焰光度法测定速效钾含量;称取0.5 g过0.25 mm筛的土壤,采用重铬酸钾氧化外加热法测定土壤有机质含量。

    巴戟天肉质根全氮含量采用H2SO4−H2O2消煮−奈氏试剂比色法测定;全磷含量采用 H2SO4–H2O2 消煮−钼锑抗比色法测定;全钾采用H2SO4−H2O2消煮−原子吸收法测定。肉质根寡糖含量参照李倩[18]采用高效液相色谱–蒸发光散射法测定,通过峰面积计算样品中蔗糖、1−蔗果三糖、耐斯糖以及1F−果呋喃糖基耐斯糖的含量。

    试验数据采用Excel 2017和SPSS 25.0软件进行整理和统计分析,采用单因素方差分析(One-way ANOVA),用Duncan’s多重极差检验法比较巴戟天品质指标的差异性;土壤养分与巴戟天品质指标的相关性则采用Pearson法进行分析;林下和非林下品质指标之间的差异性采用配对样本t检验法进行比较。

    在采用主成分分析法进行综合评价时,选取反映巴戟天品质综合评估值的n个指标为X1X2,…,Xnm 个生长年限和种植环境的n项指标构成原始数据矩阵X=[Xij]n×m,其中,Xij为第i个模式的第j项指标数据(i=1, 2, …,nj=1, 2, …,m),按公式(1)对原始数据进行标准化,从而消除量纲和数量级的影响,然后确定主成分,从总方差分析表选取累积贡献率≥ 85%的前p个主成分,按公式(2)在建立p个主成分和标准化变量的关系后,按公式(3)确定权重,用第k个主成分的贡献率与选取的p个主成分的总贡献率的比值确定每个主成分的权重,最后按公式(4)构造综合评价函数,根据前p个主成分及其权重构造综合评价函数[19]

    $${X_{ij}}^* = ({X_{ij}} - \overline {{X_j}} )/{S_j},$$ (1)

    式中,Xij*Xij的标准化数据, $\overline {{X_j}} $ Sj是第j个指标的平均值和标准差。

    $${Y_k} = {u_{{k_1}}}{\boldsymbol{X}}_1^* + {u_{{k_2}}}{\boldsymbol{X}}_2^* + \cdots + {u_{{k_m}}}{\boldsymbol{X}}_m^*,$$ (2)

    式中,Yk是第k个主成分(k=1, 2, ···,p),uk1~ukm分别为第k1~km个主成分的因子荷载,X1*~Xm*均为标准化后的样本矩阵。

    $${\omega _k} = {\lambda _k}/\sum\limits_{k = 1}^p {{\lambda _k}} ,$$ (3)

    式中,ωk为第k个主成分的权重,λk为第k个主成分的贡献率。

    $$F = \sum\limits_{k = 1}^p {{\omega _k}{Y_k}} ,$$ (4)

    式中,F为不同生长年限和种植环境的巴戟天品质综合评价得分,分值越高表明该条件下的巴戟天品质越好。

    广东省德庆县是巴戟天道地产区。由表3可知,所收集到的土壤样品pH在4.08~4.90之间,差异较小,说明巴戟天适合种植在酸性土壤中。土壤有机质质量分数大部分在26~46 g·kg−1之间,11号样品有机质质量分数达到75.15 g·kg−1。土壤全氮、全磷、全钾的含量差异较大,这可能与当地的自然环境、施肥情况密切相关。

    表  3  巴戟天道地产区土壤pH和养分含量
    Table  3.  Soil pH and nutrient content in genuine producing areas of Morinda officinalis
    样品序号
    Sample
    number
    土壤类型
    Soil type
    pH
    w/(g·kg−1) w/(mg·kg−1)
    全氮
    Total N
    全磷
    Total P
    全钾
    Total K
    有机质
    Organic
    matter
    碱解氮
    Available N
    速效磷
    Available P
    速效钾
    Available K
    1 红壤 Red soil 4.45 1.55 0.43 14.60 26.95 153.60 5.80 123.55
    2 红壤 Red soil 4.25 1.91 0.62 11.18 27.72 157.52 46.26 154.32
    3 红壤 Red soil 4.33 2.53 0.22 8.58 33.86 197.31 3.04 66.55
    4 红壤 Red soil 4.50 2.35 0.25 9.13 43.09 188.70 4.67 68.00
    5 红壤 Red soil 4.18 1.66 0.41 12.47 40.50 169.55 27.29 99.43
    6 红壤 Red soill 4.10 2.00 0.20 12.89 30.25 199.93 3.62 71.67
    7 红壤 Red soil 4.52 2.11 0.46 18.21 26.82 168.97 12.47 89.65
    8 红壤 Red soil 4.51 2.06 0.26 10.05 37.04 202.02 11.27 131.75
    9 红壤 Red soil 4.40 2.09 0.25 9.99 37.12 175.84 6.47 142.88
    10 红壤 Red soil 4.25 1.40 0.21 17.32 36.23 342.07 3.45 74.70
    11 红壤 Red soil 4.18 4.08 0.33 11.16 75.15 230.14 12.27 90.12
    12 黄壤 Yellow soil 4.12 2.41 0.47 14.63 46.04 225.33 29.39 186.59
    13 黄壤 Yellow soil 4.25 2.07 0.32 12.33 46.31 192.76 24.72 140.38
    14 红壤 Red soil 4.08 1.06 0.27 6.78 37.05 162.21 14.09 90.78
    15 红壤 Red soil 4.56 0.88 0.49 9.65 23.64 78.15 17.85 123.57
    16 红壤 Red soil 4.66 2.70 0.66 7.17 33.68 118.69 38.14 146.22
    17 红壤 Red soil 4.69 1.31 0.76 6.75 32.77 118.48 41.00 151.24
    18 红壤 Red soil 4.68 1.47 0.47 4.99 28.03 136.20 32.77 136.34
    平均值 Mean 4.37 1.98 0.39 10.99 36.79 178.75 18.59 115.99
    最小值 Minimum 4.08 0.88 0.20 4.99 23.64 78.15 3.04 66.55
    最大值 Maximum 4.69 4.08 0.76 18.21 75.15 342.07 46.26 186.59
    标准误差 Standard error 0.01 0.04 0.01 0.20 0.65 3.13 0.79 1.97
    变异系数/% Coefficient of variation 4.71 36.73 42.21 33.12 31.66 31.48 76.44 30.59
    下载: 导出CSV 
    | 显示表格

    巴戟天药材中全氮质量分数为2.81~12.30 g·kg−1,全磷质量分数为0.12~0.71 g·kg−1,全钾质量分数为6.13~13.20 g·kg−1;巴戟天药材中4种寡糖成分含量差异较大,蔗糖质量分数为34.06~76.16 g·kg−1,1−蔗果三糖质量分数为9.99~59.30 g·kg−1,耐斯糖质量分数为27.93~69.41 g·kg−1,符合2015年版《中华人民共和国药典》巴戟天干燥品耐斯糖含量不得少于2.0%的要求[20];1F−果呋喃糖基耐斯糖质量分数为46.60~97.12 g·kg−1(表4)。

    表  4  道地产区巴戟天肉质根全氮、全磷、全钾和寡糖含量
    Table  4.  Total N, total P, total K and oligosaccharide contents of succulent root of Morindus officinalis in genuine producing areas w/(g·kg−1)
    样品序号
    Sample
    number
    全氮
    Total N
    全磷
    Total P
    全钾
    Total K
    蔗糖
    Sucrose
    1−蔗果三糖
    1-Kestose
    耐斯糖
    Nystose
    1F−果呋喃糖基耐斯糖
    1F- Fructo-
    furanosaccharides
    1 3.97 0.26 6.47 54.35 24.62 52.62 80.44
    2 9.22 0.60 11.61 57.72 29.51 43.25 57.77
    3 7.32 0.33 9.16 50.73 12.58 27.93 46.60
    4 4.30 0.31 6.36 50.04 16.65 48.37 74.99
    5 3.97 0.23 11.82 52.18 14.44 51.72 85.78
    6 4.75 0.26 9.69 57.43 21.47 49.55 75.85
    7 5.93 0.38 13.20 46.25 10.64 29.77 47.46
    8 4.09 0.22 8.28 59.65 21.73 51.75 81.96
    9 5.96 0.56 10.80 57.72 19.69 42.22 67.56
    10 7.90 0.34 10.64 65.43 28.93 37.91 55.72
    11 6.30 0.42 8.26 51.73 18.17 42.33 69.34
    12 12.30 0.68 13.19 76.16 34.97 43.91 58.06
    13 9.84 0.71 11.65 56.42 21.83 46.15 72.50
    14 2.81 0.22 6.47 46.33 9.99 31.85 53.77
    15 8.77 0.47 6.13 34.06 40.60 62.00 95.48
    16 11.70 0.61 9.31 46.49 46.79 65.46 97.12
    17 12.33 0.54 9.05 45.33 59.30 69.41 95.10
    18 11.99 0.12 6.58 34.09 42.18 58.77 87.70
    平均值 Mean 7.41 0.40 9.37 52.34 26.34 47.50 72.40
    最小值 Minimum 2.81 0.12 6.13 34.06 9.99 27.93 46.60
    最大值 Maximum 12.33 0.71 13.20 76.16 59.30 69.41 97.12
    标准误差 Standard error 0.18 0.01 0.13 0.56 0.76 0.65 0.92
    变异系数/% Coefficient of variation 43.51 44.07 25.36 19.27 51.83 24.64 22.75
    下载: 导出CSV 
    | 显示表格

    从相关性分析结果(表5)可以看出,土壤养分含量与巴戟天营养元素含量密切相关,其中,土壤全磷、速效磷、速效钾含量与巴戟天全氮含量均表现出极显著正相关关系,土壤速效钾含量与巴戟天全磷含量之间以及土壤全钾含量与巴戟天全钾含量之间均具有极显著正相关关系。土壤养分含量与巴戟天寡糖含量密切相关,其中,土壤碱解氮含量与巴戟天蔗糖含量呈极显著正相关关系,但却与耐斯糖和1F−果呋喃糖基耐斯糖含量呈显著负相关关系。土壤全磷、速效磷、速效钾含量与巴戟天1−蔗果三糖含量均表现出极显著正相关关系,与耐斯糖含量表现出极显著或显著正相关关系。值得注意的是,土壤pH与巴戟天营养元素没有显著相关关系,但与巴戟天寡糖呈显著相关关系,其中,土壤pH与蔗糖含量表现出极显著的负相关关系,与1−蔗果三糖、耐斯糖以及1F−果呋喃糖基耐斯糖含量均有显著或极显著的正相关关系,说明随着土壤pH的增加蔗糖含量降低,而1−蔗果三糖、耐斯糖与1F−果呋喃糖基耐斯糖含量却呈增加趋势。另外,土壤有机质含量与巴戟天品质指标之间相关关系不显著,说明土壤有机质含量对巴戟天品质影响不大。

    表  5  巴戟天品质与土壤养分含量的相关性分析1)
    Table  5.  Correlation analysis between Morinda officinalis quality and soil nutrient contents
    指标
    Index
    全氮
    Total N
    全磷
    Total P
    全钾
    Total K
    蔗糖
    Sucrose
    1−蔗果三糖
    1-Kestose
    耐斯糖
    Nystose
    1F−果呋喃糖基耐斯糖
    1F- Fructofuranosaccharides
    pH 0.373 −0.027 −0.349 −0.595** 0.578* 0.596** 0.570*
    全氮 Total N 0.012 0.246 0.213 0.279 −0.246 −0.223 −0.193
    碱解氮 Available N −0.192 −0.079 0.345 0.712** −0.384 −0.554* −0.570*
    全磷 Total P 0.651** 0.424 0.105 −0.303 0.749** 0.609** 0.455
    速效磷 Available P 0.700** 0.455 0.241 −0.156 0.650** 0.513* 0.366
    全钾 Total K −0.228 0.111 0.593** 0.570* −0.363 −0.431 −0.458
    速效钾 Available K 0.645** 0.610** 0.254 0.178 0.614** 0.471* 0.324
    有机质 Organic matter −0.079 0.179 0.086 0.313 −0.258 −0.193 −0.131
     1)“*”和“**”分别表示达0.05和0.01水平的显著相关(Pearson法)
     1) “*” and “**” indicate significant correlations at 0.05 and 0.01 levels, respectively (Pearson method)
    下载: 导出CSV 
    | 显示表格

    本次调查采集的是非林下种植环境的18个样地,巴戟天的生长年限包含1至6年生。由于1年生和6年生的仅有1个样点,故仅分析2~5年生巴戟天肉质根的营养元素和寡糖含量。

    图1可见,随着巴戟天生长年限的增长,其药用部分肉质根对全氮、全磷、全钾吸收积累量呈现先升高后降低的趋势,整体表现为全钾>全氮>全磷。2年生巴戟天的全氮含量显著低于其他生长年限的,其他处理间的全氮含量没有显著性差异。全磷含量、全钾含量在不同生长年限之间无显著差异,但均在3年生时达到最大值,分别为0.54、11.04 g·kg−1

    图  1  不同生长年限巴戟天药材营养元素含量
    各图中,柱子上方的不同小写字母表示生长年限间差异显著(P<0.05,Duncan’s法)
    Figure  1.  Nutrient element contents in Morinda officinalis of different growth years
    In each figure, different lowercase letters on the columns indicate significant differences among different growth years (P<0.05, Duncan’s method)

    图2可以看出,巴戟天生长年限不同,寡糖类成分含量各异。随着巴戟天生长年限的增加,蔗糖、1−蔗果三糖含量变化均呈现出先增加后下降的趋势。其中,蔗糖含量为3年生巴戟天最高,质量分数达到64.08 g·kg−1,显著高于其他生长年限的,同时,2年生巴戟天蔗糖含量显著高于4年生和5年生的,而4年生与5年生巴戟天的蔗糖含量之间无显著差异。在1-蔗果三糖含量上,4年生巴戟天显著高于2年生巴戟天(高出76.96%),4年生巴戟天达到32.68 g·kg−1,与3年生、5年生巴戟天没有显著差异,2年生、3年生与5年生巴戟天之间无显著差异。不同生长年限的巴戟天在耐斯糖和1F−果呋喃糖基耐斯糖含量上没有显著差异。

    图  2  不同生长年限巴戟天寡糖含量
    各图中,柱子上方的不同小写字母表示生长年限间差异显著(P<0.05,Duncan’s法)
    Figure  2.  Oligosaccharide contents in Morinda officinalisof different growth years
    In each figure, different lowercase letters on the columns indicate significant differences among different growth years (P<0.05, Duncan’s method)

    由于生产上巴戟天收获年龄为4年生,故本研究选择4年生的林下与非林下种植的巴戟天进行品质分析。林下与非林下种植的巴戟天全磷含量与全钾含量差异显著(图3),林下种植的巴戟天全磷含量比非林下种植巴戟天高44.79%,而全钾含量比非林下巴戟天低13.78%,全氮含量无显著差异。

    图  3  不同种植方式对4年生巴戟天营养元素含量的影响
    各图中,柱子上方的不同小写字母表示种植方式间差异显著(P<0.05,Duncan’s法)
    Figure  3.  Effects of different planting methods on nutrient element contents of 4-year-old Morinda officinalis
    In each figure, different lowercase letters on the columns indicate significant differences between different planting methods (P<0.05, Duncan’s method)

    图4可以看出,林下与非林下种植的巴戟天除耐斯糖含量没有显著差异外,其他寡糖含量间均有显著差异。其中,林下种植的4年生巴戟天蔗糖和1−蔗果三糖质量分数分别达到53.14和60.22 g·kg−1,分别高出非林下种植巴戟天32.49%和18.68%。而1F−果呋喃糖基耐斯糖含量却低于非林下巴戟天3.97%。

    图  4  不同种植方式对4年生巴戟天寡糖含量的影响
    各图中,柱子上方的不同小写字母表示种植方式间差异显著(P<0.05,Duncan’s法)
    Figure  4.  Effects of different planting methods on oligosaccharide content of 4-year-old Morinda officinalis
    In each figure, different lowercase letters on the columns indicate significant differences between different planting methods (P<0.05, Duncan’s method)

    主成分分析是对多个变量进行统计分析的一类定量分析方法,通过分析主成分载荷值和得分可以看出不同样品之间的关系,也可以解释样品的特点、分组、相似性及差别[21-22]。将巴戟天品质指标转化为7个主成分,分析结果如表6。7种指标可以提取出2种主成分,累计贡献率为85.776%。

    表  6  巴戟天品质指标的主成分初始特征值及累计贡献率
    Table  6.  Initial characteristic values and cumulative contribution rates of principal components of Morinda officinalis quality index
    变量1)
    Variable
    初始特征值 Initial eigenvalue 提取载荷平方和 Squared sum of extracted load
    特征值
    Eigen
    value
    贡献率/%
    Contribution
    rate
    累计贡献率/%
    Cumulative
    contribution rate
    特征值
    Eigen
    value
    贡献率/%
    Contribution
    rate
    累计贡献率/%
    Cumulative
    contribution rate
    X1 3.264 46.632 46.632 3.264 46.632 46.632
    X2 2.740 39.144 85.776 2.740 39.144 85.776
    X3 0.776 11.079 96.855
    X4 0.166 2.370 99.225
    X5 0.043 0.609 99.834
    X6 0.011 0.159 99.993
    X7 0.000 0.007 100.000
     1)X1:全氮;X2:全磷;X3:全钾;X4:蔗糖;X5:1–蔗果三糖;X6:耐斯糖;X7:1F–果呋喃糖基耐斯糖
     1)X1: Total N; X2: Total P; X3: Total K; X4: Sucrose; X5: 1-Kestose; X6: Nystose; X7: 1F- Fructofuranosaccharides
    下载: 导出CSV 
    | 显示表格

    为了更好地解释各品质指标与成分因子之间的关系,将所提取的主成分因子进行旋转处理,使一个变量在较少的几个因子上有较高的载荷,其载荷值的大小反映各有效成分指标在主成分中的重要程度(表7)。通过主成分分析可知,前2个主成分反映了7个指标的大部分综合信息,用2个主成分评价不同种植方式下巴戟天品质的优劣是可行的。因此,可用营养因子(F1)、寡糖因子(F2)代替原来7个指标(X1~X7)对巴戟天的品质进行分析,得到巴戟天品质前2个主成分的线性关系式分别为:

    表  7  巴戟天品质指标前2个主成分的载荷值
    Table  7.  Load values of the first two principal components of Morinda officinalis quality index
    评价指标
    Evaluation index
    载荷值 Loading value
    第一主成分
    The first principal component
    第二主成分
    The second principal component
    全氮 Total N 0.41 −0.15
    全磷 Total P 0.52 0.17
    全钾 Total K −0.42 −0.11
    蔗糖 Sucrose 0.36 0.45
    1−蔗果三糖 1-Kestose 0.10 0.59
    耐斯糖 Nystose −0.28 0.51
    1F−果呋喃糖基耐斯糖 1F- Fructofuranosaccharides −0.42 0.36
    下载: 导出CSV 
    | 显示表格

    F1=0.41X1+0.52X2−0.42X3+0.36X4+0.10X5−0.28X6−0.42X7

    F2= −0.15 X1+0.17X2−0.11X3+0.45X4+0.59X5+0.51X6+0.36X7

    以每个主成分对应的特征值的方差提取贡献率建立综合评价模型:

    F=0.15X1+0.36X2−0.28X3+0.40X4+0.32X5+0.08X6−0.06X7

    计算林下与非林下种植方式下巴戟天品质的综合评分(表8),得到不同种植方式下巴戟天品质特征的优劣顺序:7号样地林下种植巴戟天>6号样地林下种植巴戟天>6号样地非林下种植巴戟天>7号样地非林下种植巴戟天。说明,林下种植的巴戟天品质优于同条件下非林下种植的巴戟天。

    表  8  4年生巴戟天品质指标前2个主成分得分与排名
    Table  8.  Scores and rankings of the first two principal components in the quality index of 4-year-old Morinda officinalis
    采样点编号
    Sample
    plot number
    种植方式
    Planting
    method
    第一主成分
    The first principal component
    第二主成分
    The second principal component
    综合得分
    Synthesis
    score
    排名
    Rank
    得分 Score 排名 Rank 得分 Score 排名 Rank
    6 非林 No understory −1.58 4 1.09 2 −0.36 3
    林下 Understory −0.33 2 1.43 1 0.48 2
    7 非林下 No understory −0.87 3 −2.58 4 −1.65 4
    林下 Understory 2.78 1 0.07 3 1.54 1
    下载: 导出CSV 
    | 显示表格

    土壤理化性质是反映土壤养分的重要指标,土壤养分是植物生长发育的主要营养来源,同时也是创造优质高产必备的物质条件之一,研究其对巴戟天品质的影响有非常积极的意义。本研究表明,巴戟天品质与土壤养分关系密切,这与刘瑾等[23-24]的研究结果一致。药理研究显示,巴戟天寡糖具有抗抑郁功效,其主要发挥功能的糖分为四~七糖[25],如耐斯糖(简称:四糖)、1−果呋喃糖基耐斯糖(简称:五糖),土壤碱解氮与巴戟天蔗糖含量呈极显著正相关关系,但与耐斯糖和1F−果呋喃糖基耐斯糖呈显著负相关关系,故减少土壤碱解氮的含量有利于巴戟天抗抑郁成分的积累。而土壤全磷、速效磷、速效钾对巴戟天1−蔗果三糖、耐斯糖均表现出显著的正相关关系,表明提高土壤磷和钾的有效性,有助于促进巴戟天寡糖累积。土壤的酸碱性对巴戟天品质的影响较大,巴戟天更适合种植于弱酸性土壤中[26],与研究发现弱酸性的红壤或棕壤较适宜巴戟天的生长一致[15]。土壤pH与巴戟天根部营养元素含量无显著相关性,与蔗糖含量呈现出极强的负相关性,而与另外其他3种寡糖之间具有正相关关系,说明当土壤呈弱酸性时,会降低巴戟天根部的蔗糖含量,但会提高1−蔗果三糖、耐斯糖与1F−果呋喃糖基耐斯糖含量。土壤有机质是土壤肥力的重要组成部分,能够使植株正常生长发育,保证植物在生长过程中的养分需求[27],但与巴戟天品质指标没有显著相关性。

    不同生长年限的林下种植巴戟天的1−蔗果三糖和耐斯糖含量均大于同年生的非林下巴戟天,说明林下巴戟天从土壤中获取的养分较非林下巴戟天的多,从而使更多的单糖转化为1−蔗果三糖与耐斯糖。随着巴戟天生长年限的增加,巴戟天营养元素及寡糖含量呈现先增加后减少的变化趋势。这与玉竹Polygonatum odoratum、川党参Codonopsis pilosula[28]等药用植物有效成分积累的趋势一致,这主要是因为巴戟天生长前期(第1~4年)通过植物光合作用不断贮存营养物质,而进入衰老期(第5年)后营养物质的消耗量大于累积量,导致有效成分含量下降。此外,巴戟天药材中发挥抗痴呆、抗抑郁、保护生殖系统等功效的成分主要是低聚糖[29-31],而低聚糖需要由单糖在一系列酶的催化下才能逐渐被合成,只有经过种植年限的积累,低聚糖含量才会升高,且巴戟天药材种植4年后其有效药用成分均能满足《中华人民共和国药典》[20]巴戟天干燥品耐斯糖含量不得少于2.0%的要求,故4年生巴戟天获得的药材质量最佳。

    通过对不同种植方式下同年生巴戟天品质特征进行分析,林下种植的4年生巴戟天全磷、蔗糖、1−蔗果三糖含量显著高于非林下种植的,全钾、1F−果呋喃糖基耐斯糖含量却显著低于非林下种植的,可能是因为植物营养元素与有效成分并不是独立发挥作用,各成分之间具有一定相关性[32],从而导致不同种植方式对巴戟天品质特征物质含量有不同的促进作用。树林的郁闭度较大,为林下巴戟天提供了很好的遮荫效果,起到降温保湿的作用[33],这是林下种植的巴戟天有效成分含量优于非林下种植巴戟天的原因之一。

    土壤养分对巴戟天肉质根养分和寡糖含量有不同的影响,其中土壤pH与蔗糖含量表现出极显著的负相关性,与 1−蔗果三糖、耐斯糖以及1F−果呋喃糖基耐斯糖含量呈显著正相关性。土壤全磷、速效磷、速效钾含量与1−蔗果三糖和耐斯糖含量呈显著正相关关系,表明在巴戟天生长过程中可以通过增加土壤速效磷与速效钾含量以提高其品质。不同生长年限的巴戟天肉质根全氮、全磷、全钾含量没有显著差异,而3年生巴戟天蔗糖含量显著高于其他生长年限的巴戟天,4年生巴戟天的1−蔗果三糖含量显著高于2年生巴戟天。林下与非林下种植的巴戟天肉质根全氮、全磷、全钾、蔗糖、1−蔗果三糖、耐斯糖和1F−果呋喃糖基耐斯糖含量无一致规律,但主成分分析法综合评分结果显示,林下种植巴戟天品质优于非林下种植的巴戟天。

  • 图  1   重组基因RP1多表位串联模式图

    Figure  1.   Multi-epitope tandem pattern map of recombinant gene RP1

    图  2   重组质粒pCDH-CMV-MCS-EF1-Puro-RP1的鉴定结果

    M1:DL2000 DNA marker,M2:DL15000 DNA marker,M3:DL2000 DNA marker,1:EcoR I酶切产物pCDH-CMV-MCS-EF1-Puro-RP1,2:BamH I酶切产物pCDH-CMV-MCS-EF1-Puro-RP1;3:目的基因RP1

    Figure  2.   Identification result of recombinant plasmid pCDH-CMV-MCS-EF1-Puro-RP1

    M1: DL2000 DNA marker, M2: DL15000 DNA marker, M3: DL2000 DNA marker, 1: Digested product of pCDH-CMV-MCS-EF1-Puro-RP1 by EcoR I, 2: Digested product of pCDH-CMV-MCS-EF1-Puro-RP1 by BamH I, 3: Target gene RP1

    图  3   重组细胞CHO-K1-RP1的RT-PCR鉴定结果

    M:DL2000 DNA marker;1、2:RP1基因;3:空白对照

    Figure  3.   Identification result of recombinant cell CHO-K1-RP1 by RT-PCR

    M: DL2000 DNA marker; 1, 2: RP1 gene; 3: Blank control

    图  4   单克隆细胞株的间接免疫荧光试验鉴定

    a~o:部分阳性单克隆细胞系;p:空白对照;标尺=20 μm

    Figure  4.   Indirect immunofluorescence assay identification of monoclonal cell line

    a−o: Partially positive monoclonal cell lines; p: Blank control; Bar=20 μm

    图  5   融合蛋白在不同代次细胞中表达的鉴定

    CK:空白对照 Blank control

    Figure  5.   Identification of the expression of fusion protein in different generations of cells

    图  6   单克隆细胞株的Western blot 鉴定

    M:蛋白分子量标准;1~32:不同单克隆细胞株;CK:空白对照

    Figure  6.   Western blot identification of monoclonal cell line

    M: Protein molecular weight standard; 1−32: Different monoclonal cell lines; CK: Blank control

    图  7   不同单克隆细胞株融合蛋白的相对表达量

    1~32:不同单克隆细胞株;“*”、“**”和“***”分别表示细胞株和空白对照在 P<0.05、P<0.01 和 P<0.001 水平差异显著 (单因素方差分析)

    Figure  7.   Relative expression levels of fusion protein in different monoclonal cell lines

    1−32: Different monoclonal cell lines; “*”, “**” and “***” indicate significant differences between the cell line and the blank control at P<0.05, P<0.0l and P<0.001 levels (One-way ANOVA)

    图  8   融合蛋白的半定量结果

    1~4分别表示质量浓度为100.0、50.0、25.0、12.5 μg/mL的标准蛋白样品;5~6为CHO-K1-RP1单克隆细胞株样品

    Figure  8.   Semi-quantitative results of fusion protein

    1−4: Standard protein samples of 100.0, 50.0, 25.0 and 12.5 μg/mL;5−6: Samples of monoclonal cell line CHO-K1-RP1

    图  9   免疫后小鼠血清特异性抗体检测结果

    相同免疫次数柱子上方的不同小写字母表示不同组间具有显著差异(P<0.05,双因素方差分析)

    Figure  9.   Results of the serum specific antibody titer identification in immunized mice

    Different lowercase letters on the columns of the same immunization time represent significant differences among different groups (P<0.05, two-way ANOVA)

    表  1   表位肽序列及位置

    Table  1   Sequence and position of epitope peptides

    名称
    Name
    氨基酸位点/aa
    Amino acid position
    氨基酸序列
    Amino acid sequence
    B1 141~160 LPNVRGDLQVLAQKAARPLP
    B2 200~213 RHKQKIVAPVKQSL
    T1 21~40 ETQVQRRHHTDVSFILDRFV
    T2 16~44 ENYGGETQVQRRHHTDVSFILDRFVKVTP
    下载: 导出CSV
  • [1]

    BROWN F. The history of research in foot-and-mouth disease[J]. Virus Research, 2003, 91(1): 3-7.

    [2]

    CUI X M, WANG Y, GUAN R, et al. Enhanced immune responses with serum proteomic analysis of Hu sheep to foot-and-mouth disease vaccine emulsified in a vegetable oil adjuvant[J]. Vaccines, 2020, 8(2): 180. doi: 10.3390/vaccines8020180.

    [3]

    SCHUTTA C, BARRERA J, PISANO M, et al. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using homologous challenge[J]. Vaccine, 2016, 34(27): 3214-3220.

    [4]

    LOEFFLER F, FROSCH P. Summarischer bericht über die ergebnisse der untersuchungen der kommission zur erforschung der maul und klauenseuche bei dem Institut für infektionskrankheiten in Berlin[J]. Zentbl Bakt ParasitKde Abt I Orig, 1897, 22: 257-259.

    [5]

    LI P H, BAI X W, SUN P, et al. Evaluation of a genetically modified foot-and-mouth disease virus vaccine candidate generated by reverse genetics[J]. BMC Veterinary Research, 2012, 8: 57. doi: 10.1186/1746-6148-8-57.

    [6]

    PACHECO J M, GLADUE D P, HOLINKA L G, et al. A partial deletion in non-structural protein 3A can attenuate foot-and-mouth disease virus in cattle[J]. Virology, 2013, 446(1/2): 260-267.

    [7]

    MAHAPATRA M, PARIDA S. Foot and mouth disease vaccine strain selection: Current approaches and future perspectives[J]. Expert Review of Vaccines, 2018, 17(7): 577-591.

    [8]

    AVENDAÑO C, CELIS-GIRALDO C, ORDOÑEZ D, et al. Evaluating the immunogenicity of chemically-synthesised peptides derived from foot-and-mouth disease VP1, VP2 and VP3 proteins as vaccine candidates[J]. Vaccine, 2020, 38(23): 3942-3951.

    [9]

    KITCHING R P, KNOWLES N J, SAMUEL A R, et al. Development of foot-and-mouth disease virus strain characterization: A review[J]. Tropical Animal Health and Production, 1989, 21(3): 153-166.

    [10]

    BITTLE J L, HOUGHTEN R A, ALEXANDER H, et al. Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence[J]. Nature, 1982, 298(5869): 30-33.

    [11]

    BROWN F. Antibody recognition and neutralization of foot-and-mouth disease virus[J]. Seminars in Virology, 1995, 6(4): 243-248.

    [12]

    LIANG W F, ZHOU G H, LIU W M, et al. Identification of a conserved linear neutralizing epitope recognized by monoclonal antibody 9A9 against serotype A foot-and-mouth disease virus[J]. Archives of Virology, 2016, 161(10): 2705-2716.

    [13]

    CUBILLOS C, DE LA TORRE B G, BÁRCENA J, et al. Inclusion of a specific T cell epitope increases the protection conferred against foot-and-mouth disease virus in pigs by a linear peptide containing an immunodominant B cell site[J]. Virology Journal, 2012, 9: 66. doi: 10.1186/1743-422X-9-66.

    [14]

    BLANCO E, CUBILLOS C, MORENO N, et al. B epitope multiplicity and B/T epitope orientation influence immunogenicity of foot-and-mouth disease peptide vaccines[J]. Clinical & Developmental Immunology, 2013: 475960. doi: 10.1155/2013/475960.

    [15]

    BLANCO E, GARCIA-BRIONES M, SANZ-PARRA A, et al. Identification of T-cell epitopes in nonstructural proteins of foot-and-mouth disease virus[J]. Journal of Virology, 2001, 75(7): 3164-3174.

    [16] 李子菲, 刘芳, 何忠伟. 我国口蹄疫流行情况及其防控对策[J]. 科技和产业, 2019, 19(12): 15-20. doi: 10.3969/j.issn.1671-1807.2019.12.003
    [17]

    BELSHAM G J, KRISTENSEN T, JACKSON T. Foot-and-mouth disease virus: Prospects for using knowledge of virus biology to improve control of this continuing global threat[J]. Virus Research, 2020, 281: 197909. doi: 10.1016/j.virusres.2020.197909.

    [18] 赵文仕, 杨继生, 肖建忠, 等. 口蹄疫疫苗的研究进展[J]. 中国畜禽种业, 2014, 10(7): 64-66.
    [19] 何随彬, 金盈宇, 龚志亮, 等. 口蹄疫疫苗最新研究进展[J]. 上海畜牧兽医通讯, 2019(2): 30-32.
    [20]

    STERN B, OLSEN L C, TRÖSSE C, et al. Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells[J]. Trends in Cell & Molecular Biology, 2007, 2: 1-17.

    [21]

    LIU Y Q, ZHU Z X, ZHANG M T, et al. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses[J]. Veterinary Research, 2015, 46: 27. doi: 10.1186/s13567-015-0273-1.

    [22]

    SUTMOLLER P, BARTELING S S, OLASCOAGA R C, et al. Control and eradication of foot-and-mouth disease[J]. Virus Research, 2003, 91(1): 101-144.

    [23]

    FRENKEL H S. Research on foot-and-mouth disease. III. The cultivation of the virus on a practical scale in explantations of bovine tongue epithelium[J]. American Journal of Veterinary Research, 1951, 12(44): 187-190.

    [24]

    PFAFF E, MUSSGAY M, BÖHM H O, et al. Antibodies against a preselected peptide recognize and neutralize foot and mouth disease virus[J]. The Embo Journal, 1982, 1(7): 869-874.

    [25]

    CAO Y M, LU Z J, LI D, et al. Evaluation of cross-protection against three topotypes of serotype O foot-and-mouth disease virus in pigs vaccinated with multi-epitope protein vaccine incorporated with poly(I: C)[J]. Veterinary Microbiology, 2014, 168(2/3/4): 294-301.

    [26] 高明, 邵军军, 林彤, 等. 猪O型FMDV重组多表位抗原基因的克隆表达及免疫学鉴定[J]. 甘肃农业大学学报, 2017, 52(1): 1-6.
    [27]

    ZHU J W. Mammalian cell protein expression for biopharmaceutical production[J]. Biotechnology Advances, 2012, 30(5): 1158-1170.

    [28]

    KIM J Y, KIM Y G, LEE G M. CHO cells in biotechnology for production of recombinant proteins: Current state and further potential[J]. Applied Microbiology and Biotechnology, 2012, 93(3): 917-930.

    [29]

    CACCIATORE J J, CHASIN L A, LEONARD E F. Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system[J]. Biotechnology Advances, 2010, 28(6): 673-681.

    [30] 孙振文, 邵军军, 常惠芸. 信号肽对O型口蹄疫病毒重组表位蛋白在CHO中表达及分泌的影响[J]. 中国兽医科学, 2020, 50(3): 276-282.
  • 期刊类型引用(4)

    1. 陈海艺,徐悦,刘艺璇,张亚敏,郭红莲. 膜醭毕赤酵母蛋白复合膜对桃采后果腐病的抑制效果及机制. 食品与发酵工业. 2024(05): 274-279 . 百度学术
    2. 余生玲,申光辉,黄廷,杨露,张志清,侯晓艳,陈安均,黎杉珊. 藤椒精油对腐败解淀粉芽孢杆菌DY1a生物被膜的抑制作用. 微生物学通报. 2022(06): 2135-2151 . 百度学术
    3. 韩松林,安才让吉. 大蒜素生物学功能及其在畜禽养殖中的应用研究进展. 饲料研究. 2022(20): 157-159 . 百度学术
    4. 肖小年,盛丹梅,周洁,易孜成,朱碧泉,张俊,易醒. 大蒜油自微乳的抑菌作用. 中国食品学报. 2021(12): 73-80 . 百度学术

    其他类型引用(4)

图(9)  /  表(1)
计量
  • 文章访问数:  1654
  • HTML全文浏览量:  11
  • PDF下载量:  1017
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-09-18
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2021-05-09

目录

/

返回文章
返回