• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

施硅对水稻幼苗吸收锌、铜的影响

高大林, 叶文玲, 马友华, 鲁洪娟

高大林, 叶文玲, 马友华, 等. 施硅对水稻幼苗吸收锌、铜的影响[J]. 华南农业大学学报, 2021, 42(3): 26-32. DOI: 10.7671/j.issn.1001-411X.202007001
引用本文: 高大林, 叶文玲, 马友华, 等. 施硅对水稻幼苗吸收锌、铜的影响[J]. 华南农业大学学报, 2021, 42(3): 26-32. DOI: 10.7671/j.issn.1001-411X.202007001
GAO Dalin, YE Wenling, MA Youhua, et al. Impact of silicon application on zinc and copper absorption of rice seedlings[J]. Journal of South China Agricultural University, 2021, 42(3): 26-32. DOI: 10.7671/j.issn.1001-411X.202007001
Citation: GAO Dalin, YE Wenling, MA Youhua, et al. Impact of silicon application on zinc and copper absorption of rice seedlings[J]. Journal of South China Agricultural University, 2021, 42(3): 26-32. DOI: 10.7671/j.issn.1001-411X.202007001

施硅对水稻幼苗吸收锌、铜的影响

基金项目: 农田生态保育与污染防控安徽省重点实验室开放基金资助项目(FECPP201905);天津市农业环境与农产品安全重点实验室开放基金(2019-01)
详细信息
    作者简介:

    高大林(1994—),男,硕士研究生,E-mail: 450437134@qq.com

    通讯作者:

    鲁洪娟(1981—),女,讲师,博士,E-mail: hjlu@ahau.edu.cn

  • 中图分类号: S143; S511

Impact of silicon application on zinc and copper absorption of rice seedlings

  • 摘要:
    目的 

    研究不同硅(Si)肥水平下水稻幼苗的生长状况及锌(Zn)、铜(Cu)的吸收和转运情况。

    方法 

    试验以水稻‘皖稻71号’为材料,通过水培方式,设置硅肥(以SiO2计)水平分别为0(对照,CK)、30、60、90、120和150 mg·L−1共6个处理,研究不同Si肥水平处理下水稻幼苗的生物量、Zn和Cu含量及积累状况。

    结果 

    施用Si肥后,水稻幼苗叶片数、株高和根长均高于对照,水稻地上部和根部生物量(鲜质量)分别增加5.44%~52.81%和4.83%~42.49%,叶片数、株高、根长和地上部生物量均在90 mg·L−1 SiO2处理达到最高值。施Si处理的水稻幼苗根部Zn净吸收量提高了5.79%~77.43%,Cu净吸收量提高了6.51%~44.96%。60和90 mg·L−1 SiO2处理的Zn转运系数较对照分别提高10.91%和38.18%,Cu转运系数较对照分别提高8.70%和26.09%。水稻地上部Zn、Cu含量随着Si肥水平的提高而增加,90 mg·L−1 SiO2处理达到峰值,之后随Si肥水平的增加开始出现下降的趋势。

    结论 

    综合考虑水稻生长指标、生物量和对Zn、Cu的吸收等因素,本研究中90 mg·L−1 SiO2处理是微量营养元素Zn、Cu吸收的最佳施用Si肥水平。

    Abstract:
    Objective 

    To study the growth of rice seedlings as well as absorption and transport of zinc (Zn) and copper (Cu) under different silicon (Si) application levels.

    Method 

    ‘Wandao 71’ was used as material through water cultivation to study the biomass, zinc and copper contents and accumulation of rice seedlings under different silicon fertilizer levels of 0 (CK), 30, 60, 90, 120, 150 mg·L−1, respectively.

    Result 

    The leaf number, plant height and root length of rice seedlings were all higher than those of the control, and the biomass (fresh weight) of rice shoots and roots increased over the control by 5.44%−52.81% and 4.83%−42.49% respectively. The leaf number, plant height, root length and above-ground biomass were the highest in 90 mg·L−1 SiO2 treatment. Zn and Cu net absorptions of rice root increased over the control by 5.79%−77.43% and 6.51%−44.96%, respectively. The Zn transport coefficients of 60 and 90 mg·L−1 SiO2 treatments increased over the control by 10.91% and 38.18% respectively, meanwhile those of Cu increased by 8.70% and 26.09% respectively. The contents of Zn and Cu in rice shoot increased with the increase of SiO2 concentration, reached the peak value at 90 mg·L−1 SiO2 concentration, and then began to decline with the increase of SiO2 concentration.

    Conclusion 

    Considering the factors of rice growth index, biomass, and absorption of Zn and Cu, 90 mg·L−1 SiO2 treatment is the best Si fertilizer level for microelements of Zn and Cu absorption in the present study.

  • 图  1   施硅处理对水稻幼苗单株生物量(鲜质量)的影响

    图中数据为平均值±标准差(n=3),相同水稻幼苗部位柱子上方的不同小写字母表示处理间差异显著(P<0.05,LSD多重比较检验)

    Figure  1.   Effects of silicon application on plant biomass (fresh weight) of rice seedlings

    The data in the figure are average value ± standard deviation (n=3); Different lowercase letters on the columns of the same rice seedling part indicate significant differences among different treatments (P<0.05, LSD multiple comparison test)

    图  2   施硅处理对水稻幼苗不同部位Zn、Cu含量的影响

    图中数据为平均值±标准差(n=3),各图中,相同水稻幼苗部位柱子上方的不同小写字母表示处理间差异显著(P<0.05,LSD多重比较检验)

    Figure  2.   Response of Zn and Cu contents in different rice seedling parts to silicon application

    The data in the figure are average value ± standard deviation (n=3); In each figure, different lowercase letters on the columns of the same rice seedling part indicate significant differences among different treatments (P<0.05, LSD multiple comparison test)

    表  1   施硅处理对水稻幼苗叶片数、株高和根长的影响1)

    Table  1   Effects of silicon application on leaf number, plant height, and root length of rice seedlings

    ρ(SiO2)/(mg·L−1)
    Silicon fertilizer concentration
    叶片数
    Leaf number
    株高/cm
    Plant height
    根长/cm
    Root length
    0 (CK) 6.85±0.55b 42.08±4.85a 11.62±2.55b
    30 7.10±0.69b 51.26±7.33a 12.72±2.12b
    60 7.70±0.31b 52.42±7.69a 13.47±1.88b
    90 9.00±0.67a 53.32±5.84a 16.13±1.54a
    120 7.05±0.68ab 47.95±4.69a 15.45±3.32ab
    150 6.85±0.40b 44.31±4.45a 13.74±2.93b
     1)表中数据为平均值±标准差(n=3),同列数据后的不同小写字母表示处理间差异显著(P<0.05,LSD多重比较检验)
     1)The data in the table are average value ± standard deviation (n=3); Different lowercase letters in the same column indicates significant differences among different treatments (P<0.05, LSD multiple comparison test)
    下载: 导出CSV

    表  2   施硅处理对水稻幼苗Zn、Cu积累量的影响1)

    Table  2   Effects of silicon application on Zn, Cu accumulation amounts of rice seedling

    ρ(SiO2)/(mg·L−1) Zn积累量/µg
    Zn accumulation amount
    Cu积累量/µg
    Cu accumulation amount
    地上部
    Shoot
    根部
    Root
    地上部
    Shoot
    根部
    Root
    0 (CK) 75.94±14.36b 28.10±5.60b 9.75±1.98b 8.81±1.94a
    30 102.94±22.11b 27.96±5.07b 12.05±2.58ab 10.15±2.47a
    60 126.68±29.54ab 37.65±5.98a 17.29±4.30a 12.56±2.90a
    90 174.78±42.01a 39.25±13.09a 19.79±4.29a 11.72±4.21a
    120 78.61±23.54b 33.96±4.01ab 11.14±2.87ab 10.19±1.88a
    150 74.60±16.06b 32.57±4.00ab 9.30±2.89b 9.97±2.06a
     1)表中数据为平均值±标准差(n=3),同列数据后的不同小写字母表示处理间差异显著(P<0.05,LSD多重比较检验)
     1)The data in the table are average value ± standard deviation (n=3); Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05, LSD multiple comparison test)
    下载: 导出CSV

    表  3   施硅处理对水稻根部Zn、Cu净吸收量和转运系数的影响1)

    Table  3   Effects of silicon application on Zn and Cu net uptake amounts and transport coefficient of rice root

    ρ(SiO2)/(mg·L−1) 净吸收量/(mg·kg−1)
    Net uptake amount
    转运系数
    Transport coefficient
    Zn Cu Zn Cu
    0 (CK) 154.12±15.52b 27.44±3.21a 0.55±0.02b 0.23±0.01bc
    30 204.69±19.82ab 34.78±2.68a 0.58±0.06b 0.19±0.03bc
    60 203.86±36.20ab 37.06±5.80a 0.61±0.05ab 0.25±0.05ab
    90 273.45±78.37a 39.78±9.15a 0.76±0.09a 0.29±0.02a
    120 169.17±27.46b 31.96±4.37a 0.45±0.08b 0.22±0.02bc
    150 163.05±17.06b 29.23±4.54a 0.46±0.06b 0.18±0.02c
     1)表中数据为平均值±标准差(n=3),同列数据后的不同小写字母表示处理间差异显著(P<0.05,LSD多重比较检验)
     1)The data in the table are average value ± standard deviation (n=3); Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05, LSD multiple comparison test)
    下载: 导出CSV
  • [1] 叶廷红, 张赓, 李小坤. 水稻锌营养及锌肥高效施用研究进展[J]. 中国土壤与肥料, 2019, 56(6): 1-6. doi: 10.11838/sfsc.1673-6257.19009
    [2]

    ISHIMARU Y, BASHIR K, NISHIZAWA N K. Zn uptake and translocation in rice plants[J]. Rice, 2011, 4(1): 21-27. doi: 10.1007/s12284-011-9061-3

    [3]

    SUN L, LIU Q, XUE Y, et al. Dynamic influence of S fertilizer on Cu bioavailability in rice (Oryza sativa L.) rhizosphere soil during the whole life cycle of rice plants[J]. Journal of Soils and Sediments, 2019, 19(1): 198-210. doi: 10.1007/s11368-018-2009-0

    [4] 王子腾, 耿元波. 国内外主要粮食作物对施用锌肥响应的研究进展[J]. 植物营养与肥料学报, 2018, 24(3): 805-816. doi: 10.11674/zwyf.17401
    [5] 叶林顺, 刘慧璇, 谢咏梅, 等. 改性稻草吸附铜离子的动力学机理[J]. 环境科学与技术, 2006, 29(8): 28-31. doi: 10.3969/j.issn.1003-6504.2006.08.013
    [6] 杨鹤, 张浩, 郜玉钢, 等. 叶面喷施锌对农田人参锌营养、生长发育及皂苷含量的影响[J]. 华南农业大学学报, 2012, 33(3): 311-315. doi: 10.3969/j.issn.1001-411X.2012.03.008
    [7] 何普, 刘鸿雁, 吴龙华, 等. 高、低Cd积累水稻和小麦籽粒中Cu、Zn的富集特性[J]. 生态与农村环境学报, 2019, 35(3): 385-391.
    [8]

    SETH A D, SARKAR A, DATTA B, et al. Suitability of complex extractants for assessment of available soil zinc for nutrition of rice (Oryza sativa L.) in subtropical India[J]. Soil Science, 2017, 182(1): 28-35. doi: 10.1097/SS.0000000000000190

    [9] 饶震红, 杜凤沛, 李向东. 硅对农作物生长的影响[J]. 化学教育(中英文), 2019, 40(13): 1-9.
    [10]

    KLOTZBUCHER A, KLOTZBUCHER T, JAHN R, et al. Effects of Si fertilization on Si in soil solution, Si uptake by rice, and resistance of rice to biotic stresses in Southern Vietnam[J]. Paddy and Water Environment, 2018, 16(2): 243-252. doi: 10.1007/s10333-017-0610-2

    [11] 王力, 孙影, 张洪程, 等. 不同时期施用锌硅肥对优良食味粳稻产量和品质的影响[J]. 作物学报, 2017, 43(6): 885-898.
    [12]

    LIANG Y C, WONG J C, WEI L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil[J]. Chemosphere, 2005, 58(4): 475-484. doi: 10.1016/j.chemosphere.2004.09.034

    [13]

    SHI X H, ZHANG C C, WANG H, et al. Effect of Si on the distribution of Cd in rice seedlings[J]. Plant and Soil, 2005, 272(1): 53-60.

    [14]

    ZHANG C C, WANG L J, NIE Q, et al. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.)[J]. Environmental and Experimental Botany, 2008, 62(3): 300-307. doi: 10.1016/j.envexpbot.2007.10.024

    [15] 贾倩, 胡敏, 张洋洋, 等. 硅钙肥对水稻吸收铅、镉的影响研究[J]. 环境科学与技术, 2017, 40(6): 24-30.
    [16]

    GU H H, ZHAN S S, WANG S Z, et al. Silicon-mediated amelioration ofzinc toxicity in rice (Oryza sativa L.) seedlings[J]. Plant and Soil, 2012, 350(1): 193-204.

    [17] 杨良金, 唐宗伟, 黄胜海, 等. 水稻施用硅肥的增产效果[J]. 土壤, 2001, 44(3): 166-167. doi: 10.3321/j.issn:0253-9829.2001.03.013
    [18] 刘红芳, 宋阿琳, 范分良, 等. 高供氮水平下不同硅肥对水稻茎秆特征的影响[J]. 植物营养与肥料学报, 2018, 24(3): 758-768. doi: 10.11674/zwyf.17485
    [19] 梁永超, 张永春, 马同生. 植物的硅素营养[J]. 土壤学进展, 1993, 21(3): 7-14.
    [20]

    RIOTTE J, SANDHYA K, PRAKASH N B, et al. Origin of silica in rice plants and contribution of diatom earth fertilization: Insights from isotopic Si mass balance in a paddy field[J]. Plant and Soil, 2018, 423(1): 481-501.

    [21]

    SUKYANKIJ S, THANACHIT S, ANUSONTPORNPERM S, et al. Assessment of soil Zn availability for Khao Dok Mali 105 rice: A case study in Thailand[J]. Journal of Crop Science and Biotechnology, 2020, 23(2): 181-190. doi: 10.1007/s12892-019-0333-0

    [22] 魏宾纭, 周航, 刘佳炜, 等. 不同水分管理模式联合叶面喷施硅肥对水稻Cd累积的影响[J]. 环境科学, 2020, 41(8): 3855-3861. doi: 10.13227/j.hjkx.202002147
    [23] 曹庭悦, 刘鸣达, 沃惜慧, 等. 硅、磷配施对水稻镉吸收转运的影响及其机制[J]. 农业环境科学学报, 2020, 39(10): 37-44.
    [24] 李清芳, 周秀杰, 马成仓. 硅对小麦幼苗几项生理生化性质的影响[J]. 淮北煤师院学报(自然科学版), 2001, 23(4): 37-40.
    [25] 董瑜皎, 袁江, 吕世华. 2个氮水平下不同施锌方式对覆膜水稻产量及锌吸收的影响[J]. 西南农业学报, 2018, 31(8): 1655-1661.
    [26]

    CAKMAK I, KUTMAN U B. Agronomic biofortification of cereals with zinc: A review[J]. European Journal of Soil Science, 2017, 69(1): 172-180.

    [27]

    CAKMAK I, KALACI M, EKIZ H, et al. Zinc deficiency as an actual problem in plant and human nutri-tion in Turkey: A NATO-science for stability project[J]. Field Crops Research, 1999, 60(1): 175-188.

    [28] 覃莉苿, 周建宽. 水稻增施中微量元素硅肥与锌肥效果研究[J]. 现代农业科技, 2019, 18(1): 10-13.
    [29] 黄昌勇, 徐建明. 土壤学[M]. 北京: 中国农业出版社, 2010.
    [30]

    ANWAAR S A, ALI S, ALI S, et al. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage[J]. Environmental Science and Pollution Research, 2015, 22(5): 3441-3450. doi: 10.1007/s11356-014-3938-9

    [31]

    WANG R, FU W, WANG J, et al. Application of rice grain husk derived biochar in ameliorating toxicity impacts of Cu and Zn on growth, physiology and enzymatic functioning of wheat seedlings[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(4): 636-641. doi: 10.1007/s00128-019-02705-y

    [32] 卢志红, 谭雪明, 朱美英, 等. 硫硅配施对土壤铜形态和水稻吸收铜的影响[J]. 农业环境科学学报, 2013, 32(9): 1806-1813. doi: 10.11654/jaes.2013.09.015
    [33]

    BOSNIC D, NIKOLIC D, TIMOTIJEVIC G, et al. Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity[J]. Plant and Soil, 2019, 441(1/2): 629-641.

    [34] 汪亚会, 覃雨虹, 马彦蓉, 等. 生物炭配施微肥对菜园土壤有效态重金属含量的影响[J]. 华南农业大学学报, 2018, 39(5): 18-24. doi: 10.7671/j.issn.1001-411X.2018.05.003
    [35]

    MEHRABANJOUBANI P, ABDOLZADEH A, SADEGHIPOUR H R, et al. Impacts of silicon nutrition on growth and nutrient status of rice plants grown under varying zinc regimes[J]. Theoretical and Experimental Plant Physiology, 2015, 27(1): 19-29. doi: 10.1007/s40626-014-0028-9

    [36] 俄胜哲. 攀西地区稻米中微量元素含量变异及影响因素初探[D]. 成都: 四川农业大学, 2005.
图(2)  /  表(3)
计量
  • 文章访问数:  930
  • HTML全文浏览量:  10
  • PDF下载量:  842
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2021-05-09

目录

    Corresponding author: LU Hongjuan, hjlu@ahau.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回