Agricultural artificial intelligence technology: Wings of modern agricultural science and technology
-
摘要:
加快推进人工智能等现代信息技术在农业中的应用,是现代农业发展的迫切需求,也有利于推进国家乡村振兴战略、数字乡村建设和智慧农业的发展。为深入剖析人工智能技术驱动智慧农业发展的潜力与方向,本文综述了农业人工智能的几个关键技术以及人工智能在种植业、禽畜牧业和农产品溯源与分级等应用研究领域的现状;分析了国内外农业人工智能技术的差距以及我国农业人工智能技术面临的国际态势和挑战;提出了我国发展农业人工智能的对策与建议。
Abstract:Accelerating the application of artificial intelligence (AI) and other modern information technologies in agriculture is an urgent need for the development of modern agriculture, which will help promote the development of national rural revitalization strategy, digital village construction and smart agriculture. To deeply analyze the potential and direction of smart agriculture driven by AI technology, we reviewed the key technologies of agricultural AI and the research status of agricultural AI for planting, poultry, animal husbandry and agricultural product traceability and classification, analyzed the gap of agricultural AI technology at home and abroad as well as the international situation and challenge of agricultural AI technology in China, and proposed the countermeasures and suggestions for the development of agricultural AI in the future.
-
[1] 赵春江. 智慧农业发展现状及战略目标研究[J]. 农业工程技术, 2019, 39(6): 14-17. doi: 10.3969/j.issn.1673-5404.2019.06.003 [2] 汝刚, 刘慧, 沈桂龙. 用人工智能改造中国农业: 理论阐释与制度创新[J]. 经济学家, 2020(4): 110-118. [3] 谢杨春. 传感器在农业上的应用[J]. 工程技术(文摘版), 2016(8): 266-267. [4] 何道清, 张禾. 传感器与传感器技术[M]. 北京: 科学出版社, 2014. [5] 孙红, 李松, 李民赞, 等. 农业信息成像感知与深度学习应用研究进展[J]. 农业机械学报, 2020, 51(5): 1-17. doi: 10.6041/j.issn.1000-1298.2020.05.001 [6] 丁春涛, 曹建农, 杨磊, 等. 边缘计算综述: 应用、现状及挑战[J]. 中兴通讯技术, 2019(3): 2-7. doi: 10.12142/ZTETJ.201903001 [7] 清华大学. 人工智能芯片技术白皮书: 2018[R/OL]. (2018-12-18)[2020-09-15]. https://wenku.baidu.com/view/203678bc0d22590102020740be1e650e52eacfe7.html. [8] 边缘计算社区. 关于边缘计算和边云协同, 看这一篇就够了[EB/OL]. (2019-09-13)[2020-09-15]. https://blog.csdn.net/weixin_41033724/article/details/100841011?biz_id=102&utm_term=%E4%BA%91%E8%BE%B9%E7%AB%AF%E5%8D%8F%E5%90%8C%E6%A1%86%E6%9E%B6&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-2-100841011&spm=1018.2118.3001.4187. [9] EPHREMIDES A. Energy concerns in wireless networks[J]. IEEE Wirel Comm, 2002, 9(4): 48-59. doi: 10.1109/MWC.2002.1028877
[10] 张少军, 无线传感器网络技术及应用[M]. 北京: 中国电力出版社, 2010. [11] 极飞科技. 极飞亮相世界无人机大会: 创始人彭斌讲述农业无人机的未来[EB/OL]. (2019-08-13)[2020-9-15]. http://www.zhiguker.com/index/article/detail?id=26267. [12] 极飞科技. 极飞R150 2020款农业无人车[EB/OL]. (2020-07-28)[2020-09-21]. https://www.xa.com/xauv_r150. [13] BAC C W, HEMMING J, VAN TUIJL B A J , et al. Performance evaluation of a harvesting robot for sweet pepper[J]. J Field Robot, 2017, 34(6): 1123-1139.
[14] 百度百科. 专家系统[EB/OL]. (2019-07-17)[2020-9-21]. https://baike.baidu.com/item/%E4%B8%93%E5%AE%B6%E7%B3%BB%E7%BB%9F/267819?fr=aladdin. [15] 蒋秉川, 万刚, 许剑, 等. 多源异构数据的大规模地理知识图谱构建[J]. 测绘学报, 2018(8): 1051-1061. doi: 10.11947/j.AGCS.2018.20180113 [16] 邱邱. 问答系统[EB/OL]. (2019-10-09) [2020-09-21]. http://blog.sina.com.cn/s/blog_627ed2e40100fxhi.html. [17] 吴茜. 基于知识图谱的农业智能问答系统设计与实现[D]. 厦门: 厦门大学, 2019. [18] 高灵旺, 陈继光, 于新文, 等. 农业病虫害预测预报专家系统平台的开发[J]. 农业工程学报, 2006, 22(10): 154-158. doi: 10.3321/j.issn:1002-6819.2006.10.033 [19] BAH M D, HAFIANE A, CANALS R. Deep learning with unsupervised data labeling for weed detection in line crops in UAV images[J]. Remote Sens, 2018, 10: 1690. doi: 10.3390/rs10111690.
[20] MUHAMMAD H A, ABDUL B. Weed detection in canola fields using maximum likelihood classification and deep convolutional neural network[J]. IPA, 2019. doi: 10.1016/j.inpa.2019.12.002.
[21] 张乐, 金秀, 傅雷扬, 等. 基于Faster R-CNN深度网络的油菜田间杂草识别方法[J]. 激光与光电子学进展, 2020, 57(2): 304-312. [22] KNOLL F J, CZYMMEK V, HARDERSLO, et al. Real-time classification of weeds in organic carrot production using deep learning algorithm[J]. Comput Electron Agric, 2019(167). doi: 10.1016/j.compag.2019.105097.
[23] 彭红星, 黄博, 邵园园, 等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J]. 农业工程学报, 2018, 34(16): 155-162. doi: 10.11975/j.issn.1002-6819.2018.16.020 [24] FU L S, FENG Y L, MAJEED Y, et al. Kiwifruit detection in field images using Faster R-CNN with ZFNet[J]. IFAC-PapersOnLine, 2018, 51(17): 45-50. doi: 10.1016/j.ifacol.2018.08.059
[25] ZHANG R F, WANG C, HU X P, et al. Weed location and recognition based on UAV imaging and deep learning[J]. Int J Precis Agric Aviat, 2020, 3(1): 23-29.
[26] TRISTAN C, PETER F. Simple remote sensing detection of Corymbia calophylla flowers using common 3-band imaging sensors[J]. RSASE, 2018: 11.
[27] 王书志, 宋广虎, 冯全. 基于深度卷积神经网络的葡萄新梢图像分割[J]. 沈阳农业大学学报, 2019, 50(4): 454-462. [28] 宗泽, 赵硕, 刘刚. 苗期玉米冠层识别与质心定位方法研究[J]. 农业机械学报, 2019, 50(S1): 27-33. [29] 龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194-201. doi: 10.11975/j.issn.1002-6819.2018.18.024 [30] 王献锋, 张传雷, 张善文, 等. 基于自适应判别深度置信网络的棉花病虫害预测[J]. 农业工程学报, 2018, 34(14): 157-164. doi: 10.11975/j.issn.1002-6819.2018.14.020 [31] 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236. doi: 10.6041/j.issn.1000-1298.2020.02.025 [32] XIE C, WANG R, ZHANG J, et al. Multi-level learning features for automatic classification of field crop pests[J]. Comput Electron Agr, 2018(152). doi: 10.1016/j.compag.2018.07.014.
[33] 张善文, 张传雷, 丁军. 基于改进深度置信网络的大棚冬枣病虫害预测模型[J]. 农业工程学报, 2017, 33(19): 202-208. doi: 10.11975/j.issn.1002-6819.2017.19.026 [34] 刘文定, 田洪宝, 谢将剑, 等. 基于全卷积神经网络的林区航拍图像虫害区域识别方法[J]. 农业机械学报, 2019, 50(3): 179-185. doi: 10.6041/j.issn.1000-1298.2019.03.019 [35] 黄双萍, 孙超, 齐龙, 等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报, 2017, 33(20): 169-176. doi: 10.11975/j.issn.1002-6819.2017.20.021 [36] MOHANTY S P, HUGHES D P, SALATHé M. Using deep learning for image-based plant disease detection[J]. Front Plant Sci, 2016, 7: 1419. doi: 10.3389/fpls.2016.01419
[37] 兰玉彬, 朱梓豪, 邓小玲, 等. 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类[J]. 农业工程学报, 2019, 35(3): 92-100. doi: 10.11975/j.issn.1002-6819.2019.03.012 [38] DENG X, ZHU Z, YANG J, et al. Detection of Citrus Huanglongbing based on multi-input neural network model of UAV hyperspectral remote sensing[J]. Remote Sens, 2020, 12(17): 2678. doi: 10.3390/rs12172678
[39] LAN Y B, HUANG Z X, DENG X L, et al. Comparison of machine learning methods for citrus greening detection on UAV multispectral images[J]. Comput Electron Agr, 2020(171). doi: 10.1016/j.compag.2020.105234.
[40] HUANG H S, DENG J Z, LAN Y B, et al. Automatic difference vegetation index generator for spider mite-infested cotton detection using hyperspectral reflectance[J]. Int J Precis Agric Aviat, 2020, 3(2): 83-88.
[41] DENG X L, THOMASSON A J, PUGH A N, et al. Estimating the severity of sugarcane aphids infestation on sorghum with machine vision[J]. Int J Precis Agric Aviat, 2020, 3(2): 89-96.
[42] TRUNG-TIN T, JAE-WON C, THIEN-TU H L, et al. A Comparative study of deep CNN in forecasting and classifying the macronutrient deficiencies on development of tomato plant[J]. Appl Sci, 2019, 9(8). doi: 10.3390/app9081601.
[43] 岳学军, 凌康杰, 王林惠, 等. 基于高光谱和深度迁移学习的柑橘叶片钾含量反演[J]. 农业机械学报, 2019, 50(3): 186-195. doi: 10.6041/j.issn.1000-1298.2019.03.020 [44] 岳学军, 凌康杰, 洪添胜, 等. 基于高光谱图像的龙眼叶片叶绿素含量分布模型[J]. 农业机械学报, 2018, 49(8): 18-25. doi: 10.6041/j.issn.1000-1298.2018.08.002 [45] SULISTYO S B, WOO W L, DLAY S S, et al. Building a globally optimized computational intelligent image processing algorithm for on-site inference of nitrogen in plants[J]. IEEE Intell Syst, 2018, 33(3): 15-26. doi: 10.1109/MIS.2018.111144506
[46] 熊俊涛, 戴森鑫, 区炯洪, 等. 基于深度学习的大豆生长期叶片缺素症状检测方法[J]. 农业机械学报, 2020, 51(1): 195-202. [47] CHEN S C, LI B C, CAO J, et al. Research on agricultural environment prediction based on deep learning[C]// Procedia Computer Science. Elsevier. 2018, 139: 33-40.
[48] ZHOU C Q, YE H B, HU J, et al. Automated counting of rice panicle by applying deep learning model to images from unmanned aerial vehicle platform[J]. Sensors, 2019, 19(14). doi: 10.3390/s19143106.
[49] CARLOS C, VICTORIA G D, PILAR H, et al. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture[J]. Int J Appl Earth Obs, 2018, 70: 105-117. doi: 10.1016/j.jag.2018.04.013
[50] JIANG H, HU H, ZHONG R, et al. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US corn belt at the county level[J]. Global Change Biol, 2019(1): 1-13.
[51] ALAN B, ARON G B, JOSHUA B, et al. Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production[J]. Horticulture Res, 2019(6): 70.
[52] ZHU H, LI H Z, LAN Y B. Development of a wireless communication system for monitoring crop condition with leaf wetness sensor[J]. Int J Precis Agric Aviat, 2020, 3(1): 54-58.
[53] TAHIR M N, LAN Y B, ZHANG Y L, et al. Real time estimation of leaf area index and groundnut yield using multispectral UAV[J]. Int J Precis Agric Aviat, 2020, 3(1): 1-6.
[54] LONG T, LONG Y B, LIU H C, et al. Nitrogen detection of dendrobium nobile based on hyperspectral images[J]. Int J Precis Agric Aviat, 2020, 3(2): 73-82.
[55] 章璐杰. 基于物联网的智慧葡萄园管理系统的优化研究[D]. 杭州: 浙江大学, 2017. [56] 袁帅, 宗立波, 熊慧君, 等. 一种智慧果园系统的设计与实现[J]. 农业工程, 2019, 9(4): 20-25. doi: 10.3969/j.issn.2095-1795.2019.04.007 [57] 李志然. 基于云平台蜜柚专家系统和智慧农业系统的构建[D]. 福州: 福建农林大学, 2019. [58] 杨伟志, 孙道宗, 刘建梅, 等. 基于物联网和人工智能的柑橘灌溉专家系统[J]. 节水灌溉, 2019(9): 116-120. doi: 10.3969/j.issn.1007-4929.2019.09.025 [59] 谢忠红, 徐焕良, 黄秋桂, 等. 基于高光谱图像和深度学习的菠菜新鲜度检测[J]. 农业工程学报, 2019, 35(13): 277-284. doi: 10.11975/j.issn.1002-6819.2019.13.033 [60] 曾窕俊, 吴俊杭, 马本学, 等. 基于帧间路径搜索和E-CNN的红枣定位与缺陷检测[J]. 农业机械学报, 2019, 50(2): 307-314. doi: 10.6041/j.issn.1000-1298.2019.02.035 [61] DARIO P C, MARIA C, BERNARDO P, et al. Non-destructive automatic quality evaluation of fresh-cut iceberg lettuce through packaging material[J]. J Food Eng, 2018, 223: 46-52. doi: 10.1016/j.jfoodeng.2017.11.042
[62] 倪超, 李振业, 张雄, 等. 基于短波近红外高光谱和深度学习的籽棉地膜分选算法[J]. 农业机械学报, 2019, 50(12): 170-179. doi: 10.6041/j.issn.1000-1298.2019.12.019 [63] 高震宇, 王安, 刘勇, 等. 基于卷积神经网络的鲜茶叶智能分选系统研究[J]. 农业机械学报, 2017, 48(7): 53-58. [64] 李帷韬, 曹仲达, 朱程辉, 等. 基于深度集成学习的青梅品级智能反馈认知方法[J]. 农业工程学报, 2017, 33(23): 276-283. doi: 10.11975/j.issn.1002-6819.2017.23.036 [65] 马腾, 孙传恒, 李文勇, 等. 基于NB-IoT的农产品原产地可信溯源系统设计与实现[J]. 中国农业科技导报, 2019, 21(12): 58-67. [66] 白红武, 孙爱东, 陈军, 等. 基于物联网的农产品质量安全溯源系统[J]. 江苏农业学报, 2013, 29(2): 415-420. doi: 10.3969/j.issn.1000-4440.2013.02.032 [67] 孙旭, 杨印生, 郭鸿鹏. 近场通信物联网技术在农产品供应链信息系统中应用[J]. 农业工程学报, 2014, 30(19): 325-331. doi: 10.3969/j.issn.1002-6819.2014.19.039 [68] CATARINUCCI L, CUI A I, EXPOSITO I, et al. RFID and WSNs for traceability of agricultural goods from farm to fork: Electromagnetic and deployment aspects on wine test-cases[C]//IEEE. 2011 19th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), IEEE, 2011: 1-4.
[69] RUIZ-GARCIA L, BARREIRO P, RODRIGUEZ-BERMEJOZ J, et al. Monitoring the intermodal, refrigerated transport of fruit using sensor networks[J]. Span J Agric Res, 2007, 5(2): 142-156. doi: 10.5424/sjar/2007052-234
[70] XIAO X, HE Q, FU Z, et al. Applying CS and WSN methods for improving efficiency of frozen and chilled aquatic products monitoring system in cold chain logistics[J]. Food Control, 2016, 60: 656-666. doi: 10.1016/j.foodcont.2015.09.012
[71] 马一名. 针对多用户类型的储粮害虫防治的专家反馈系统设计与实现[D]. 北京: 北京邮电大学, 2019. [72] 于合龙, 陈邦越, 徐大明, 等. 基于区块链的水稻供应链溯源信息保护模型研究[J]. 农业机械学报, 2020, 51(8): 328-335. doi: 10.6041/j.issn.1000-1298.2020.08.036 [73] 许继平, 孙鹏程, 张新, 等. 基于区块链的粮油食品全供应链信息安全管理原型系统[J]. 农业机械学报, 2020, 51(2): 341-349. doi: 10.6041/j.issn.1000-1298.2020.02.037 [74] DEEPAK P, NISHANT J, SUDAN J, et al. Blockchain-based traceability and visibility for agricultural products: A decentralized way of ensuring food safety in India[J]. Sustainability, 2020, 12(8). doi: 10.3390/su12083497.
[75] 陈涛, 牛瑞卿, 李平湘, 等. 基于人工神经网络的植被覆盖遥感反演方法研究[J]. 遥感技术与应用, 2010, 25(1): 24-30. doi: 10.11873/j.issn.1004-0323.2010.1.24 [76] 孙刚, 万华伟, 王昌佐, 等. 蒙陕甘宁能源金三角植被覆盖遥感监测与动态分析[J]. 农业机械学报, 2013, 44(S2): 247-250. [77] 李冰, 刘镕源, 刘素红, 等. 基于低空无人机遥感的冬小麦覆盖度变化监测[J]. 农业工程学报, 2012, 28(13): 160-165. [78] 刘峰, 刘素红, 向阳. 园地植被覆盖度的无人机遥感监测研究[J]. 农业机械学报, 2014, 45(11): 250-257. doi: 10.6041/j.issn.1000-1298.2014.11.039 [79] 李存军, 赵春江, 刘良云, 等. 红外光谱指数反演大田冬小麦覆盖度及敏感性分析[J]. 农业工程学报, 2004, 20(5): 159-164. doi: 10.3321/j.issn:1002-6819.2004.05.035 [80] 韩文霆, 郭聪聪, 张立元, 等. 基于无人机遥感的灌区土地利用与覆被分类方法[J]. 农业机械学报, 2016, 47(11): 270-277. doi: 10.6041/j.issn.1000-1298.2016.11.037 [81] 鲁恒, 付萧, 贺一楠, 等. 基于迁移学习的无人机影像耕地信息提取方法[J]. 农业机械学报, 2015, 46(12): 274-279. doi: 10.6041/j.issn.1000-1298.2015.12.037 [82] 刘文萍, 赵磊, 周焱, 等. 基于深度学习的无人机土地覆盖图像分割方法[J]. 农业机械学报, 2020, 51(2): 221-229. doi: 10.6041/j.issn.1000-1298.2020.02.024 [83] IENCO D, GAETANO R, DUPAQUIER C, et al. Land cover classification via multi-temporal spatial data by recurrent neural networks[J]. IEEE Geosci Remote Sens Lett, 2017, 14(6): 1685-1689.
[84] 李森, 彭玲, 胡媛, 等. 基于FD-RCF的高分辨率遥感影像耕地边缘检测[J]. 中国科学院大学学报, 2020, 37(4): 483-489. [85] KUSSUL N, LAVRENIUK M, SKAKUN S, et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geosci Remote Sens Lett, 2017, 14(5): 778-782. doi: 10.1109/LGRS.2017.2681128
[86] VITTORIO M, ALEEM K, MARCELLO C. Improvement in land cover and crop classification based on temporal features learning from sentinel-2 data using recurrent-convolutional neural network (R-CNN)[J]. Appl Sci, 2019, 10(1). doi: 10.3390/app10010238.
[87] 孙钰, 韩京冶, 陈志泊, 等. 基于深度学习的大棚及地膜农田无人机航拍监测方法[J]. 农业机械学报, 2018, 49(2): 133-140. doi: 10.6041/j.issn.1000-1298.2018.02.018 [88] MARK F, HANSEN M L, SMITH L N, et al. Towards on-farm pig face recognition using convolutional neural networks[J]. Comput Ind, 2018, 98: 145-152. doi: 10.1016/j.compind.2018.02.016
[89] 赵凯旋, 何东健. 基于卷积神经网络的奶牛个体身份识别方法[J]. 农业工程学报, 2015, 31(5): 181-187. doi: 10.3969/j.issn.1002-6819.2015.05.026 [90] 黄巍. 基于深度学习的牛脸检测与姿态角度估计[D]. 成都: 西南交通大学, 2019. [91] 杨阿庆, 薛月菊, 黄华盛, 等. 基于全卷积网络的哺乳母猪图像分割[J]. 农业工程学报, 2017, 33(23): 219-225. doi: 10.11975/j.issn.1002-6819.2017.23.028 [92] SANTOSH K, SANJAY K S, AMIT K S. Muzzle point pattern based techniques for individual cattle identification[J]. IET Image Process, 2017, 11(10): 805-814. doi: 10.1049/iet-ipr.2016.0799
[93] 杨秋妹, 肖德琴, 张根兴. 猪只饮水行为机器视觉自动识别[J]. 农业机械学报, 2018, 49(6): 232-238. doi: 10.6041/j.issn.1000-1298.2018.06.027 [94] 薛月菊, 朱勋沐, 郑婵, 等. 基于改进Faster R-CNN识别深度视频图像哺乳母猪姿态[J]. 农业工程学报, 2018, 34(9): 189-196. doi: 10.11975/j.issn.1002-6819.2018.09.023 [95] 李丹, 张凯锋, 李行健, 等. 基于Mask R-CNN的猪只爬跨行为识别[J]. 农业机械学报, 2019, 50(S1): 261-266. [96] 王凯. 基于深度学习的蛋鸡行为检测方法研究与系统开发[D]. 杭州: 浙江农林大学, 2019. [97] ARCIDIACONO C, PORTO S M C, MANCINO M, et al. Development of a threshold-based classifier for real-time recognition of cow feeding and standing behavioural activities from accelerometer data[J]. Comput Electron Agr, 2017(134): 124-134. doi: 10.1016/j.compag.2017.01.021.