Effects of different adjuvants and nozzles on droplet distribution and drift when applied with UAV
-
摘要:目的
探索在大田环境中不同助剂和喷头型号对无人机喷洒雾滴分布和漂移的影响。
方法利用色素染色法染色雾滴,使用大疆MG-1S无人机进行喷洒作业,并收集雾滴卡进行扫描分析。喷洒中使用φ为1%的不同助剂溶液或不同种类喷头,以比较助剂和喷头对雾滴分布的影响。
结果室内喷洒φ为1%助剂溶液时,雨燕油性助剂、禾大助剂提高雾滴粒径的效果较优。IDK 120-01喷头增大雾滴粒径效果最明显。在大田测试中,所有的助剂相比清水对照都降低了漂移。大部分雾滴集中于距离喷洒航线2 m距离内。离地80 cm处的雾滴沉积量比离地50 cm的雾滴沉积量少40%~60%。雨燕油性助剂在目标区域沉积较多。目标区域内使用IDK 120-01喷头的雾滴沉积量最大,但单位面积的雾滴数量较少。
结论使用助剂和大粒径喷头均可以明显降低雾滴漂移,提高目标区域雾滴沉积量。不同助剂抗漂移效果有明显差异。
Abstract:ObjectiveTo explore the influences of different adjuvants and nozzles on the distribution and drift of droplets when applied with UAV in the field environment.
MethodThe droplets were dyed by pigment staining. DJI MG-1S was used for spraying. The droplet reception cards were collected, scanned and analyzed. The solutions of different adjuvants (φ=1%) and different nozzles were used to compare the influences of adjuvant and nozzle on distribution of droplets.
ResultIn the lab spraying experiments, the solutions of Yuyan oily and Heda adjuvants (φ=1%) showed better effect on increasing droplet size. The IDK 120-01 nozzle increased droplet size most significantly. In the field test, compared with clear water control, all adjuvants reduced drift, most droplets were within two meters of the spraying route. The amount of droplets at 80 cm above the ground was 40%–60% less than that at 50 cm above the ground. Yuyan oily adjuvant had more deposition in the target area. The IDK 120-01 nozzle showed the most deposition in the target area with less droplet number per unit area.
ConclusionUsing adjuvants and large droplet size nozzles can significantly reduce drift and increase deposition in the target area. The anti-drift effects of different adjuvants are significantly different.
-
Keywords:
- UAV spraying /
- adjuvant /
- nozzle /
- droplet distribution /
- droplet drift
-
图 2 雾滴漂移量田间评估试验布置示意图
A:植保无人机喷洒航线、风向和分布的俯瞰示意图;B:无人机喷洒、风向和雾滴卡分布的侧面示意图
Figure 2. Experimental arrangement diagram in field for droplet drift amount estimation
A: Schematic diagram of aerial view of plant protection UAV spraying routes, wind direction and distribution of droplet; B: Lateral diagram of UAV spraying, wind direction and distribution of droplet reception card
图 7 无人机喷洒不同助剂溶液(φ为1%)后喷洒区域内的雾滴沉积量
图中数据为平均值±标准差,柱子上方具有相同字母表示差异不显著(α= 0.05,Student-Newman-Keuls)
Figure 7. Droplet deposition of φ=1% solutions of different adjuvants in spraying area when sprayed with UAV
Date in the figure represent mean value ± standard deviation, bars with the same lowercase letters are not significantly different according to Student-Newman-Keuls (α = 0.05)
图 10 无人机配备不同喷头进行喷洒后喷洒区域内的雾滴沉积量
图中数据为平均值±标准差,柱子上方具有相同字母表示差异不显著(α=0.05,Student-Newman-Keuls)
Figure 10. Droplet deposition in spraying area when UAV is equipped with different nozzles
Date in the figure represent mean value ± standard deviation, bars with the same lowercase letter are not significantly different according to Student-Newman-Keuls (α=0.05)
图 11 无人机配备不同喷头进行喷洒后喷洒区域内的雾滴密度
图中数据为平均值±标准差,柱子上方具有相同字母表示差异不显著(α=0.05,Student-Newman-Keuls)
Figure 11. Droplet density in spraying area when UAV is equipped with different nozzles
Date in the figure represent mean value ± standard deviation, bars with the same lowercase letter are not significantly different according to Student-Newman-Keuls (α = 0.05)
-
[1] WANG M, JIN H. Spray-induced gene silencing: A powerful innovative strategy for crop protection[J]. Trends Microb, 2017, 25(1): 4-6. doi: 10.1016/j.tim.2016.11.011
[2] QIN W C, QIU B J, XUE X Y, et al. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers[J]. Crop Prot, 2016, 85: 79-88. doi: 10.1016/j.cropro.2016.03.018
[3] WANG G B, LAN Y B, QI H X, et al. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: Effect of spray volume on deposition and the control of pests and disease in wheat[J]. Pest Manag Sci, 2019, 75(6): 1546-1555. doi: 10.1002/ps.5321
[4] YAN X J, YUAN H Z, ZHOU X X, et al. Control efficacy of different pesticide formulations and fan-nozzle model on wheat aphids by UAVs[J]. Int J Precis Agric Aviat, 2020, 3(2): 35-39.
[5] ZHOU L P, HE Y. Simulation and optimization of multi spray factors in UAV[C]//ASABE. 2016 American Society of Agricultural and Biological Engineers Annual International Meeting. Michigan: ASABE, 2016: 1.
[6] ZHANG P, DENG L, LYU Q, et al. Effects of citrus tree-shape and spraying height of small unmanned aerial vehicle on droplet distribution[J]. Int J Agric Biol Eng, 2016, 9(4): 45-52.
[7] ZHANG P, WANG K, QIANG L, et al. Droplet distribution and control against citrus leafminer with UAV spraying[J]. Int J Robot Autom, 2017, 32(3): 299-307.
[8] 薛新宇, 兰玉彬. 美国农业航空技术现状和发展趋势分析[J]. 农业机械学报, 2013, 44(5): 194-201. [9] YUAN H Z, YANG D B, YAN X J, et al. Pesticide efficiency and the way to optimize the spray application[J]. Plant Prot, 2011, 37(5): 14-20.
[10] XIE C, HE X K, SONG J L, et al. Comparative research of atomization process for two kinds of flat fan nozzle[J]. Trans CSAE, 2013, 29(5): 25-30.
[11] 王潇楠, 何雄奎, 宋坚利, 等. 助剂类型及浓度对不同喷头雾滴飘移的影响[J]. 农业工程学报, 2015, 31(22): 49-55. [12] LEE S J, MEHLER L, BECKMAN J, et al. Acute pesticide illnesses associated with off-target pesticide drift from agricultural applications: 11 states, 1998-2006[J]. Environ Health Perspect, 2011, 119(8): 1162-1169. doi: 10.1289/ehp.1002843
[13] CHEN Y, JIANG L J, DOOHAN D. Response of glyphosate-resistant and conventional soybean grafted plants to glyphosate[J]. Weed Sci, 2018, 66(4): 433-438. doi: 10.1017/wsc.2018.18
[14] MCNAUGHTON K E, SIKKEMA P H, ROBINSON D E. Response of processing tomato to simulated glyphosate drift followed by in-crop metribuzin application[J]. Weed Technol, 2012, 26(4): 757-762. doi: 10.1614/WT-D-12-00015.1
[15] CHEN Y, QI H L, LI G Z, et al. Weed control effect of unmanned aerial vehicle (UAV) application in wheat field[J]. Int J Precis Agric Aviat, 2019, 2(2): 25-31.
[16] NITA M, ELLIS M A, WILSON L L, et al. Evaluation of the curative and protectant activity of fungicides and fungicide adjuvant mixtures on Phomopsiscane and leaf spot of grape: A controlled environment study[J]. Crop Prot, 2007, 26(9): 1377-1384. doi: 10.1016/j.cropro.2006.11.010
[17] VANZYL S A, BRINK J C, CALITZ F J, et al. Effects of adjuvants on deposition efficiency of fenhexamid sprays applied to Chardonnay grapevine foliage[J]. Crop Prot, 2010, 29(2): 843-852.
[18] SHI L L, CHEN F L, ZHENG F N, et al. The influence of triazophos deposition on rice leaves by adding spray adjuvants[J]. Sci Agric Sin, 2009, 42(12): 4228-4233.
[19] ROBERT N K, JEFFREY A G. The effect of spray particle size and distribution on drift and efficacy of herbicides[J]. Asp Appl Biol, 2004, 71(2): 44-51.
[20] FERGUSON J C, O'DONNELL C C, CHAUHAN B S, et al. Determining the uniformity and consistency of droplet size across spray drift reducing nozzles in a wind tunnel[J]. Crop Prot, 2015, 76(8): 1-6.
[21] HILZ E, VERMEER A W P. Spray drift review: The extent to which a formulation can contribute to spray drift reduction[J]. Crop Prot, 2013, 44(20): 75-83.
[22] BUTLER E M C, TUCK C R, MILLER P C H. The effect of some adjuvants on sprays produced by agricultural flat fan nozzles[J]. Crop Prot, 1997, 16(1): 41-50.
[23] DING S M, XUE X Y, QIN W C, et al. Influencing factors research and performance experiment on droplets deposition at low wind speed[J]. Int J Precis Agric Aviat, 2019, 2(1): 46-51.
[24] 吕晓兰, 何雄奎, 宋坚利, 等. 标准扇形雾喷头雾化过程测试分析[J]. 农业工程学报, 2007, 23(9): 95-100. [25] DEXTER R W. The effect of fluid properties on the spray quality from a flat fan nozzle[M]// Pesticide Formulations and Application Systems. ASTM International. 2001: 27-43.
[26] WANG G B, LI X, ANDALORO J, et al. Deposition and biological efficacy of UAV-based low-volume application in rice fields[J]. Int J Precis Agric Aviat, 2020, 3(2): 65-72.
[27] 王国宾. 杀虫剂雾滴大小及覆盖密度与麦蚜防效关系研究[D]. 北京: 中国农业科学院, 2016.