Spatial heterogeneity of soil organic matter in Mayi lake area of Karamay city
-
摘要:目的
研究克拉玛依市东部生态屏障的水源地玛依湖区土壤有机质的空间分布规律, 为湖区的生态环境保护提供科学依据和数据支撑。
方法以玛依湖区为研究对象,通过野外采样和室内分析,利用趋势分析法、反距离权重插值法、空间自相关法和半变异函数法分析玛依湖区不同土层深度土壤有机质的空间分布规律。
结果趋势法分析表明,玛依湖区土壤有机质含量在0~20、20~40、40~60和60~80 cm土层的变化速率存在差异,整体趋势为土壤有机质含量南北方向呈增加趋势、东西方向呈减少趋势。反距离权重插值法(IDW)研究表明,玛依湖区不同土层土壤有机质水平分布差异较大,局部地区土壤有机质含量存在明显的垂直分布特征,土壤有机质含量变化趋势同趋势法分析结果高度一致,整体表现为土壤有机质含量南北方向呈增加趋势、东西方向呈减少趋势。空间自相关法研究表明,0~20、20~40、40~60和60~80 cm土层的Moran指数分别为0.1643、0.1236、0.1955和0.2461,均在空间上呈现出显著正相关;4个土层的Z值分别为3.1510、2.5934、3.5903和4.6355,底层(40~60和60~80 cm)的土壤有机质空间正相关较显著、空间聚集程度最高,表层(0~20和20~40 cm)空间相关性不显著、空间聚集程度较低。半变异函数分析法表明,底层(40~60和60~80 cm)土层的块金效应分别为0.427和0.420,说明土壤有机质具有一定的空间相关性;表层(0~20和20~40 cm)土层的块金效应分别为0.033和0.045,土壤有机质的空间相关性较弱。
结论不同土层土壤有机质含量水平差异较大,南北方向呈增加趋势,东西方向呈减少趋势,局部地区存在明显的垂直分布特征。土壤有机质在表层(0~20和20~40 cm)空间相关性不显著,空间聚集程度较低;在底层(40~60和60~80 cm)空间相关性较显著,空间聚集程度较高。土壤有机质空间异质性受土壤类型、土壤质地、外围植被类型以及湖区面积变化的影响较大;在湖区外围生态屏障建设时,防护林树种、种植深度、种植密度的选择应当结合土壤有机质含量的空间分布状况进行。
Abstract:ObjectiveTo study the spatial distribution of soil organic matter in Mayi lake, the water source of the eastern ecological barrier of Karamay city, and provide scientific basis and data support for the ecological environment protection of the lake area.
MethodThe study area of this paper was Mayi lake. Through field sampling and indoor analysis, the study used trend analysis method, inverse distance weight interpolation method, spatial autocorrelation method and semi-variogram function method to analyze the spatial distribution law of soil organic matter at different depths of Mayi lake.
ResultThe trend analysis showed that the change rates of soil organic matter content in Mayi lake were different from 0−20, 20−40, 40−60 and 60−80 cm soil layers, but the overall trend was that soil organic matter content increased in the north-south direction and decreased in the east-west direction. The inverse distance weight interpolation method (IDW) showed that there are large horizontal distribution differences of soil organic matter contents in different soil layers, and regional obvious vertical distribution characteristics of soil organic matter content in Mayi lake. The trends in soil organic matter content change were highly consistent with trend analysis method. The overall performance of the north-south direction of soil organic matter content increased, the east-west direction showed a trend of decrease. The spatial autocorrelation method showed that Moran indexes of four layers were 0.164 3, 0.123 6, 0.195 5 and 0.246 1 respectively, showing a significant positive correlation on the space. The Z values of 0−20, 20−40, 40−60 and 60−80 cm soil layers were 3.151 0, 2.593 4, 3.590 3 and 4.635 5 respectively. The soil organic matter of underlayers (40−60, 60−80 cm) had obvious positive spatial correlation with the highest space aggregation degree. The surface layers (0−20, 20−40 cm) had no significant spatial correlation, and low spatial aggregation degree. The semi-variogram function method showed that the nugget effects of the underlayers (40−60 and 60−80 cm) were 0.427 and 0.420 respectively, indicating spatial correlation of soil organic matter was general. The nugget effects of the surface layers (0−20 and 20−40 cm) were 0.033 and 0.045 respectively, indicating high spatial correlation of soil organic matter.
ConclusionThe contents of soil organic matter in different soil layers vary greatly, and the north-south direction tends to increase, while the east-west direction tends to decrease. The spatial correlations of soil organic matter in the surface layers (0−20 and 20−40 cm) are not significant, and the spatial aggregation degrees are low, while the spatial correlations are significant and the spatial aggregation degrees are high in the underlayers (40−60 and 60−80 cm). The spatial heterogeneity of soil organic matter content is greatly affected by soil type, soil texture, vegetation type and the variation of lake area. While constructing ecological barrier in the periphery of lake area, the selection of shelterbelt tree species, planting depth and planting density should be combined with the spatial distribution of soil organic matter content.
-
-
图 3 不同土层土壤有机质含量的空间自相关分析
A1、B1、C1和D1显示各土层莫兰指数(I);A2、B2、C2和D2显示各土层莫兰指数经置换后对应的期望值(Ie)
Figure 3. Spatial autocorrelation analysis of soil organic matter content at different soil layers
A1, B1, C1和D1 show Moran index (I) values at different soil layers; A2, B2, C2和D2 show the expected values (Ie) of Moran index after iteration at different soil layers
表 1 不同土层土壤有机质含量统计特征值
Table 1 Statistical characteristic values of soil organic matter content at different soil layers
土层/cm
Soil layerw(有机质)/ (g·kg−1) Organic matter content 统计特征值 Statistical characteristic value 最小值
Min.最大值
Max.平均值
Average标准差
Standard deviation方差
Variance变异系数/%
Coefficient of variation偏度
Skewness峰度
KurtosisP 0~20 0.41 35.15 8.72 6.31 39.87 72.39 1.50 3.88 0.168 20~40 0.28 25.68 6.36 4.95 24.51 77.84 1.54 3.71 0.341 40~60 0.19 13.20 5.12 3.18 10.10 62.11 0.58 −0.17 0.837 60~80 0.33 15.23 5.30 3.39 11.48 63.93 0.77 0.73 0.646 表 2 各土层土壤有机质含量变异函数模型参数
Table 2 Variogram model parameters of soil organic matter content at different soil layers
土层/cm
Soil layer变异函数模型类型
Variogram model块金值(C0)
Nugget基台值(C0+C)
Sill变程/m
RangeC0/(C0+C)
Nugget/Sill决定系数(R2)
Coefficient of determination0~20 球状模型 Spherical model 1.30 38.96 1 510.00 0.033 0.177 20~40 球状模型 Spherical model 1.08 24.22 1 250.00 0.045 0.061 40~60 高斯模型 Gaussian model 4.23 9.91 7 170.69 0.427 0.661 60~80 指数模型 Exponential model 5.32 12.68 39 660.00 0.420 0.413 -
[1] 袁晓宇, 海春兴, 刘广通. 阴山北麓不同用地土壤有机质含量对抗风蚀的作用研究[J]. 水土保持研究, 2007, 14(6): 302-304. [2] 毛丽, 苏志珠, 王国玲, 等. 毛乌素沙地不同土地利用类型的土壤粒度及有机质特征[J]. 干旱区研究, 2019, 36(3): 589-598. [3] 张枝枝, 张福平, 燕玉超, 等. 渭河两岸缓冲带的土壤有机质含量分布特征及其影响因子[J]. 土壤, 2017, 49(2): 393-399. [4] 曹智, 闵庆文, 刘某承, 等. 基于生态系统服务的生态承载力: 概念、内涵与评估模型及应用[J]. 自然资源学报, 2015, 30(1): 1-11. [5] 陈春燕, 杜兴瑞, 李晓莉, 等. 基于GIS的九寨沟县域土壤养分空间变异特征[J]. 湖北农业科学, 2015, 54(21): 5277-5280. [6] 赵明松, 张甘霖, 李德成, 等. 江苏省土壤有机质变异及其主要影响因素[J]. 生态学报, 2013, 33(16): 5058-5066. [7] 乔蕻强, 程文仕, 程东林. 等. 基于DPSIR模型的土地整治规划环境影响评价[J]. 水土保持通报, 2017, 37(2): 308-312. [8] 徐小锋, 宋长春. 全球碳循环研究中“碳失汇”研究进展[J]. 中国科学院研究生院学报, 2004, 21(2): 145-152. [9] 李晓燕, 张树文, 王宗明, 等. 吉林省德惠市土壤特性空间变异特征与格局[J]. 地理学报, 2004, 59(6): 989-997. [10] 徐英, 陈亚新, 史海滨, 等. 土壤水盐空间变异尺度效应的研究[J]. 农业工程学报, 2004, 20(2): 1-5. [11] 邵明安, 王全九, 黄明斌. 土壤物理学[M]. 北京: 高等教育出版社, 2006. [12] 张娜, 张栋良, 屈忠义, 等. 不同尺度下内蒙古河套灌区有机质空间变异[J]. 生态学杂志, 2016, 35(3): 630-640. [13] 雷咏雯, 危常州, 李俊华, 等. 不同尺度下土壤养分空间变异特征的研究[J]. 土壤, 2004, 36(4): 376-381. [14] 郭安廷, 崔锦霞, 许鑫, 等. 基于GIS与地统计的土壤养分空间变异研究[J]. 中国农学通报, 2018, 34(23): 72-79. [15] 李慧芳, 杨虎德, 郑隆举. 基于GIS技术的土壤养分时空变异研究[J]. 北方农业学报, 2016, 44(2): 77-80. [16] 马亚平, 魏永霞. 基于Matlab和地统计学的土壤有机质空间变异研究[J]. 东北农业大学学报, 2010, 41(2): 70-72. [17] 孙强, 曾维华, 沈珍瑶, 等. 基于地统计学方法的泾河流域降水空间变异规律研究[J]. 干旱区资源与环境, 2004, 18(5): 47-51. [18] 王政权. 地质统计学及在生态学中的应用[M]. 北京: 科学出版社, 1999. [19] 王合玲, 张辉国, 秦璐, 等. 新疆艾比湖流域土壤有机质的空间分布特征及其影响因素[J]. 生态学报, 2012, 32(16): 4969-4980. [20] 王述潮, 马鸣. 新疆克拉玛依市玛依湖区的鸟类多样性[J]. 湿地科学, 2019, 17(2): 172-178. [21] 赵雲泰, 黄贤金, 钟太洋, 等. 1999—2007 年中国能源消费碳排放强度空间演变特征[J]. 环境科学, 2011, 32(11): 3145-3152. [22] 陈思明, 王宁, 秦艳芳, 等. 河口湿地不同土层有机质的水平异质性与自相关性[J]. 生态学杂志, 2019, 38(9): 2805-2812. [23] 刘迁迁, 苏里坦, 刘广明, 等. 伊犁河谷察南灌区土壤盐分空间变异研究[J]. 干旱区研究, 2017, 34(5): 980-985. [24] 焦德志, 于欣宇, 王昱深, 等. 扎龙湿地芦苇分株生态可塑性及其对土壤因子的响应[J]. 生态学报, 2019, 39(11): 4149-4157. [25] 周倩倩, 丁建丽, 唐梦迎, 等. 干旱区典型绿洲土壤有机质的反演及影响因素研究[J]. 土壤学报, 2018, 55(2): 313-324. [26] 张海欧, 王欢元, 孙婴婴. 毛乌素沙地玉米不同种植年限砒砂岩与沙复配土壤有机质与全氮的关系[J]. 水土保持通报, 2019, 39(2): 242-245. [27] 鲍丽然, 周皎, 李瑜, 等. 渝西北土壤有机质空间变异及影响因素分析[J]. 西南农业学报, 2017, 30(11): 2541-2547. [28] 杜佩颖, 张海涛, 郭龙, 等. 平原丘陵过渡区土壤有机质空间变异及其影响因素[J]. 土壤学报, 2018, 55(5): 1286-1295. [29] 董莉丽, 杨波, 李晓华, 等. 陕西省土壤有机质含量及其与影响因素的关系[J]. 水土保持通报, 2017, 37(4): 85-91.