Correlation between DNA methylation levels of imprinted genes XIST and H19 and developmental efficiency of porcine cloned embryo
-
摘要:目的
体细胞核移植(Somatic cell nuclear transfer,SCNT)在农业、生物医学等领域应用广泛,但是克隆效率太低制约了该技术的应用和推广。本研究的目的在于探究印记基因XIST和H19 DNA甲基化水平与克隆效率的联系。
方法利用同一头猪源耳朵成纤维细胞培养获得14个细胞克隆团,分别作为供体细胞进行SCNT试验,统计比较以各克隆团为供体细胞生产克隆胚胎的囊胚率以及各囊胚的XIST和H19基因调控区的DNA甲基化水平,对XIST和H19基因差异甲基化区域DNA甲基化水平与克隆胚胎的囊胚率进行相关性分析。
结果以1号克隆团为供体细胞得到囊胚的XIST基因DNA甲基化水平最高且囊胚率最低,分别为65.04%、8.6%,以14号克隆团为供体细胞得到XIST基因囊胚的DNA甲基化水平最低但囊胚率最高,分别为16.68%、38.2%;相关性分析表明XIST基因的DNA甲基化水平与囊胚率之间存在高度负相关(|r|=0.8125>0.8)。H19基因A侧甲基化平均水平最高和最低分别为5.12%和0.61%,相关性分析表明H19基因A侧DNA甲基化水平与囊胚率间只有极弱的相关(|r|=0.1647<0.3);H19基因G侧DNA甲基化水平最高和最低分别为90.92%和72.69%,相关性分析表明H19基因G侧DNA甲基化水平与囊胚率间只有低度相关(0.3<|r|=0.3098<0.5)。
结论XIST基因DNA甲基化水平越低,则克隆团囊胚率越高。研究结果对提高猪SCNT胚胎发育效率,改善现有的猪SCNT技术体系提供了基础。
Abstract:ObjectiveSomatic cell nuclear transfer (SCNT) is widely used in agriculture, biomedicine and other fields, but the low cloning efficiency restricts the application and promotion of this technology. The purpose of this study was to explore the relationship between the DNA methylation levels of imprinted genes (XIST, H19) and cloning efficiency.
MethodFourteen cell clone groups were obtained by culturing the same pig-derived ear fibroblasts, and were used as the donor cells for SCNT experiments. We statistically compared the blastocyst rates and DNA methylation levels of XIST and H19 gene regulatory regions for each sac of cloned embryos produced with each clone group as donor cells. We analyzed the correlation between the DNA methylation levels of differentially methylated regions for XIST and H19 genes and the blastocyst rates of cloned embryos.
ResultThe DNA methylation level of XIST gene of blastocysts obtained from clone group 1 as donor cells was the highest (65.04%) and the blastocyst rate was the lowest (8.6%). The DNA methylation level of XIST gene of blastocysts obtained from clone group 14 as donor cells was the lowest (16.68%) and the blastocyst rate was the highest (38.2%). The correlation analysis showed that there was a strong negative correlation between the XIST gene methylation level and the blastocyst rate (|r|=0.8125>0.8). The highest and lowest DNA methylation levels ofH19 gene A side were 5.12% and 0.61% respectively. Correlation analysis showed that there was only a very weak correlation between the DNA methylation level of H19 gene A side and blastocyst rate (|r|=0.1647< 0.3). The highest and lowest DNA methylation levels on the G side ofH19 gene were 90.92% and 72.69% respectively. Correlation analysis showed that there was only a low correlation between the DNA methylation level on the G side of H19 gene and the blastocyst rate (0.3<|r|=0.3098<0.5).
ConclusionThe lower the DNA methylation level of XIST gene, the higher the blastocyst rate of the clone group. The research results provide a basis for improving the efficiency of pig SCNT embryonic development and improving the existing pig SCNT technology system.
-
世界上最早报道柑橘黄龙病(Citurs Huanglongbing, HLB)的地区为我国广东潮汕地区[1-2],该病现已广泛分布于亚洲、美洲和非洲的多个国家,对全球多个柑橘产区造成严重威胁[3]。该病由候选的韧皮部杆菌“Candidatus Liberibacter spp.”引起,我国发现的黄龙病病原菌为该菌的亚洲种“Ca. L. asiaticus”(CLas)[4]。黄龙病可为害包括橙类、橘类、柚类和香橼等柑橘属植物的所有栽培品种。鉴于尚未发现可行的黄龙病治疗手段,目前防控该病害的措施主要为植物检疫、培养无病苗木、及时挖除病株和控制媒介昆虫亚洲柑橘木虱Diaphorina citri等[2-3]。
柑橘黄龙病可对柑橘的营养生长和果实品质造成严重影响,发病植株表现出复杂多样的症状,包括生长逐渐衰退、产量减少、病果畸形、果皮变软、果小味酸、经济寿命短、植株抗病性下降甚至死亡[5];不同生长季节的叶片表现出的病害症状存在差异,病害显症时表现为斑驳黄化、均匀黄化、缺素状黄化等症状[2]。随着发病程度加剧,病树容易早期落果,虽有部分果实仍可供采摘收获,但果实品质也发生了变化[6]。目前研究发现,多个柑橘品种感染黄龙病后,可溶性固形物及维生素C含量降低,外观和着色变差,可食用部分减少[7-10]。此外,黄龙病还可降低一些柑橘品种果实的甜味度、综合风味和果肉饱满度,并增加酸度、异味度,使得口感明显变差[7, 10]。
抗病柑橘品种选育一直都是黄龙病研究的重要领域。不同柑橘品种的抗性反应存在差异,多项研究表明柚类植物具有一定的黄龙病抗性或耐性,很少感染黄龙病[11-12],但也有研究表明黄龙病可使柚类植物出现新叶发黄、老叶斑驳、果小味苦、产量减少等症状[13-15];Folimonova等[16]发现不同柑橘品种对黄龙病的反应存在差异,其中3种柚类植物同样可感染黄龙病,其感病性较其他敏感品种低,症状表现多样且易变。目前关于柑橘黄龙病对柚类植物生长和果实品质影响的评价指标仍然不够丰富,难以做到客观判断,需系统性研究柑橘黄龙病对柚类植物的影响。
本研究以沙田柚Citrus maxima和砂糖橘Citrus reticulata为材料,在分析病菌浓度与植株感染黄龙病后的叶片症状的关系基础上,分析黄龙病病菌浓度对沙田柚树势、产量、果实内外品质和感官品质的影响。研究结果将为评价黄龙病对沙田柚生长以及果实品质的影响提供科学依据,同时也为解析柚类植物的黄龙病耐性机理提供一定的理论支撑。
1. 材料与方法
1.1 病原物的检测
称取0.1 g采自防虫网室或田间的柚树成熟叶片中脉并剪碎,采用植物DNA提取试剂盒(OMEGA)提取DNA,用去离子水将DNA调整到同一浓度,使用Li等[17]报道的CLas 16S rDNA的特异性引物和探针进行实时荧光定量PCR(qPCR)检测,统计各样品的扩增循环数(Cycle threshold,Ct),确定其带菌情况。
鉴于柑橘植原体“Candidatus Phytoplasmaasteri”和柑橘衰退病病毒Citrus tristeza virus可能导致相似的黄化症状[12,18],会干扰沙田柚的黄龙病症状观察,本研究所使用和调查的植物材料(嫁接病原芽条、无病苗圃样品和田间调查样品)均通过qPCR确保不含有上述2种病原微生物。各阳性、阴性样品和后续嫁接试验所用黄龙病接穗均来源于华南农业大学柑橘黄龙病研究室网室(23.09°N,113.21°E)。
1.2 病芽嫁接后黄龙病症状观察和病菌浓度检测
所用沙田柚和砂糖橘盆栽苗来源于华南农业大学园艺学院苗圃场(23.16°N,113.36°E),均为2年生无病苗,隔离种植于防虫网室中。选择对应的柑橘品种,通过qPCR检测后,分别将黄龙病菌浓度较一致(Ct=25±0.5)的接穗嫁接到健康沙田柚和砂糖橘上,每个品种嫁接10株(10个重复),嫁接苗隔离种植于防虫网室中,每隔30 d记载各植株嫁接后1年内的症状表现,并对其带菌情况进行检测。
1.3 田间症状调查和指标测定
选取广东省梅州市梅县石扇镇较高树龄(15年)和较低树龄(6年)沙田柚果园各1个进行调查。果园栽培管理条件较一致,均为平地种植,调查时间为果实成熟期。为了确定果园黄龙病发病情况,每个果园根据5点取样法(东西南北中)采集75个带有柚果的枝条上的叶片,进行编号和检测。分别从2个果园中选取健康(Ct>35)、低黄龙病菌浓度(28<Ct<32)和高黄龙病菌浓度(Ct<26)植株各10株(共60株),记录这些植株的树势、产量,鉴定田间叶片和果实症状。植株树势指标包括株高(cm)、树冠直径(cm)和树冠表面积(m2)。产量测定包括单株柚果总产量(kg)、总结果数和落果数,最后计算经济果产量(kg)。
1.4 果实外在品质的测定
每个果园分别选取健康、低菌浓度和高菌浓度枝条上的果实各10个,使用电子天平称量单果质量(g)和果皮质量(g),量尺测定每个柚果的纵径(cm)和横径(cm),游标卡尺测定果皮厚度(cm);计算果形指数和果皮率(%);评估果实着色指数(%);将种子剥离后,对种子计数(粒),称量种子质量(g),计算种子率(%)。
$${\text{果形指数}} = {\text{纵径}}/{\text{横径}}{\text{,}}$$ $${\text{果皮率}} = {\text{果皮质量}}/{\text{果实质量}}\times100{\text{%}}{\text{,}}$$ $$ {\text{果实着色指数}} = {\text{成熟果实黄色面积}}/{\text{果实总面积}}\times100{\text{%}}{\text{,}} $$ $${\text{种子率}} = {\text{种子质量}}/{\text{果实质量}}\times100{\text{%}}{\text{。}}$$ 1.5 果实内在品质的测定
用手动榨汁机分别对已测完外在品质的果实榨取汁液,4层纱布过滤后,称量果汁质量(g),
$${\text{出汁率}} = {\text{果汁质量}} / {\text{单果质量}}\times100{\text{%}}{\text{,}} $$ $$\begin{array}{c}{\text{可食率}} =\left( {\text{果实质量}}- {\text{果皮质量}}-{\text{种子质量}} \right)/\\{\text{果实质量}}\times100{\text{%}}{\text{。}} \end{array}$$ 用改良后的2,6−二氯酚靛酚钠滴定法测定汁液的维生素C含量[7, 19],用PAL-BX/ACID糖酸折射仪(日本ATAGO Co.,Ltd)测定可溶性固形物含量(%)和可滴定酸(以柠檬酸质量浓度计,g/L)。
1.6 果实风味感官品质的评价
采用改良后的Obenland法进行果实风味感官品质评价[20],由10名经过专业培训的人员对2个果园健康、低菌浓度和高菌浓度植株果实进行感官品质打分,健康、低菌和高菌浓度植株果实各取10个。打分标准包括甜味度(浓甜9分,中甜5分,无甜味1分)、酸味度(浓酸9分,中度酸5分,无酸味1分)、果肉饱满度(饱满9分,一般5分,干瘪1分)、异味度(较重9分,一般5分,无异味1分)和综合风味(极好9分,一般5分,极差1分)。
1.7 数据处理
基于数据重复数量和预测的数据分布模式,两样本间的显著性差异比较采用非参数分析Wilcoxon Mann–Whitney检验(P<0.05),多组数据结合Tukey’s studentized range test多重比较和非参数分析Kruskal–Wallis秩和检验(P<0.05)进行验证。统计分析通过SAS 9.0软件完成,图形由Origin v.9.0制作。
2. 结果与分析
2.1 病芽嫁接后沙田柚和砂糖橘盆栽苗黄龙病病菌浓度及症状
健康沙田柚植株嫁接带黄龙病接穗150 d后,没有发病(图1),经PCR检测没有发现黄龙病菌的存在(图2),植株正常生长,叶片青绿;嫁接180 d后有20%可检测到低浓度黄龙病菌(Ct=31.44),植株仍无明显症状(图1);嫁接病毒330和360 d后,所有柚苗均可检测到黄龙病菌,但病菌浓度保持在较低水平(Ct>28)(图2),老叶轻微斑驳黄化,新叶轻微均匀黄化,且抽梢正常。
图 2 沙田柚和砂糖橘盆栽苗嫁接黄龙病接穗后的阳性植株带菌量Ct指黄龙病菌16SrDNA的实时荧光扩增循环数;同折线不同字母表示差异显著(P<0.05,Tukey’s studentized range检验),相同时间“*”和“**”分别表示不同植物差异显著(P<0.05)和极显著(P<0.01)(Wilcoxon Mann–Whitney检验)Figure 2. Concentration of HLB pathogens in disease positive Citrus maxima and Citrus reticulata after grafting HLB-infected scionsCt refers to qPCR cycle threshold for 16S rDNA of HLB pathogen; Different letters in the same line indicate significant difference (Tukey’s studentized range test, P<0.05); “*” and “**” at the same time indicate the difference between two plant species reaches 0.05 and 0.01 significance levels, respectively (Wilcoxon Mann-Whitney test)砂糖橘嫁接病毒90 d后,有30%的植株可检测到低浓度黄龙病菌(Ct=29.49)(图2),这些植株新长出的叶片开始出现轻微黄化;嫁接150 d后,所有接种植株均可检测到病原菌(图1),且病菌浓度显著提高(Ct=26.56)(图2),整株叶片明显黄化,新叶细小;嫁接病毒180~210 d,病菌浓度进一步升高,老叶出现轻微斑驳黄化症状,有落叶现象,此时仍能正常抽发新叶;嫁接病毒240 d以后,菌浓度达到最高且保持在比较稳定的水平(Ct<25),老叶典型斑驳黄化,落叶明显,新叶转绿不正常,出现缺素型花叶。
通过对比2个柑橘品种的显症进程和病菌浓度变化,沙田柚的发病速度较慢,程度较轻(图1),当2种柑橘都能检测到黄龙病菌时(接种后180~360 d),带病沙田柚的带菌量显著低于砂糖橘(图2)。此外,相同条件下种植的健康未接种病原的沙田柚和砂糖橘苗在调查期间均检测不到黄龙病菌,叶片始终保持青绿状态。
2.2 柑橘黄龙病菌浓度对沙田柚田间症状、树势和产量的影响
2个沙田柚果园中,病菌浓度较低(28<Ct<32)的病树,6年生和15年生果园叶片均没有明显的黄龙病典型黄化症状或只表现轻微的均匀黄化,果实外观或纵切面(果实大小、着色情况和厚度等)均与健康的果实相似(图3a、3b),低浓度病树分别占6年生和15年生果园的13.33%(10/75)和16%(12/75);植株病菌浓度较高时(Ct<26),2个果园叶片均表现出典型的黄龙病斑驳黄化症状,叶片基部症状最明显,果实变小变轻,果皮着色不均匀,严重的情况下果实畸形、果皮增厚(图3c),高浓度病树分别占6年生和15年生果园的14.67%和13.33%。
图 3 健康和感染柑橘黄龙病沙田柚的叶片和果实图示a、b、c分别表示健康树(Ct>35)、低菌浓度病树(28<Ct<32)和高菌浓度病树(Ct<26)样品Figure 3. Leaves and fruits from healthy and HLB-infected Citrus maximaa, b and c indicate the samples collected from healthy trees (Ct>35), trees with low pathogen concentration (28<Ct<32), and trees with high pathogen concentration (Ct<26)黄龙病菌浓度对沙田柚的树势和产量的影响情况见表1。黄龙病菌浓度对相同树龄沙田柚的树势各指标(株高、树冠直径和表面积)并没有显著影响;树势主要受树龄因素调控:15年生沙田柚植株株高、树冠直径和表面积显著高于6年生植株。
表 1 柑橘黄龙病菌浓度对沙田柚树势和产量的影响1)Table 1. Effects of different concentrations of HLB pathogen on tree vigor and yield of Citrus maxima测定指标
Measured index健康树(Ct>35)
Healthy trees低菌浓度病树(28<Ct<32)
Trees with low pathogen concentration高菌浓度病树(Ct<26)
Trees with high pathogen concentration6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard株高/cm
Plant height263.90±9.91b 440.60±14.58a 253.00±15.13b 436.00±11.98a 249.90±11.65b 432.50±13.52a 树冠直径/cm
Crown diameter309.60±11.34b 503.70±11.24a 307.80±7.63b 511.00±9.10a 278.50±16.90b 498.75±11.82a 树冠表面积/m2
Crown superficial area26.09±1.70b 70.35±3.30a 24.78±1.48b 70.52±2.84a 22.34±2.12b 68.39±3.15a 单株总产量/kg
Total yield per plant43.11±2.11b 136.22±9.79a 42.79±1.73b 125.17±6.28a 25.44±3.52b 44.14±7.87b 总结果数/个
Total fruit number31.90±1.43bc 93.50±4.48a 28.80±2.69c 90.40±4.86a 22.80±2.86c 52.30±7.71b 落果数量/个
Number of drop fruit1.30±0.37b 2.70±0.99b 1.40±0.51b 1.60±0.81b 12.80±2.12b 40.60±7.13a 经济果总产量/kg
Total yield of economic fruit39.22±1.76b 129.73±7.97a 41.18±2.11b 121.30±5.71a 16.00±1.26cd 10.95±1.78d 1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
1)Different letters in the same row indicate significant difference(P<0.05, HSD test)沙田柚产量指标(单株柚果总产量、单株总结果数、落果数和经济果总产量)同时受到树龄和黄龙病菌浓度的影响,15年生柚树的单株柚果总产量和总结果数显著高于6年生柚树。与健康植株相比,携带低浓度(28<Ct<32)黄龙病菌对相同树龄沙田柚产量各指标没有显著影响。相比同树龄健康树和低菌浓度病树,15年生高菌浓度(Ct<26)病树的产量显著降低,落果数最多,经济果总产量最低,仅为对应健康植株的8.44%;6年生柚树可能由于总产量相对较低,高菌浓度病树单株总产量和结果数没有显著性变化,但因较高的落果数量,亦造成经济果总产量显著减少,为对应健康植株的40.80%。
2.3 柑橘黄龙病菌浓度对沙田柚果实外在品质的影响
表2表明,与健康果实相比,染病后低病菌浓度(28<Ct<32)病树的果实外在品质均无显著性差异;高病菌浓度(Ct<26)病树单果质量、果实纵径、横径、着色指数、果皮质量和种子数量显著降低,果皮率显著提高,果形指数、果皮厚度和种子数无显著性差异。此外,关于相同染病情况2个不同树龄的柚果,除了6年生高菌浓度柚果着色指数(65.50%)显著高于15年生(44.00%)高菌浓度柚果,其他各指标间均无显著性差异。
表 2 柑橘黄龙病菌浓度对沙田柚果实外在品质的影响1)Table 2. Effects of different concentrations of HLB pathogen on external qualities of Citrus maxima测定指标
Measured index健康树(Ct>35)
Healthy trees低菌浓度病树(28<Ct<32)
Trees with low pathogen concentration高菌浓度病树(Ct<26)
Trees with high pathogen concentration6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard单果质量/g
Fruit mass1 446.00±46.31a 1 455.60±49.14a 1 390.80±13.07a 1 409.20±13.77a 802.10±44.69b 906.60±32.11b 果实纵径/cm
Fruit vertical diameter18.58±0.42a 19.13±0.42a 18.44±0.25ab 19.17±0.27a 15.77±0.29c 16.79±0.33bc 果实横径/cm
Fruit transverse diameter15.14±0.27a 15.58±0.27a 14.87±0.28a 15.04±0.10a 12.96±0.24b 12.40±0.17b 果形指数
Fruit shape index1.27±0.03a 1.23±0.03a 1.24±0.02a 1.27±0.02a 1.33±0.02a 1.34±0.04a 果皮厚度/cm
Pericarp thickness1.93±0.05a 2.10±0.09a 1.98±0.04a 2.14±0.10a 2.01±0.07a 2.06±0.10a 果皮质量/g
Pericarp mass461.00±11.10ab 504.90±13.17a 453.00±16.38ab 491.20±8.77a 398.00±7.12bc 3 365.00±19.68c 果皮率/%
Rate of pericarp31.25±1.22b 36.02±0.90ab 31.28±1.17b 33.73±2.16b 43.00±2.38a 43.66±1.83a 着色指数/%
Color index90.50±1.38a 86.00±2.87ab 89.00±1.87ab 91.00±1.87a 65.50±5.70b 444.00±8.49c 种子数/粒
Seed number33.70±0.88a 39.30±1.74a 34.40±1.96a 36.00±1.61a 35.30±1.17a 35.10±1.97a 种子率/%
Seed rate0.97±0.05ab 1.23±0.07a 1.08±0.11ab 1.09±0.04ab 0.79±0.07b 0.78±0.12b 1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
1) Different letters in the same row indicate significant difference(P<0.05, HSD test)2.4 柑橘黄龙病菌浓度对沙田柚果实内在品质的影响
如表3所示,树龄对沙田柚果实各内在品质均无显著性影响。与健康树果实相比,低菌浓度(28<Ct<32)病树果实各内在品质指标无显著性变化,而高菌浓度(Ct<26)病树果实的可食率、出汁率、可溶性固形物含量和维生素C含量均显著降低,可滴定酸含量显著升高。
表 3 柑橘黄龙病菌浓度对沙田柚果实内在品质的影响1)Table 3. Effects of different concentrations of HLB pathogen on internal qualities of Citrus maxima测定指标
Measured index健康树(Ct>35)
Healthy trees低菌浓度病树(28<Ct<32)
Trees with low pathogen concentration高菌浓度病树(Ct<26)
Trees with high pathogen concentration6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard可食率/%
Percentage of edible fruit66.95±1.04a 63.94±0.80ab 66.32±1.30a 64.05±0.63ab 47.13±4.68c 55.57±2.27bc 出汁率/%
Juice extraction rate39.40±1.29a 39.82±1.04a 38.31±1.16ab 39.06±0.98ab 26.43±1.39c 31.99±2.32bc 可溶性固形物/%
Soluble solid content11.86±0.34ab 12.78±0.31a 11.62±0.27ab 11.86±0.21a 9.17±0.61c 10.23±0.32bc ρ(可滴定酸)/(g·L−1)
Titratable acid content7.16±0.37c 8.08±0.50bc 7.46±0.38c 7.66±0.66bc 11.47±0.49ab 11.67±1.40a w(维生素C)/(mg·kg−1)
Vitamin C content70.63±3.41ab 68.10±4.62ab 74.29±4.16a 71.22±2.47ab 58.42±2.95c 56.33±2.56c 1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
1) Different letters in the same row indicate significant difference (P<0.05, HSD test)2.5 柑橘黄龙病菌浓度对沙田柚果实风味感官品质的影响
如表4所示,在带病情况一致的条件下,不同树龄沙田柚果实风味的人为感官品质评价的各项指标均没有显著性差异。相同树龄条件下,低菌浓度病树(28<Ct<32)与健康树果实感官品质各项指标无显著性差异;高菌浓度(Ct<26)病树的柚果甜味度、饱满度和综合风味均显著降低,而酸味度和异味度均显著提高。
表 4 柑橘黄龙病菌浓度对沙田柚果实风味感官品质的影响1)Table 4. Effects of different concentrations of HLB pathogen on sensory qualities of Citrus maxima测定指标
Measured index健康树(Ct>35)
Healthy trees低菌浓度病树(28<Ct<32)
Trees with low pathogen concentration高菌浓度病树(Ct<26)
Trees with high pathogen concentration6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard甜味度
Sweetness7.06±0.20a 6.79±0.20a 6.75±0.19a 6.65±0.22a 2.53±0.36b 3.18±0.57b 酸味度
Acidity2.89±0.17c 3.01±0.18c 3.09±0.14bc 3.07±0.18c 4.31±0.30a 4.01±0.31ab 饱满度
Plumpness7.01±0.30a 6.81±0.20a 6.28±0.23a 6.91±0.26a 4.16±0.14b 4.96±0.22b 异味度
Odor degree2.20±0.14b 2.38±0.13b 2.43±0.14b 2.91±0.19b 5.39±0.26a 4.61±0.39a 综合风味Overall flavor 6.74±0.16a 6.52±0.23a 6.51±0.19a 6.12±0.17a 2.85±0.21b 3.76±0.44b 1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
1) Different letters in the same row indicate significant difference (P<0.05, HSD test)3. 讨论与结论
关于柚类品种耐黄龙病的相关研究很多,刘新华等[11]根据田间症状调查发现,同区域内沙田柚的田间发病率(2.6%)远低于柑橙类(21.5%);后续通过嫁接和分子试验证明,相比感病的椪柑Citrus reticulata Blanco cv. Ponkan,琯溪蜜柚Citrus maxima的症状表现和病菌侵染速度明显更慢[12]。在本研究中,相比同等种植条件下的砂糖橘,嫁接1年内的沙田柚叶片无明显黄龙病症状,抽梢正常,病原菌仍保持在较低水平,且低菌浓度对果实产量、果实内外观品质和风味人为感官品质均无明显影响,这可能与沙田柚自身特有的黄龙病抗性相关。植物叶片黄化主要是由于细胞叶绿体内淀粉颗粒异常膨大,挤压破坏类囊体基粒和片层造成[21-23],说明黄龙病引起的黄化症状可能与淀粉积累相关。戴泽翰等[24]通过显微观察发现发病沙田柚的维管形成层比感病品种具有更旺盛的分化能力,可形成更多的次生韧皮部细胞,且光合细胞合成和容纳淀粉的能力更强。更发达的韧皮部可缓解淀粉的局部累积,这可能就是柚类植物较耐黄龙病的原因之一。
本研究发现沙田柚同样具有较高的黄龙病菌感染率,在嫁接病穗330 d后全部植株均染病,且高浓度黄龙病菌可影响沙田柚叶片症状、果实产量、内外品质和感官品质,使叶片斑驳黄化、果实变小变轻、严重时果实畸形、果轴歪斜,这些表现与前期关于沙田柚的田间调查结果相一致[25-26];产量、品质、出汁率、可溶性固形物和维生素C含量显著下降,酸含量升高,该现象同样发生在砂糖橘、纽荷尔脐橙Citrus sinensis Osbeck cv. Newhall、哈姆林甜橙Citrus sinensis Osbeck cv. Hamlin、瓦伦西亚橙Citrus sinensis Osbeck cv. Valencia、瓯柑Citrus reticulata Blanco cv. Suavissima等其他柑橘品种中[6, 8, 10, 27-28]。其中,可溶性固形物含量在沙田柚果实感官和品质鉴定中起关键作用,直接影响甜度和苦味,间接影响果汁含量[29]。本研究发现果实出汁率及感官和品质确实与可溶性固形物含量存在相关性,随着可溶性固形物含量的降低,果实出汁率、甜味度、饱满度及综合风味明显下降,酸味度和异味度加强,食用感官明显变差。此外,不同柑橘品种对黄龙病的反应存在差异,可能与不同品种的果实品质和栽培环境存在差异有关,因此需明确黄龙病对柚类植物树势、产量、果实内外品质、感官品质的系统性影响,从而深入研究柚类植物的耐性机制。
因柚类植物存在一定的黄龙病耐病性,种植者往往对其发病情况关注较少,也忽略了对传病媒介柑橘木虱的防治。虽然症状不明显的病树仍有一定的经济价值,但这些带病植株有病原菌的侵染和分布,可作为田间黄龙病菌的来源,通过人为嫁接或虫媒自然传播感染其他健康植株,并且随着发病程度的进一步加剧,柚类植物的经济价值会受到严重影响,甚至颗粒无收,造成无法挽回的损失。因此,在柚园管理的过程中,应及时发现病株,对其进行铲除或隔离,并注意防控柑橘木虱,以免病害扩散蔓延。
致谢:感谢嘉应学院生命科学学院师生在部分植物材料收集上给予的支持与帮助!
-
图 4 不同单细胞克隆团制备的囊胚的XIST基因DNA甲基化水平和囊胚率
柱子上方的不同小写字母表示克隆团间甲基化水平差异显著(P<0.05,LSD法)
Figure 4. The DNA methylation levels and blastocyst rates of XIST genes of blastocysts prepared from different single-cell cloning groups
Different lowercase letters on bars indicate significant differences in methylation levels among clone groups(P<0.05, LSD method)
图 6 不同单细胞克隆团制备的囊胚的H19基因A侧等位基因的DNA甲基化水平和囊胚率
柱子上方的不同小写字母表示克隆团间甲基化水平差异显著(P<0.05,LSD法)
Figure 6. The DNA methylation levels and blastocyst rates on the A allele sides of H19 genes of blastocysts prepared from different single-cell cloning groups
Different lowercase letters on bars indicate significant differences in methylation levels among clone groups(P<0.05, LSD method)
图 7 不同单细胞克隆团制备的囊胚的H19基因G侧等位基因的DNA甲基化水平和囊胚率
柱子上方的不同小写字母表示克隆团间甲基化水平差异显著(P<0.05,LSD法)
Figure 7. The DNA methylation levels and blastocyst rates on the G allele sides of H19 genes of blastocysts prepared from different single-cell cloning groups
Different lowercase letters on bars indicate significant differences in methylation levels among clone groups(P<0.05, LSD method)
表 1 猪H19和XIST基因巢氏PCR引物信息
Table 1 Primer information for nest PCR of porcine H19 and XIST genes
基因
Gene引物
Primer引物序列(5′→3′)
Primer sequence退火温度/℃
Annealing temperatureH19 H19-OF GGTTTTAGGGGGATATTTTTT 50 H19-OR CTAAACACCCAACCTTTAACAC H19-IF GTAGGGTTTTTGGTGGTATAGGG 55 H19-IR AAAATAAAACAAAACCCCACACTTA XIST XIST-OF GTGTGTATTTTTTGATAAATTTTGT 55 XIST-OR CRATACTAACTAACTAAATAAAAAC XIST-IF GGATAATATGGTTGATTTTGTTATGTG 59 XIST-IR CACCACCCTTTCTAATTAAATATATC 表 2 胚胎收集情况统计
Table 2 Statistics of embryo collection
克隆团编号
Clone group number重构胚胎数
Number of reconstructed embryos卵裂胚胎数
Number of cleavage embryos囊胚数
Number of blastocyst卵裂率/%
Cleavage rate囊胚率/%
Blastocyst rate1 35 25 3 71.4 8.6 2 20 17 4 85.0 20.0 4 29 20 6 69.0 20.7 5 19 10 3 52.6 15.8 6 39 35 8 89.7 20.5 7 38 30 8 78.9 21.1 8 30 21 1 70.0 3.3 9 39 32 7 82.1 17.9 10 30 24 11 80.0 36.7 11 33 25 8 75.8 24.2 13 28 19 5 67.9 17.9 14 34 30 13 88.2 38.2 15 18 11 5 61.1 27.8 20 26 19 8 73.0 30.8 -
[1] GURDON J B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles[J]. Journal of Embryology and Experimental Morphology, 1962, 10: 622-640.
[2] WILMUT I, SCHNIEKE A E, MCWHIR J, et al. Viable offspring derived from fetal and adult mammalian cells[J]. Nature, 1997, 385(6619): 810-813. doi: 10.1038/385810a0
[3] KATO Y, TANI T, SOTOMARU Y, et al. Eight calves cloned from somatic cells of a single adult[J]. Science, 1998, 282(5396): 2095-2098. doi: 10.1126/science.282.5396.2095
[4] WAKAYAMA T, PERRY A C, ZUCCOTTI M, et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei[J]. Nature, 1998, 394(6691): 369-374. doi: 10.1038/28615
[5] BAGUISI A, BEHBOODI E, MELICAN D T, et al. Production of goats by somatic cell nuclear transfer[J]. Nature Biotechnology, 1999, 17(5): 456-461. doi: 10.1038/8632
[6] ONISHI A, IWAMOTO M, AKITAT, et al. Pig cloning by microinjection of fetal fibroblast nuclei[J]. Science, 2000, 289(5482): 1188-1190. doi: 10.1126/science.289.5482.1188
[7] LCC B C, KIM M K, JANG G, et al. Dogs cloned from adult somatic cells[J]. Nature, 2005, 436(7051): 641. doi: 10.1038/436641a
[8] SHI D, LU F, WEI Y, et al. Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells[J]. Biology of Reproduction, 2007, 77(2): 285-291. doi: 10.1095/biolreprod.107.060210
[9] WANI N A, WERNERY U, HASSANF A, et al. Production of the first cloned camel by somatic cell nuclear transfer[J]. Biology of Reprodution, 2010, 82(2): 373-379.
[10] LIU Z, CAI Y, WANG Y, et al. Cloning of macaque monkeys by somatic cell nuclear transfer[J]. Cell, 2018, 172(4): 881-887. doi: 10.1016/j.cell.2018.01.020
[11] YANG X, SMITH S L, TIAN X C, et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning[J]. Nature Genetics, 2007, 39(3): 295-302. doi: 10.1038/ng1973
[12] 邢宝松. 体细胞克隆山羊表观遗传修饰与基因表达特征研究[D]. 南京: 南京农业大学, 2007. [13] JI H, LU S, PAN D. Epigenetic reprogramming by somatic cell nuclear transfer: Questions and potential solutions[J]. Yi Chuan, 2014, 36(12): 1211-1218.
[14] BERGMAN Y, CEDAR H. DNA methylation dynamics in health and disease[J]. Nature Structural & Molecular Biology, 2013, 20(3): 274-281.
[15] 魏延昌. 克隆猪印迹基因表达及其甲基化状态研究[D]. 哈尔滨: 东北农业大学, 2010. [16] JIANG L, LAI L, SAMUEL M, et al. Expression of X-linked genes in deceased neonates and surviving cloned female piglets[J]. Molecular Reproduction and Development, 2008, 75(2): 265-273. doi: 10.1002/mrd.20758
[17] WIANNY F, BLACHERE T, GODET M, et al. Epigenetic status of H19/IGF2 and SNRPN imprinted genes in aborted and successfully derived embryonic stem cell lines in non-human primates[J]. Stem Cell Research, 2016, 16(3): 557-567. doi: 10.1016/j.scr.2016.03.002
[18] BAO S, MIYOSHI N, OKAMOTO I, et al. Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte[J]. Embo Reports, 2005, 6(8): 748-754. doi: 10.1038/sj.embor.7400461
[19] NOLEN L D, GAO S, HAN Z, et al. X chromosome reactivation and regulation in cloned embryos[J]. Developmental Biology, 2005, 279(2): 525-540. doi: 10.1016/j.ydbio.2005.01.016
[20] INOUE K, KOHDA T, SUGIMOTO M, et al. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer[J]. Science, 2010, 330(6003): 496-499. doi: 10.1126/science.1194174
[21] MATOBA S, INOUE K, KOHDA T, et al. RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20621-20626. doi: 10.1073/pnas.1112664108
[22] 杨利华, 姜杰, 赵秀芝, 等. 颗粒细胞瘤中Lnc H19与雌二醇及细胞因子IGF1R相关性研究[J]. 免疫学杂志, 2015, 31(5): 400-403. [23] THORVALDSEN J L, DURAN K L, BARTOLOMEI M S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2[J]. Genes Development, 1998, 12(23): 3693-3702. doi: 10.1101/gad.12.23.3693
[24] HAN D W, IM Y B, DO J T, et al. Methylation status of putative differentially methylated regions of porcine IGF2 and H19[J]. Molecular Reproduction and Development, 2008, 75(5): 777-784. doi: 10.1002/mrd.20802
[25] XU W, LI Z, YU B, et al. Effects of DNMT1 and HDAC inhibitors on gene-specific methylation reprogramming during porcine somatic cell nuclear transfer[J]. PLoS One, 2013, 8(5): e64705. doi: 10.1371/journal.pone.0064705
[26] 赵静. 青钱柳多糖对大鼠脂代谢相关基因DNA甲基化及表达影响的研究[D]. 南昌: 江西农业大学, 2016. [27] MAO J, ZHAO M T, WHITWORTH K M, et al. Oxamflatin treatment enhances cloned porcine embryo development and nuclear reprogramming[J]. Cell Reprogramming, 2015, 17(1): 28-40. doi: 10.1089/cell.2014.0075
[28] BRUECKNER B, GARCIA B R, SIEDLECKI P, et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases[J]. Cancer Research, 2005, 65(14): 6305-6311. doi: 10.1158/0008-5472.CAN-04-2957
[29] SCHIRRMACHER E, BECK C, BRUECKNER B, et al. Synthesis and in vitro evaluation of biotinylated RG108: A high affinity compound for studying binding interactions with human DNA methyltransferases[J]. Bioconjugate Chemistry, 2006, 17(2): 261-266. doi: 10.1021/bc050300b
[30] 黄永业. 猪体细胞核移植重编程和胚胎发育影响因素研究[D]. 长春: 吉林大学, 2014. [31] YAMANAKA S. Elite and stochastic models for induced pluripotent stem cell generation[J]. Nature, 2009, 460(7251): 49-52. doi: 10.1038/nature08180
[32] 李美蓉. 表皮干细胞多向分化潜能特征的发现及其相关研究[D]. 北京: 中国人民解放军军医进修学院, 2011. [33] OGURA A. How to improve mouse cloning[J]. Theriogenology, 2020, 150: 215-220. doi: 10.1016/j.theriogenology.2020.01.038