A real-time fluorescent PCR method for detection of Botryosphaeria stevensii from apple using TaqMan probe
-
摘要:目的
针对我国检疫性植物病原真菌苹果壳色单隔孢溃疡病菌Botryosphaeria stevensii,建立实时荧光PCR检测方法。
方法根据苹果壳色单隔孢溃疡病菌及其近似种的β微管蛋白基因(β-tubulin基因)保守序列设计1对特异性引物和1条TaqMan MGB探针,分别以病菌DNA和β-tubulin基因靶标序列重组质粒DNA为阳性标准品检验探针的特异性和灵敏度。
结果探针BsP267对苹果壳色单隔孢溃疡病菌菌株表现出特异性阳性扩增,且与近缘种及其他常见的果腐病菌无交叉反应,扩增效率为105.858%,探针检测DNA的灵敏度达到1 fg/μL。
结论本研究建立的苹果壳色单隔孢溃疡病菌实时荧光PCR检测法具有高特异性和灵敏度,可用于该病害的防控检测和检疫工作。
-
关键词:
- 苹果壳色单隔孢溃疡病菌 /
- 实时荧光PCR /
- TaqMan探针 /
- 快速检测 /
- β微管蛋白基因
Abstract:ObjectiveTo establish a real-time fluorescent PCR assay for detecting Botryosphaeria stevensii, which is the causal agent of Diplodia canker on apple and is presently subjected to phytosanitary legislation in China.
MethodA pair of specific primers and a TaqMan MGB probe were designed based on the conserved sequences of β-tubulin genes of B. stevensii and related species. The specificity and sensitivity of the probe were evaluated using DNAs of B. stevensii strains and recombinant plasmid of β-tubulin gene sequence as positive standard, respectively.
ResultThe probe of BsP267 displayed specificity to B. stevensii strains with positive amplification, while there was no crossing reaction with related species and other common fruit rot pathogens. The PCR amplification efficiency was 105.858% and the detection sensitivity of DNA reached 1 fg/μL.
ConclusionThe real-time PCR method developed in this study can detect B. stevensii from apple with strong specificity and high sensitivity, thus can be used for the prevention, control, detection and quarantine of this disease.
-
-
图 2 探针BsP267对苹果壳色单隔孢溃疡病菌的特异性检测
1~3为Botryosphaeria stevensii基因组DNA(CBS 112553、CBS 120834、CQ01);4~27为其他无扩增曲线的样品(CBS112555、CBS112876、PP5.3-2、CFCC51611、CFCC50629、CFCC86567、CFCC84207、PP5.3-6、CFCC86251、CFCC86538、PP5.12-2、ACCC37263、CBS121886、CBS121887、CBS120835、CBS121104、CBS124253、CBS124130、CBS124462、CBS115176、11-40460、PG5.31、16-4966-2、15-128331),28为空白对照(无菌水)
Figure 2. Specificity idendification of Botryosphaeria stevensii using probe BsP267
1−3: Cultured mycelial DNA of Botryosphaeria stevensii(CBS 112553, CBS 120834, CQ01);4−27: Negative control (CBS112555, CBS112876, PP5.3-2, CFCC51611, CFCC50629, CFCC86567, CFCC84207, PP5.3-6, CFCC86251, CFCC86538, PP5.12-2, ACCC37263, CBS121886, CBS121887, CBS120835, CBS121104, CBS124253, CBS124130, CBS124462, CBS115176, 11-40460, PG5.31, 16-4966-2, 15-128331), 28: Blank control (ddH2O)
表 1 本研究供试菌株的相关信息
Table 1 Information of strains used in the study
菌株编号
Strain No.来源
Origin学名
Scientific name异名
Synonym寄主
Host地理来源
Geographic originCBS112553 荷兰微生物菌种保藏中心 CBS Botryosphaeria stevensii Diplodia mutila Vitis 葡萄牙 Portugal CBS120834 荷兰微生物菌种保藏中心 CBS Botryosphaeria stevensii Diplodia mutila Prunus 南非 South Africa CQ01 重庆海关 Chongqing Customs Botryosphaeria stevensii Diplodia mutila Glycine 阿根廷 Argentina CBS112555 荷兰微生物菌种保藏中心 CBS Botryosphaeria obtusa Diplodia seriata Vitis 葡萄牙 Portugal CBS112876 荷兰微生物菌种保藏中心 CBS Botryosphaeria obtusa Diplodia seriata Vitis 南非 South Africa PP5.3-2 黄埔海关 Huangpu Customs Botryosphaeria rhodina Lasiodiplodia theobromae Eriobotrya 中国 China CFCC51611 中国林业微生物保藏管理中心 CFCC Botryosphaeria rhodina Lasiodiplodia theobromae Rubia 中国 China CFCC50629 中国林业微生物保藏管理中心 CFCC Botryosphaeria rhodina Lasiodiplodia theobromae Vitis 中国 China CFCC86567 中国林业微生物保藏管理中心 CFCC Botryosphaeria parva Neofusicoccum parvum Prunus 中国 China CFCC84207 中国林业微生物保藏管理中心 CFCC Botryosphaeria parva Neofusicoccum parvum Vitis 中国 China PP5.3-6 黄埔海关 Huangpu Customs Botryosphaeria parva Neofusicoccum parvum Eriobotrya 中国 China CFCC86251 中国林业微生物保藏管理中心 CFCC Botryosphaeria dothidea Malus 中国 China CFCC86538 中国林业微生物保藏管理中心 CFCC Botryosphaeria dothidea Malus 中国 China PP5.12-2 黄埔海关 Huangpu Customs Botryosphaeria dothidea Eriobotrya 中国 China ACCC37263 中国农业微生物菌种保藏管理中心 Agricultural Culture Collection of China Botryosphaeria dothidea Lilium 中国 China CBS121886 荷兰微生物菌种保藏中心 CBS Diplodia olivarum Olea 意大利 Italy CBS121887 荷兰微生物菌种保藏中心 CBS Diplodia olivarum Olea 意大利 Italy CBS120835 荷兰微生物菌种保藏中心 CBS Diplodia africana Prunus 南非 South Africa CBS121104 荷兰微生物菌种保藏中心 CBS Diplodia africana Prunus 南非 South Africa CBS124253 荷兰微生物菌种保藏中心 CBS Diplodia malorum Malus 葡萄牙 Portugal CBS124130 荷兰微生物菌种保藏中心 CBS Diplodia malorum Malus 葡萄牙 Portugal CBS124462 荷兰微生物菌种保藏中心 CBS Diplodia intermedia Malus 葡萄牙 Portugal CBS115176 荷兰微生物菌种保藏中心 CBS Sphaeropsis pyriputrescens Pyrus 美国 USA 11-40460 黄埔海关 Huangpu Customs Monilinia fructicola Malus 智利 Chile PG5.31 黄埔海关 Huangpu Customs Alternaria alternata Malus 中国 China 16-4966−2 黄埔海关 Huangpu Customs Botrytis cinerea Vitis 智利 Chile 15-128331 黄埔海关 Huangpu Customs Botryotinia fuckeliana Malus 南非 South Africa -
[1] VAJNA L. Branch canker and dieback of sessile oak (Quercus petraea) in Hungary caused by Diplodia mutila: I: Identification of the pathogen[J]. European Journal of Forest Pathology, 1986, 16(4): 223-229.
[2] ALVES A, CORREIA A, LUQUE J, et al. Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila[J]. Mycologia, 2004, 96(3): 598-613. doi: 10.1080/15572536.2005.11832956
[3] 中华人民共和国农业部, 国家质量监督检验检疫总局. 中华人民共和国进境植物检疫性有害生物名录[M]. 北京: 中华人民共和国农业部. 2007. [4] 王卫芳, 张秋娥, 黄英, 等. 苹果壳色单隔孢溃疡病菌检疫鉴定方法: SN 3750—2013[S]. 北京: 中国标准出版社, 2013: 1-9. [5] 张秋娥, 王卫芳, 严进, 等. 苹果壳色单隔孢溃疡病菌[J]. 植物检疫, 2012, 26(1): 43-46. [6] PRZYBYŁ K. Fungi associated with necrotic apical parts of Fraxinus excelsior shoots[J]. Forest Pathology, 2010, 32(6): 387-394.
[7] TIBERI R, RAGAZZI A. Association between fungi and xylophagous insects of declining oaks in Italy[J]. Redia-giornale Di Zoologia, 1998, 81: 83-91.
[8] 张露茜, 宋绍祎, 焦彬彬, 等. 进境水曲柳原木中苹果壳色单隔孢溃疡病菌的检疫鉴定[J]. 植物检疫, 2015, 29(1): 25-29. [9] LAUNDON G F. Botryosphaeria obtusa, B. stevensii, and Otthia spiraeae in New Zealand[J]. Transactions of the British Mycological Society, 1973, 61(2): 369-374. doi: 10.1016/S0007-1536(73)80158-5
[10] VAN NIEKERK J M, CROUS P W, GROENEWALD J Z, et al. DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines[J]. Mycologia, 2004, 96(4): 781-798. doi: 10.1080/15572536.2005.11832926
[11] SLIPPERS B, JOHNSON G I, CROUS P W, et al. Phylogenetic and morphological reevaluation of the Botryosphaeria species causing diseases of Mangifera indica[J]. Mycologia, 2005, 97(1): 99-110. doi: 10.1080/15572536.2006.11832843
[12] ZHOU S, STANOSZ G R. Relationships among Botryosphaeria species and associated anamorphic fungi inferred from the analyses of ITS and 5.8s rDNA sequences[J]. Mycologia, 2001, 93(3): 516-527. doi: 10.1080/00275514.2001.12063184
[13] TAYLOR A, HARDY G E ST J, WOOD P, et al. Identification and pathogenicity of Botryosphaeria species associated with grapevine decline in Western Australia[J]. Australasian Plant Pathology, 2005, 34(2): 187-195. doi: 10.1071/AP05018
[14] CROUS P W, SLIPPERS B, WINGFIELD M J, et al. Phylogenetic lineages in the Botryosphaeriaceae[J]. Studies in Mycology, 2006, 55: 235-253. doi: 10.3114/sim.55.1.235
[15] STANOSZ G R, SWART W J, SMITH D R. Similarity between fungi identified as Diplodia pinea f. sp. cupressi in Israel and Botryosphaeria stevensii or Diplodia mutila on Juniperus in the United States[J]. European Journal of Forest Pathology, 1998, 28(1): 33-42. doi: 10.1111/j.1439-0329.1998.tb01163.x
[16] 黄春燕, 刘开启. 苹果轮纹病及相关病害病原菌的RAPD分析[J]. 植物病理学报, 2001, 31(2): 164-169. doi: 10.3321/j.issn:0412-0914.2001.02.012 [17] ZHOU S, SMITH D R, STANOSZ G R. Differentiation of Botryosphaeria species and related anamorphic fungi using inter simple or short sequence repeat (ISSR) finger printing[J]. Mycological Research, 2001, 105(8): 919-926. doi: 10.1016/S0953-7562(08)61947-4
[18] 赵嘉平. 树木溃疡病菌: 葡萄座腔菌属及相关真菌系统分类研究[D]. 北京: 中国林业科学研究院, 2007. [19] ALVES A, PHILLIPS A J L, HENRIQUES I, et al. Evaluation of amplified ribosomal DNA restriction analysis as a method for the identification of Botryosphaeria species[J]. FEMS Microbiology Letters, 2005, 245(2): 221-229. doi: 10.1016/j.femsle.2005.03.005
[20] 余仲东, 曹支敏, 张星耀. 杨树溃疡病、苹果轮纹病等病原菌的ITS-rDNA-RFLP解析[J]. 中国森林病虫, 2004, 23(2): 15-18. doi: 10.3969/j.issn.1671-0886.2004.02.005 [21] SLIPPERS B, SMIT W A, CROUS P W, et al. Taxonomy, phylogeny and identification of Botryosphaeriaceae associated with pome and stone fruit trees in South Africa and other regions of the world[J]. Plant Pathology, 2007, 56(1): 128-139.
[22] RIDGWAY H J, AMPONSAH N T, BROWN D S, et al. Detection of botryosphaeriaceous species in environmental samples using a multi-species primer pair[J]. Plant Pathology, 2011, 60(6): 1118-1127. doi: 10.1111/j.1365-3059.2011.02474.x
[23] 王璠. 桃流胶病菌Botryosphaeria spp. 鉴定、分布、遗传多样性及PCR快速检测技术研究[D]. 武汉: 华中农业大学, 2012. [24] ALVES A, PHILLIPS A J L, HENRIQUES I, et al. Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting[J]. Research in Microbiology, 2007, 158(2): 112-121. doi: 10.1016/j.resmic.2006.10.003
[25] MA Z, MICHAILIDES T J. A PCR-based technique for identification of Fusicoccum sp. from pistachio and various other hosts in California[J]. Plant Disease, 2002, 86(5): 515-520. doi: 10.1094/PDIS.2002.86.5.515
[26] LUCHI N, PRATESI N, SIMI L, et al. High-resolution melting analysis: A new molecular approach for the early detection of Diplodia pinea in Austrian pine[J]. Fungal Biology, 2011, 115(8): 715-723. doi: 10.1016/j.funbio.2011.05.005
[27] SPAGNOLO A, MARCHI G, PEDUTO F, et al. Detection of Botryosphaeriaceae species within grapevine woody tissues by nested PCR, with particular emphasis on the Neofusicoccum parvum/N. ribiscom plex[J]. European Journal of Plant Pathology, 2011, 129(3): 485-500. doi: 10.1007/s10658-010-9715-9
[28] NI H F, YANG H R, CHEN R S, et al. A nested multiplex PCR for species-specific identification and detection of Botryosphaeriaceae species on mango[J]. European Journal of Plant Pathology, 2012, 133(4): 819-828. doi: 10.1007/s10658-012-0003-8
[29] XU C, ZHANG H, CHI F, et al. Species-specific PCR-based assays for identification and detection of Botryosphaeriaceae species causing stem blight on blueberry in China[J]. Journal of Integrative Agriculture, 2016, 15(3): 573-579. doi: 10.1016/S2095-3119(15)61177-7
[30] SHEIR-NEISS G, LAI M H, MORRIS N R. Identification of a gene for β-tubulin in Aspergillus nidulans[J]. Cell, 1978, 15(2): 639-647. doi: 10.1016/0092-8674(78)90032-6
[31] MOSTERT L, GROENEWALD J Z, SUMMERBELL R C, et al. Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs[J]. Studies in Mycology, 2006, 54: 1-113. doi: 10.3114/sim.54.1.1
[32] BILODEAU G J, LE´VESQUE C A, DE COCK A W A M, et al. Molecular detection of Phytophthora ramorum by real-time polymerase chain reaction using TaqMan, SYBR Green, and molecular beacons[J]. Phytopathology, 2007, 97(5): 632-642. doi: 10.1094/PHYTO-97-5-0632
[33] AROCA A, RAPOSO R, LUNELLO P. A biomarker for the identification of four Phaeoacremonium species using the β-tubulin gene as the target sequence[J]. Applied Microbiology and Biotechnology, 2008, 80(6): 1131-1140. doi: 10.1007/s00253-008-1647-3
[34] ZAMPIERI E, MELLO A, BONFANTE P, et al. PCR primers specific for the genus Tuber reveal the presence of several truffle species in a truffle-ground[J]. FEMS Microbiology Letters, 2009, 297(1): 67-72. doi: 10.1111/j.1574-6968.2009.01655.x
[35] GUO Y, LI W, SUN H, et al. Detection and quantification of Rhizoctonia cerealis in soil using real-time PCR[J]. Journal of General Plant Pathology, 2012, 78(4): 247-254. doi: 10.1007/s10327-012-0390-x
-
期刊类型引用(0)
其他类型引用(1)