• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

苹果壳色单隔孢溃疡病菌TaqMan实时荧光PCR检测方法

林惠娇, 牟桂萍, 滕少娜, 张海鹏, 周而勋

林惠娇, 牟桂萍, 滕少娜, 等. 苹果壳色单隔孢溃疡病菌TaqMan实时荧光PCR检测方法[J]. 华南农业大学学报, 2021, 42(2): 65-70. DOI: 10.7671/j.issn.1001-411X.202004031
引用本文: 林惠娇, 牟桂萍, 滕少娜, 等. 苹果壳色单隔孢溃疡病菌TaqMan实时荧光PCR检测方法[J]. 华南农业大学学报, 2021, 42(2): 65-70. DOI: 10.7671/j.issn.1001-411X.202004031
LIN Huijiao, MOU Guiping, TENG Shaona, et al. A real-time fluorescent PCR method for detection of Botryosphaeria stevensii from apple using TaqMan probe[J]. Journal of South China Agricultural University, 2021, 42(2): 65-70. DOI: 10.7671/j.issn.1001-411X.202004031
Citation: LIN Huijiao, MOU Guiping, TENG Shaona, et al. A real-time fluorescent PCR method for detection of Botryosphaeria stevensii from apple using TaqMan probe[J]. Journal of South China Agricultural University, 2021, 42(2): 65-70. DOI: 10.7671/j.issn.1001-411X.202004031

苹果壳色单隔孢溃疡病菌TaqMan实时荧光PCR检测方法

基金项目: 农业部华南作物有害生物综合治理重点实验室开放基金(SCIPM2018-06)
详细信息
    作者简介:

    林惠娇(1982—),女,高级农艺师,博士,E-mail:15920352386@163.com

    通讯作者:

    周而勋(1963—),男,教授,博士,E-mail: exzhou@scau.edu.cn

  • 中图分类号: S432.44

A real-time fluorescent PCR method for detection of Botryosphaeria stevensii from apple using TaqMan probe

  • 摘要:
    目的 

    针对我国检疫性植物病原真菌苹果壳色单隔孢溃疡病菌Botryosphaeria stevensii,建立实时荧光PCR检测方法。

    方法 

    根据苹果壳色单隔孢溃疡病菌及其近似种的β微管蛋白基因(β-tubulin基因)保守序列设计1对特异性引物和1条TaqMan MGB探针,分别以病菌DNA和β-tubulin基因靶标序列重组质粒DNA为阳性标准品检验探针的特异性和灵敏度。

    结果 

    探针BsP267对苹果壳色单隔孢溃疡病菌菌株表现出特异性阳性扩增,且与近缘种及其他常见的果腐病菌无交叉反应,扩增效率为105.858%,探针检测DNA的灵敏度达到1 fg/μL。

    结论 

    本研究建立的苹果壳色单隔孢溃疡病菌实时荧光PCR检测法具有高特异性和灵敏度,可用于该病害的防控检测和检疫工作。

    Abstract:
    Objective 

    To establish a real-time fluorescent PCR assay for detecting Botryosphaeria stevensii, which is the causal agent of Diplodia canker on apple and is presently subjected to phytosanitary legislation in China.

    Method 

    A pair of specific primers and a TaqMan MGB probe were designed based on the conserved sequences of β-tubulin genes of B. stevensii and related species. The specificity and sensitivity of the probe were evaluated using DNAs of B. stevensii strains and recombinant plasmid of β-tubulin gene sequence as positive standard, respectively.

    Result 

    The probe of BsP267 displayed specificity to B. stevensii strains with positive amplification, while there was no crossing reaction with related species and other common fruit rot pathogens. The PCR amplification efficiency was 105.858% and the detection sensitivity of DNA reached 1 fg/μL.

    Conclusion 

    The real-time PCR method developed in this study can detect B. stevensii from apple with strong specificity and high sensitivity, thus can be used for the prevention, control, detection and quarantine of this disease.

  • 图  1   靶标基因阳性质粒克隆序列

    阴影部分从左到右依次为BsF1(绿色)、BsP267(黄色)和BsR1(蓝色)

    Figure  1.   Cloning sequence of positive plasmid of target gene

    The shaded parts with different colours from left to right are BsF1(green), BsP267(yellow) and BsR1(blue), respectively

    图  2   探针BsP267对苹果壳色单隔孢溃疡病菌的特异性检测

    1~3为Botryosphaeria stevensii基因组DNA(CBS 112553、CBS 120834、CQ01);4~27为其他无扩增曲线的样品(CBS112555、CBS112876、PP5.3-2、CFCC51611、CFCC50629、CFCC86567、CFCC84207、PP5.3-6、CFCC86251、CFCC86538、PP5.12-2、ACCC37263、CBS121886、CBS121887、CBS120835、CBS121104、CBS124253、CBS124130、CBS124462、CBS115176、11-40460、PG5.31、16-4966-2、15-128331),28为空白对照(无菌水)

    Figure  2.   Specificity idendification of Botryosphaeria stevensii using probe BsP267

    1−3: Cultured mycelial DNA of Botryosphaeria stevensii(CBS 112553, CBS 120834, CQ01);4−27: Negative control (CBS112555, CBS112876, PP5.3-2, CFCC51611, CFCC50629, CFCC86567, CFCC84207, PP5.3-6, CFCC86251, CFCC86538, PP5.12-2, ACCC37263, CBS121886, CBS121887, CBS120835, CBS121104, CBS124253, CBS124130, CBS124462, CBS115176, 11-40460, PG5.31, 16-4966-2, 15-128331), 28: Blank control (ddH2O)

    图  3   探针BsP267对阳性质粒DNA的灵敏度检测

    1~7分别为100 000、10 000、1 000、100、10、1、0.1 fg质粒DNA

    Figure  3.   Sensitivity idendification of positive plasmid DNA using probe BsP267

    1−7 are 100 000、10 000、1 000、100、10、1、0.1 fg plasmid DNA, respectively

    图  4   实时荧光PCR标准曲线

    Figure  4.   Real-time fluorescent PCR standard curve

    表  1   本研究供试菌株的相关信息

    Table  1   Information of strains used in the study

    菌株编号
    Strain No.
    来源
    Origin
    学名
    Scientific name
    异名
    Synonym
    寄主
    Host
    地理来源
    Geographic origin
    CBS112553 荷兰微生物菌种保藏中心 CBS Botryosphaeria stevensii Diplodia mutila Vitis 葡萄牙 Portugal
    CBS120834 荷兰微生物菌种保藏中心 CBS Botryosphaeria stevensii Diplodia mutila Prunus 南非 South Africa
    CQ01 重庆海关 Chongqing Customs Botryosphaeria stevensii Diplodia mutila Glycine 阿根廷 Argentina
    CBS112555 荷兰微生物菌种保藏中心 CBS Botryosphaeria obtusa Diplodia seriata Vitis 葡萄牙 Portugal
    CBS112876 荷兰微生物菌种保藏中心 CBS Botryosphaeria obtusa Diplodia seriata Vitis 南非 South Africa
    PP5.3-2 黄埔海关 Huangpu Customs Botryosphaeria rhodina Lasiodiplodia theobromae Eriobotrya 中国 China
    CFCC51611 中国林业微生物保藏管理中心 CFCC Botryosphaeria rhodina Lasiodiplodia theobromae Rubia 中国 China
    CFCC50629 中国林业微生物保藏管理中心 CFCC Botryosphaeria rhodina Lasiodiplodia theobromae Vitis 中国 China
    CFCC86567 中国林业微生物保藏管理中心 CFCC Botryosphaeria parva Neofusicoccum parvum Prunus 中国 China
    CFCC84207 中国林业微生物保藏管理中心 CFCC Botryosphaeria parva Neofusicoccum parvum Vitis 中国 China
    PP5.3-6 黄埔海关 Huangpu Customs Botryosphaeria parva Neofusicoccum parvum Eriobotrya 中国 China
    CFCC86251 中国林业微生物保藏管理中心 CFCC Botryosphaeria dothidea Malus 中国 China
    CFCC86538 中国林业微生物保藏管理中心 CFCC Botryosphaeria dothidea Malus 中国 China
    PP5.12-2 黄埔海关 Huangpu Customs Botryosphaeria dothidea Eriobotrya 中国 China
    ACCC37263 中国农业微生物菌种保藏管理中心 Agricultural Culture Collection of China Botryosphaeria dothidea Lilium 中国 China
    CBS121886 荷兰微生物菌种保藏中心 CBS Diplodia olivarum Olea 意大利 Italy
    CBS121887 荷兰微生物菌种保藏中心 CBS Diplodia olivarum Olea 意大利 Italy
    CBS120835 荷兰微生物菌种保藏中心 CBS Diplodia africana Prunus 南非 South Africa
    CBS121104 荷兰微生物菌种保藏中心 CBS Diplodia africana Prunus 南非 South Africa
    CBS124253 荷兰微生物菌种保藏中心 CBS Diplodia malorum Malus 葡萄牙 Portugal
    CBS124130 荷兰微生物菌种保藏中心 CBS Diplodia malorum Malus 葡萄牙 Portugal
    CBS124462 荷兰微生物菌种保藏中心 CBS Diplodia intermedia Malus 葡萄牙 Portugal
    CBS115176 荷兰微生物菌种保藏中心 CBS Sphaeropsis pyriputrescens Pyrus 美国 USA
    11-40460 黄埔海关 Huangpu Customs Monilinia fructicola Malus 智利 Chile
    PG5.31 黄埔海关 Huangpu Customs Alternaria alternata Malus 中国 China
    16-4966−2 黄埔海关 Huangpu Customs Botrytis cinerea Vitis 智利 Chile
    15-128331 黄埔海关 Huangpu Customs Botryotinia fuckeliana Malus 南非 South Africa
    下载: 导出CSV
  • [1]

    VAJNA L. Branch canker and dieback of sessile oak (Quercus petraea) in Hungary caused by Diplodia mutila: I: Identification of the pathogen[J]. European Journal of Forest Pathology, 1986, 16(4): 223-229.

    [2]

    ALVES A, CORREIA A, LUQUE J, et al. Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila[J]. Mycologia, 2004, 96(3): 598-613. doi: 10.1080/15572536.2005.11832956

    [3] 中华人民共和国农业部, 国家质量监督检验检疫总局. 中华人民共和国进境植物检疫性有害生物名录[M]. 北京: 中华人民共和国农业部. 2007.
    [4] 王卫芳, 张秋娥, 黄英, 等. 苹果壳色单隔孢溃疡病菌检疫鉴定方法: SN 3750—2013[S]. 北京: 中国标准出版社, 2013: 1-9.
    [5] 张秋娥, 王卫芳, 严进, 等. 苹果壳色单隔孢溃疡病菌[J]. 植物检疫, 2012, 26(1): 43-46.
    [6]

    PRZYBYŁ K. Fungi associated with necrotic apical parts of Fraxinus excelsior shoots[J]. Forest Pathology, 2010, 32(6): 387-394.

    [7]

    TIBERI R, RAGAZZI A. Association between fungi and xylophagous insects of declining oaks in Italy[J]. Redia-giornale Di Zoologia, 1998, 81: 83-91.

    [8] 张露茜, 宋绍祎, 焦彬彬, 等. 进境水曲柳原木中苹果壳色单隔孢溃疡病菌的检疫鉴定[J]. 植物检疫, 2015, 29(1): 25-29.
    [9]

    LAUNDON G F. Botryosphaeria obtusa, B. stevensii, and Otthia spiraeae in New Zealand[J]. Transactions of the British Mycological Society, 1973, 61(2): 369-374. doi: 10.1016/S0007-1536(73)80158-5

    [10]

    VAN NIEKERK J M, CROUS P W, GROENEWALD J Z, et al. DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines[J]. Mycologia, 2004, 96(4): 781-798. doi: 10.1080/15572536.2005.11832926

    [11]

    SLIPPERS B, JOHNSON G I, CROUS P W, et al. Phylogenetic and morphological reevaluation of the Botryosphaeria species causing diseases of Mangifera indica[J]. Mycologia, 2005, 97(1): 99-110. doi: 10.1080/15572536.2006.11832843

    [12]

    ZHOU S, STANOSZ G R. Relationships among Botryosphaeria species and associated anamorphic fungi inferred from the analyses of ITS and 5.8s rDNA sequences[J]. Mycologia, 2001, 93(3): 516-527. doi: 10.1080/00275514.2001.12063184

    [13]

    TAYLOR A, HARDY G E ST J, WOOD P, et al. Identification and pathogenicity of Botryosphaeria species associated with grapevine decline in Western Australia[J]. Australasian Plant Pathology, 2005, 34(2): 187-195. doi: 10.1071/AP05018

    [14]

    CROUS P W, SLIPPERS B, WINGFIELD M J, et al. Phylogenetic lineages in the Botryosphaeriaceae[J]. Studies in Mycology, 2006, 55: 235-253. doi: 10.3114/sim.55.1.235

    [15]

    STANOSZ G R, SWART W J, SMITH D R. Similarity between fungi identified as Diplodia pinea f. sp. cupressi in Israel and Botryosphaeria stevensii or Diplodia mutila on Juniperus in the United States[J]. European Journal of Forest Pathology, 1998, 28(1): 33-42. doi: 10.1111/j.1439-0329.1998.tb01163.x

    [16] 黄春燕, 刘开启. 苹果轮纹病及相关病害病原菌的RAPD分析[J]. 植物病理学报, 2001, 31(2): 164-169. doi: 10.3321/j.issn:0412-0914.2001.02.012
    [17]

    ZHOU S, SMITH D R, STANOSZ G R. Differentiation of Botryosphaeria species and related anamorphic fungi using inter simple or short sequence repeat (ISSR) finger printing[J]. Mycological Research, 2001, 105(8): 919-926. doi: 10.1016/S0953-7562(08)61947-4

    [18] 赵嘉平. 树木溃疡病菌: 葡萄座腔菌属及相关真菌系统分类研究[D]. 北京: 中国林业科学研究院, 2007.
    [19]

    ALVES A, PHILLIPS A J L, HENRIQUES I, et al. Evaluation of amplified ribosomal DNA restriction analysis as a method for the identification of Botryosphaeria species[J]. FEMS Microbiology Letters, 2005, 245(2): 221-229. doi: 10.1016/j.femsle.2005.03.005

    [20] 余仲东, 曹支敏, 张星耀. 杨树溃疡病、苹果轮纹病等病原菌的ITS-rDNA-RFLP解析[J]. 中国森林病虫, 2004, 23(2): 15-18. doi: 10.3969/j.issn.1671-0886.2004.02.005
    [21]

    SLIPPERS B, SMIT W A, CROUS P W, et al. Taxonomy, phylogeny and identification of Botryosphaeriaceae associated with pome and stone fruit trees in South Africa and other regions of the world[J]. Plant Pathology, 2007, 56(1): 128-139.

    [22]

    RIDGWAY H J, AMPONSAH N T, BROWN D S, et al. Detection of botryosphaeriaceous species in environmental samples using a multi-species primer pair[J]. Plant Pathology, 2011, 60(6): 1118-1127. doi: 10.1111/j.1365-3059.2011.02474.x

    [23] 王璠. 桃流胶病菌Botryosphaeria spp. 鉴定、分布、遗传多样性及PCR快速检测技术研究[D]. 武汉: 华中农业大学, 2012.
    [24]

    ALVES A, PHILLIPS A J L, HENRIQUES I, et al. Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting[J]. Research in Microbiology, 2007, 158(2): 112-121. doi: 10.1016/j.resmic.2006.10.003

    [25]

    MA Z, MICHAILIDES T J. A PCR-based technique for identification of Fusicoccum sp. from pistachio and various other hosts in California[J]. Plant Disease, 2002, 86(5): 515-520. doi: 10.1094/PDIS.2002.86.5.515

    [26]

    LUCHI N, PRATESI N, SIMI L, et al. High-resolution melting analysis: A new molecular approach for the early detection of Diplodia pinea in Austrian pine[J]. Fungal Biology, 2011, 115(8): 715-723. doi: 10.1016/j.funbio.2011.05.005

    [27]

    SPAGNOLO A, MARCHI G, PEDUTO F, et al. Detection of Botryosphaeriaceae species within grapevine woody tissues by nested PCR, with particular emphasis on the Neofusicoccum parvum/N. ribiscom plex[J]. European Journal of Plant Pathology, 2011, 129(3): 485-500. doi: 10.1007/s10658-010-9715-9

    [28]

    NI H F, YANG H R, CHEN R S, et al. A nested multiplex PCR for species-specific identification and detection of Botryosphaeriaceae species on mango[J]. European Journal of Plant Pathology, 2012, 133(4): 819-828. doi: 10.1007/s10658-012-0003-8

    [29]

    XU C, ZHANG H, CHI F, et al. Species-specific PCR-based assays for identification and detection of Botryosphaeriaceae species causing stem blight on blueberry in China[J]. Journal of Integrative Agriculture, 2016, 15(3): 573-579. doi: 10.1016/S2095-3119(15)61177-7

    [30]

    SHEIR-NEISS G, LAI M H, MORRIS N R. Identification of a gene for β-tubulin in Aspergillus nidulans[J]. Cell, 1978, 15(2): 639-647. doi: 10.1016/0092-8674(78)90032-6

    [31]

    MOSTERT L, GROENEWALD J Z, SUMMERBELL R C, et al. Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs[J]. Studies in Mycology, 2006, 54: 1-113. doi: 10.3114/sim.54.1.1

    [32]

    BILODEAU G J, LE´VESQUE C A, DE COCK A W A M, et al. Molecular detection of Phytophthora ramorum by real-time polymerase chain reaction using TaqMan, SYBR Green, and molecular beacons[J]. Phytopathology, 2007, 97(5): 632-642. doi: 10.1094/PHYTO-97-5-0632

    [33]

    AROCA A, RAPOSO R, LUNELLO P. A biomarker for the identification of four Phaeoacremonium species using the β-tubulin gene as the target sequence[J]. Applied Microbiology and Biotechnology, 2008, 80(6): 1131-1140. doi: 10.1007/s00253-008-1647-3

    [34]

    ZAMPIERI E, MELLO A, BONFANTE P, et al. PCR primers specific for the genus Tuber reveal the presence of several truffle species in a truffle-ground[J]. FEMS Microbiology Letters, 2009, 297(1): 67-72. doi: 10.1111/j.1574-6968.2009.01655.x

    [35]

    GUO Y, LI W, SUN H, et al. Detection and quantification of Rhizoctonia cerealis in soil using real-time PCR[J]. Journal of General Plant Pathology, 2012, 78(4): 247-254. doi: 10.1007/s10327-012-0390-x

  • 期刊类型引用(0)

    其他类型引用(1)

图(4)  /  表(1)
计量
  • 文章访问数:  910
  • HTML全文浏览量:  4
  • PDF下载量:  1073
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-04-27
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2021-03-09

目录

    /

    返回文章
    返回