PEDV N蛋白单克隆抗体的制备及间接免疫荧光检测方法的建立

    邝燕齐, 莫梅君, 何红玲, 周金柱, 周如月, 郭霄峰

    邝燕齐, 莫梅君, 何红玲, 等. PEDV N蛋白单克隆抗体的制备及间接免疫荧光检测方法的建立[J]. 华南农业大学学报, 2020, 41(5): 27-35. DOI: 10.7671/j.issn.1001-411X.202002022
    引用本文: 邝燕齐, 莫梅君, 何红玲, 等. PEDV N蛋白单克隆抗体的制备及间接免疫荧光检测方法的建立[J]. 华南农业大学学报, 2020, 41(5): 27-35. DOI: 10.7671/j.issn.1001-411X.202002022
    KUANG Yanqi, MO Meijun, HE Hongling, et al. Preparation of monoclonal antibody against N protein of porcine epidemic diarrhea virus and establishment of indirect immuno-fluorescence assay[J]. Journal of South China Agricultural University, 2020, 41(5): 27-35. DOI: 10.7671/j.issn.1001-411X.202002022
    Citation: KUANG Yanqi, MO Meijun, HE Hongling, et al. Preparation of monoclonal antibody against N protein of porcine epidemic diarrhea virus and establishment of indirect immuno-fluorescence assay[J]. Journal of South China Agricultural University, 2020, 41(5): 27-35. DOI: 10.7671/j.issn.1001-411X.202002022

    PEDV N蛋白单克隆抗体的制备及间接免疫荧光检测方法的建立

    基金项目: 广东省产学研重点项目(2014B090901046)
    详细信息
      作者简介:

      邝燕齐(1994—),女,硕士研究生,E-mail:1321897547@qq.com

      通讯作者:

      郭霄峰(1963—),男,教授,博士,E-mail: xfguo@scau.edu.cn

    • 中图分类号: S852.65

    Preparation of monoclonal antibody against N protein of porcine epidemic diarrhea virus and establishment of indirect immuno-fluorescence assay

    • 摘要:
      目的 

      制备猪流行性腹泻病毒(PEDV) N蛋白单克隆抗体,并建立检测PEDV的间接免疫荧光试验方法。

      方法 

      以重组表达的PEDV N蛋白为免疫原,免疫8周龄雌性BALB/c小鼠,分离高抗体效价小鼠的脾细胞,与SP2/0细胞融合。筛选分泌抗PEDV N蛋白单克隆抗体的杂交瘤细胞株。在已经感染PEDV的Vero细胞中,以抗PEDV N蛋白的单克隆抗体为一抗,FITC−羊抗鼠IgG为二抗,建立PEDV的间接免疫荧光检测方法。

      结果 

      制备的杂交瘤细胞株可以稳定分泌抗PEDV N蛋白抗体,细胞上清液的ELISA抗体效价在1∶3 200以上,而诱导的小鼠腹水抗体效价在1∶1 000 000以上。将单克隆抗体应用在间接免疫荧光试验时,最适条件为−20 ℃ 80%(φ)丙酮溶液中固定30 min;一抗用PBS缓冲液按体积比1∶1 000稀释,4 ℃条件下过夜孵育;二抗用PBS缓冲液按体积比1∶100稀释,37 ℃条件下孵育1 h。以建立的间接免疫荧光试验方法检测细胞中的猪传染性胃肠炎病毒(TGEV)、猪瘟病毒(CSFV)、猪繁殖与呼吸综合征病毒(PRRSV)、猪伪狂犬病毒(PPRV)、猪肠道α冠状病毒(PEAV)、猪轮状病毒(PoRV)和PEDV,只有PEDV显示阳性,其他病毒均为阴性。

      结论 

      制备了抗PEDV N蛋白单克隆抗体,以该抗体为一抗建立检测PEDV的间接免疫荧光试验方法具有良好的特异性,为PEDV的实验室检测及PEDV在培养细胞中的定位和动态分布提供了有效的手段。

      Abstract:
      Objective 

      To prepare monoclonal antibodies against porcine epidemic diarrhea virus (PEDV) N protein, and develop an indirect immuno-fluorescence assay method used for detecting PEDV.

      Method 

      The expressed recombinantly PEDV N protein was used as an immunogen and 8-week-old female BALB/c mice were immunized. Then their spleen cells with high antibody titer were isolated and fused with SP2/0 cells. The hybridoma cell lines secreting monoclonal antibodies against PEDV N protein were screened. In Vero cells infected with PEDV, monoclonal antibody of anti-PEDV N protein was used as the primary antibody and FITC-goat-anti-mouse IgG was used as the secondary antibody to develop indirect immuno-fluorescence assay method used for detecting PEDV.

      Result 

      The prepared hybridoma cell lines could stably secrete anti-PEDV N protein antibodies, ELISA antibody titer in cell supernatant was above 1∶3 200, and in mouse ascites above 1∶1 000 000. While monoclonal antibodies were applied in established indirect immuno-fluorescence assay, the optimal conditions were that cells were fixed with 80% (φ) acetone at −20 ℃ for 30 min; The primary antibody was diluted 1 000 times by PBS buffer solution and incubated at 4 ℃ overnight; The secondary antibody was diluted 100 times by PBS buffer solution and incubated at 37 ℃ for 1 h. Transmissible gastroenteritis virus (TGEV), classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine reproductive virus (PRV), porcine enteric α corone virus (PEAV), porcine rotavirus (PoRV) and PEDV were detected by established indirect immuno-fluorescence assay method, only PEDV showed positive, all the else viruses showed negative.

      Conclusion 

      An anti-PEDV N protein monoclonal antibody is prepared, and the indirect immuno-fluorescence assay method used for detecting PEDV is established with high specificity. It provides an effective method for laboratory detection of PEDV and for localization and dynamic distribution of PEDV in infected cells.

    • 图  1   N基因的PCR扩增

      M:DL 2000 DNA marker;1:N基因的PCR产物;2:阴性对照

      Figure  1.   PCR amplification of N gene

      M: DNA marker; 1: PCR products of N gene; 2: Negative control

      图  2   PET-N表达产物的SDS-PAGE

      Mr: 相对分子质量;M:蛋白marker;1:空载体宿主菌诱导产物;2、5:未诱导的含PET-N宿主菌菌株;3、4:pET-N诱导产物

      Figure  2.   SDS-PAGE of expressed product PET-N

      Mr: Relative molecular mass; M: Protein marker; 1: Induction products of empty vector host bacteria; 2, 5: Uninduced host bacteria strain with PET-N; 3, 4: pET-N induced products

      图  3   纯化N蛋白的Western blot检测

      Mr: 相对分子质量;M:蛋白预染marker;1:纯化N蛋白

      Figure  3.   Western blot detection of purified N protein

      Mr: Relative molecular mass; M: Protein pre-staining marker; 1: Purified N protein

      图  4   经不同浓度咪唑洗脱的纯化产物的SDS-PAGE

      Mr:相对分子质量;M:蛋白 marker;1:300 mmol·L−1咪唑洗脱的蛋白液;2:500 mmol·L−1咪唑洗脱的蛋白液;3、4:400 mmol·L−1咪唑洗脱的蛋白液

      Figure  4.   SDS-PAGE of purified product eluted by different concentrations of imidazole

      Mr: Relative molecular mass; M: Protein marker; 1: 300 mmol·L−1 imidazole eluted protein solution; 2: 500 mmol·L−1 imidazole eluted protein solution; 3, 4: 400 mmol·L−1 imidazole eluted protein solution

      图  5   重组PEDV N蛋白免疫小鼠血清中的抗体效价

      1~6:免疫小鼠;7:阴性小鼠

      Figure  5.   Antibody titer in serum of mice immunized with recombinant PEDV N protein

      1−6: Immunized mice; 7: Negative mice

      图  6   杂交瘤细胞上清液的抗体效价

      Figure  6.   Antibody titer of hybridoma cell supernatant

      图  7   小鼠腹水中单克隆抗体效价

      Figure  7.   Monoclonal antibody titer in mouse ascites

      图  8   单克隆抗体与PEDV N蛋白反应的Western blot鉴定

      Mr:相对分子质量;M:蛋白marker;1:小鼠腹水

      Figure  8.   Western blot identification of monoclonal antibodies reacting with PEDV N protein

      Mr: Relative molecular mass; M: Protein marker; 1: Ascites in mice

      图  9   不同稀释度N蛋白单克隆抗体的间接免疫荧光试验结果

      a、b、c、d、e的稀释比例分别为 1∶100、1∶200、1∶500、1∶1 000、1∶2 000;f:阴性血清;g:空白对照

      Figure  9.   Indirect immuno-fluorescenece assay results of N protein monoclonal antibodies at different dilution ratios

      The dilution ratios of a,b,c,d and e are 1∶100, 1∶200, 1∶500, 1∶1 000 and 1∶2 000 respectively;f:Negative serum;g:Blank control

      图  10   不同稀释度FITC-羊抗鼠IgG的间接免疫荧光试验结果

      a、b、c、d的稀释比例分别为 1∶100、1∶200、1∶500、1∶800;e:自发光样品

      Figure  10.   Indirect immuno-fluorescenece assay results of FITC–goa–anti–mouse IgG at different dilution ratios

      The dilution ratios of a,b,c and d are 1∶100, 1∶200, 1∶500 and 1∶800;e: Self-illuminated sample

      图  11   N蛋白单克隆抗体孵育时间的确定

      a:4 ℃条件下过夜孵育;b:37 ℃条件下孵育2 h

      Figure  11.   Determination of incubation time of N protein monoclonal antibody

      a: Incubation at 4 ℃ overnight; b: Incubation at 37 ℃ for 2 h

      图  12   间接免疫荧光特异性试验结果

      a:猪瘟病毒;b:猪繁殖与呼吸综合征病毒;c:猪伪狂犬病毒;d:猪传染性胃肠炎病毒;e:猪肠道α冠状病毒;f:猪轮状病毒;g:阳性对照;h:阴性对照

      Figure  12.   Specific test results of indirect immuno-fluorescenece assay

      a: Classical swine fever virus; b: Porcine reproductive and respiratory syndrome virus; c: Porcine pseudorabies virus; d: Transmissible gastroenteritis virus; e: Porcine enteric α corone virus; f: Porcine rotavirus; g: Positive control; h: Negative control

      图  13   间接免疫荧光试验重复性试验结果

      a, b:同批次 Vero 细胞;c:与a、b不同批次 Vero 细胞

      Figure  13.   Repeatability test results of indirect immuno-fluorescenece assay

      a, b: The same batch Vero cells; c: Different batch Vero cells with a and b

      图  14   间接免疫荧光试验敏感性试验结果

      a:PEDV病毒液用不完全培养基DMEM按1∶10稀释;b:PEDV病毒液用不完全培养基DMEM按1∶100 000稀释;c:空白对照

      Figure  14.   Sensitivity test results of indirect immuno-fluorescenece assay

      a:PEDV virus solution is diluted by incomplete medium DMEM at 1∶10;b:PEDV virus solution is diluted by incomplete medium DMEM at 1∶100 000;c:Blank control

      表  1   间接ELISA法检测不同稀释比例病毒的抗体特异性

      Table  1   Detection of antibody specificity of viruses with different dilution ratios by indirect ELISA

      病毒名称1)
      Virus name
      D450 nm
      1∶1 1∶100 1∶1 000 1∶3 000 1∶5 000 1∶10 000 1∶50 000 1∶100 000
      TGEV 0.022 0.019 0.026 0.021 0.022 0.018 0.024 0.026
      PRV 0.020 0.020 0.023 0.023 0.026 0.022 0.023 0.021
      CSFV 0.018 0.017 0.019 0.020 0.017 0.021 0.020 0.016
      PRRSV 0.018 0.020 0.023 0.021 0.017 0.020 0.022 0.018
      PEDV 0.489 0.474 0.492 0.491 0.479 0.472 0.468 0.492
       1)TGEV、PPRV、CSFV、PRRSV、PEDV 分别代表猪传染性胃肠炎病毒、猪伪狂犬病毒、猪瘟病毒、猪繁殖与呼吸综合征病毒、猪流行性腹泻病毒
       1) TGEV, PPRV, CSFV, PRRSV and PEDV N indicate transmissible gastroenteritis virus, classical swine fever virus, porcine reproductive and respiratory syndrome virus and porcine epidemic diarrhea virus
      下载: 导出CSV
    • [1]

      MESQUITA J R, HAKZE-VAN D H R, ALMEIDA A, et al. Outbreak of porcine epidemic diarrhea virus in Portugal, 2015[J]. Transbound Emerg Dis, 2015, 62(6): 586-588. doi: 10.1111/tbed.12409

      [2]

      CHEN Q, LI G, STASKO J, et al. Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States[J]. J Clin Microbiol, 2014, 52(1): 234-243. doi: 10.1128/JCM.02820-13

      [3]

      SUN J, LI Q, SHAO C, et al. Isolation and characterization of Chinese porcine epidemic diarrhea virus with novel mutations and deletions in the S gene[J]. Vet Microbiol, 2018, 221: 81-89. doi: 10.1016/j.vetmic.2018.05.021

      [4]

      LARA-ROMERO R, GOMEZ-NUNEZ L, CERRITENO-SANCHEZ J L, et al. Molecular characterization of the spike gene of the porcine epidemic diarrhea virus in Mexico, 2013-2016[J]. Virus Genes, 2018, 54(2): 215-224. doi: 10.1007/s11262-017-1528-x

      [5]

      ZHAO X, LI Z, ZENG X, et al. Sequence analysis of the spike gene of porcine epidemic diarrhea virus isolated from South China during 2011-2015[J]. J Vet Sci, 2017, 18(2): 237-243. doi: 10.4142/jvs.2017.18.2.237

      [6]

      LI W, LI H, LIU Y, et al. New variants of porcine epidemic diarrhea virus, China, 2011[J]. Emerg Infect Dis, 2012, 18(8): 1350-1353. doi: 10.3201/eid1803.120002

      [7]

      VAN DIEP N, SUEYOSHI M, NORIMINE J, et al. Molecular characterization of US-like and Asian non-S INDEL strains of porcine epidemic diarrhea virus (PEDV) that circulated in Japan during 2013-2016 and PEDVs collected from recurrent outbreaks[J]. BMC Vet Res, 2018, 14: 96. doi: 10.1186/s12917-018-1409-0.

      [8] 莫炜钰, 罗均, 莫梅君, 等. 两株猪流行性腹泻野毒的确证及N基因的分析[J]. 中国兽医杂志, 2016, 52(9): 10-12. doi: 10.3969/j.issn.0529-6005.2016.09.003
      [9]

      JUNG K, ANNAMALAI T, LU Z, et al. Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs 26-day-old weaned pigs[J]. Vet Microbiol, 2015, 178(1/2): 31-40.

      [10]

      LI Z L, ZHU L, MA J Y, et al. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field strains in south China[J]. Virus Genes, 2012, 45(1): 181-185. doi: 10.1007/s11262-012-0735-8

      [11] 孙东波, 冯力, 时洪艳, 等. 猪流行性腹泻病毒分子生物学研究进展[J]. 动物医学进展, 2006, 27(10): 11-14. doi: 10.3969/j.issn.1007-5038.2006.10.003
      [12]

      KOCHERHANS R, BRIDGEN A, ACKERMANN M, et al. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence[J]. Virus Genes, 2001, 23(2): 137-144. doi: 10.1023/A:1011831902219

      [13]

      DANIELY Y, BOROWIEC J A. Formation of a complex between nucleolin and replication protein A after cell stress prevents initiation of DNA replication[J]. J Cell Biol, 2000, 149(4): 799-810. doi: 10.1083/jcb.149.4.799

      [14] 石达, 吕茂杰, 陈建飞, 等. 猪流行性腹泻病毒蛋白对Vero E6核蛋白B23.1的影响[J]. 中国兽医杂志, 2012, 48(4): 21-23. doi: 10.3969/j.issn.0529-6005.2012.04.007
      [15] 石达. 猪流行性腹泻病毒核衣壳蛋白亚细胞定位信号的鉴定[D]. 哈尔滨: 中国农业科学院哈尔滨兽医研究所, 2012.
      [16]

      CHEN X, ZHANG X X, LI C, et al. Epidemiology of porcine epidemic diarrhea virus among Chinese pig populations: A meta-analysis[J]. Microb Pathog, 2019, 129: 43-49. doi: 10.1016/j.micpath.2019.01.017

      [17]

      SUN R Q, CAI R J, CHEN Y Q, et al. Outbreak of porcine epidemic diarrhea in suckling piglets, China[J]. Emerg Infect Dis, 2012, 18(1): 161-163. doi: 10.3201/eid1801.111259

    图(14)  /  表(1)
    计量
    • 文章访问数:  1942
    • HTML全文浏览量:  11
    • PDF下载量:  3321
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-02-25
    • 网络出版日期:  2023-05-17
    • 刊出日期:  2020-09-09

    目录

      Corresponding author: GUO Xiaofeng, xfguo@scau.edu.cn

      1. On this Site
      2. On Google Scholar
      3. On PubMed

      /

      返回文章
      返回