• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

虾青素对脂多糖诱导的RAW264.7细胞炎症反应的影响及机制

宋阳, 朱凌羽, 李若楠, 郑鑫

宋阳, 朱凌羽, 李若楠, 等. 虾青素对脂多糖诱导的RAW264.7细胞炎症反应的影响及机制[J]. 华南农业大学学报, 2020, 41(5): 9-16. DOI: 10.7671/j.issn.1001-411X.202002019
引用本文: 宋阳, 朱凌羽, 李若楠, 等. 虾青素对脂多糖诱导的RAW264.7细胞炎症反应的影响及机制[J]. 华南农业大学学报, 2020, 41(5): 9-16. DOI: 10.7671/j.issn.1001-411X.202002019
SONG Yang, ZHU Lingyu, LI Ruonan, et al. Effect of astaxanthin on inflammatory response of RAW264.7 cells induced by lipopolysaccharide and its mechanism[J]. Journal of South China Agricultural University, 2020, 41(5): 9-16. DOI: 10.7671/j.issn.1001-411X.202002019
Citation: SONG Yang, ZHU Lingyu, LI Ruonan, et al. Effect of astaxanthin on inflammatory response of RAW264.7 cells induced by lipopolysaccharide and its mechanism[J]. Journal of South China Agricultural University, 2020, 41(5): 9-16. DOI: 10.7671/j.issn.1001-411X.202002019

虾青素对脂多糖诱导的RAW264.7细胞炎症反应的影响及机制

基金项目: 国家自然科学基金(31672511)
详细信息
    作者简介:

    宋阳(1996—),女,硕士研究生,E-mail: 657346976@qq.com

    通讯作者:

    郑 鑫(1965—),女,教授,博士,E-mail: zhengxin@jlau.edu.cn

  • 中图分类号: S813

Effect of astaxanthin on inflammatory response of RAW264.7 cells induced by lipopolysaccharide and its mechanism

  • 摘要:
    目的 

    研究虾青素(AST)对脂多糖(LPS)诱导的RAW264.7细胞炎症反应的影响及作用机制,为将虾青素应用于炎症治疗奠定理论基础。

    方法 

    采用不同浓度梯度的脂多糖及虾青素对RAW264.7细胞进行不同时间段的处理,通过MTT法确定最佳处理浓度和时间,对细胞进行最佳处理后,用ELISA法、荧光定量PCR技术和Western blot法分别检测细胞炎症因子的分泌量、mRNA相对表达量和蛋白相对表达量。

    结果 

    100 μmol/L虾青素和2 μg/mL脂多糖处理3 h的RAW264.7细胞活力处于峰值。与对照组相比,脂多糖组RAW264.7细胞中TNF-α、IL-6和Caspase-1的分泌量分别降低了12.83%、9.66%和20.80%(P<0.05),脂多糖对于TLR4/MyD88/NF-кB通路相关蛋白表达有促进作用,其中,TLR4和NF-кB p65蛋白相对表达量分别提高了195.40%和226.95%(P<0.05);与LPS组相比,AST+LPS组中虾青素对炎性因子的分泌及mRNA表达有抑制作用,TLR4、MyD88和NF-кB p65蛋白相对表达量降低了54.99%、45.70%和28.20%(P<0.05)。

    结论 

    虾青素预保护能抑制TLR4/MyD88/NF-кB通路相关蛋白的表达,进而缓解脂多糖刺激RAW264.7细胞产生的炎症反应。

    Abstract:
    Objective 

    To study the effect of astaxanthin (AST) on the inflammatory response of RAW264.7 cells induced by lipopolysaccharide (LPS) and the mechanism, and provide a theoretical basis for using AST in inflammation therapy.

    Method 

    Different concentrations of LPS and AST were used to treat RAW264.7 cells for different time. The optimal treatment concentration and time were determined by MTT method. After applying the optimal treatment, the secretion, mRNA relative expression and protein relative expression of inflammatory factors were detected by ELISA, fluorescence quantitative PCR and Western blot method respectively.

    Result 

    When treated with 100 μmol/L AST and 2 μg/mL LPS for 3 h, the viability of RAW264.7 cells was at the peak. Compared with the control group, the secretion of TNF-α, IL-6 and Caspase-1 in RAW264.7 cells of LPS group reduced by 12.83%, 9.66% and 20.80% respectively(P<0.05). LPS promoted the expression of TLR4/MyD88/NF-κB pathway-related proteins with relative expression of TLR4 and NF-кB p65 proteins enhanced by 195.40% and 226.95% respectively(P<0.05). Compared with LPS group, AST had inhibitory effects on the secretion and mRNA expression of inflammatory factors in AST+LPS group, and the relative expression of TLR4, MyD88 and NF-кB p65 proteins reduced by 54.99%, 45.70% and 28.20% respectively (P<0.05).

    Conclusion 

    AST pre-protection can inhibit the expression of TLR4/MyD88/NF-κB pathway-related proteins, thereby alleviate the inflammatory response in RAW264.7 cells induced by LPS.

  • 土壤有机碳是土壤肥力评价的一项重要指标[1]。Lefroy等[2]将能被333 mmol·L–1 KMnO4氧化的有机碳称为活性有机碳,不能被氧化的称为非活性有机碳,并提出用土壤碳库管理指数(CPMI)来表征土壤管理措施引起的土壤有机碳变化。活性有机碳是占土壤有机碳中比例较小而周转速率较快的部分,在土壤有机碳中对环境的变化最敏感,可以指示土壤有机碳的早期变化[3]。因此土壤有机碳和活性有机碳在维持土壤肥力及土壤碳贮量变化方面具有重大意义[4]

    由于大量施用化学氮肥,加快了土壤原有有机碳的消耗,使积累在土壤中的有机碳总量减少[5]。土壤水分会影响土壤有机碳的变化,当土壤水分不足时,会导致土壤通气性加强,促进土壤呼吸作用和有机碳矿化分解,从而降低土壤有机碳含量[6-7]。唐首锋等[8]研究表明,在0~15和15~30 cm土层,3种灌溉处理土壤有机碳含量表现为滴灌>渗灌>沟灌。此外,土壤酶参与了土壤有机碳的分解和转化过程,其活性高低可反映土壤有机碳转化强弱[9]

    广西赤红壤面积达503万hm2,占土地总面积的21.25%[10]。广西大部分地区虽然年降雨量充沛,但是常出现季节性干旱,而滴灌施肥是将施肥与滴灌结合在一起的一项农业新技术,已被广泛应用[11]。赤红壤的酸碱缓冲能力相对较弱,邓兰生等[12]在研究滴灌施氮对赤红壤酸化的影响中发现,滴施尿素、硫酸铵、硝酸铵后赤红壤各土层pH均有一定程度地下降,下降幅度为:硫酸铵>硝酸铵>尿素。徐明岗等[13]研究发现,施肥对红壤活性有机质组分的影响显著。因此,在不同水肥条件下,研究赤红壤有机碳的变化对土壤碳库的影响有重要意义。

    为探索有利于赤红壤碳库管理的滴灌施氮模式,本研究通过模拟滴灌系统的盆栽试验,研究了不同滴灌方式和施氮处理对土壤有机碳和活性有机碳含量、碳库管理指数和酶活性的影响,并分析土壤有机碳含量、活性有机碳含量、碳库管理指数和酶活性的关系,以期为赤红壤农田固碳的水肥管理提供依据。

    试验在广西大学农学院网室进行,该网室可以透光、通风、遮雨,网室内光照、温度和湿度等环境因素与室外基本一致。供试土壤为赤红壤,采自广西大学农科教学实习基地,经风干、碾碎,过5 mm筛,pH5.32,碱解氮31.55 mg·kg–1(1 mol·L–1NaOH扩散法),速效磷33.26 mg·kg–1(0.5 mol·L–1NaHCO3法),速效钾100.32 mg·kg–1(0.5 mol·L–1 NH4OAc法),田间持水量为29.5%。供试玉米Zea mays L. 品种为‘家甜糯11’。

    在聚乙烯塑料桶(上部开口内径35 cm,底部内径26 cm,高29 cm)中部用塑料薄膜隔开,以防两侧水分交换,薄膜两侧各装风干土10 kg,每桶共装风干土20 kg,塑料桶上缘薄膜中部各剪一个小口,种植已催芽的玉米。

    设3种滴灌方式和5种施氮处理,完全方案设计,共15个处理,每个处理重复3次,共45盆,随机区组排列。滴灌方式设常规滴灌(CDI,每桶2个滴头分别对玉米植株两侧土壤灌水或灌水施肥)、交替滴灌(ADI,本次用1个滴头对植株其中一侧土壤灌水或灌水施肥,下次用另一个滴头对植株另一侧土壤进行灌水或灌水施肥,如此交替进行)和固定滴灌(FDI,每次用1个滴头固定对玉米植株一侧土壤灌水或灌水施肥,另一侧土壤则不灌水或不灌水施肥)。试验期间,加肥料时,事先按设计要求配好肥料溶液,肥料溶液注入模拟滴灌系统的输液袋,将输液袋挂在距地面2 m高处,溶液由塑料软管导出,经软管由滴头滴入土壤中,滴头距离植株根系15 cm,流速为0.7 L·h–1。不加肥料时,按上述方法只灌自来水。

    试验设5个施氮处理,分别用N0、N1、N2、N3和N4表示,除N0处理不施氮肥外,N1~N4处理总施氮量均为0.20 g·kg–1,追施氮量依次按0、100%、90%、80%和70%的总施氮肥比例进行,具体追施氮量分别为0、0.20、0.18、0.16、0.14 g·kg–1。除N0不追施氮肥外,其余处理按上述灌水施肥方法,通过输液袋进行滴灌施氮。其中苗期施氮占滴灌施氮量的30%,穗期占40%,花粒期占30%,每个时期平均分2次施入,共计6次。N肥作追肥的比例、方式和日期按表1实施。N2、N3和N4处理中,部分氮肥用作基肥,所有处理的P肥(0.15 g·kg–1)和K肥(0.20 g·kg–1)全部作基肥,装盆时与土壤混匀。氮肥用尿素(N质量分数为46%),磷肥用磷酸二氢钾(P2O5质量分数为 52%),钾肥用磷酸二氢钾(K2O质量分数为 34%)和氯化钾(K2O质量分数为 60%)。

    表  1  甜糯玉米各处理滴灌施氮情况
    Table  1.  Drip nitrogen fertigation of different treatments for sweet-waxy maize
    处理
    Treatment
    滴灌施 N 量/(g·kg–1)
    Amount of drip
    irrigated N
    占 N 总量比例/%
    Percentage of drip irrigated
    N in total N applied
    各追肥日期的 N 肥比例1)/%
    Percentage of N applied at different topdressing dates
    04-30 05-20 05-31 06-07 06-17 06-26
    N0 0 0 0 0 0 0 0 0
    N1 0.20 100 15 15 20 20 15 15
    N2 0.18 90 15 15 20 20 15 15
    N3 0.16 80 15 15 20 20 15 15
    N4 0.14 70 15 15 20 20 15 15
     1) 04-30、05-20:拔节期;05-31、06-07:孕穗期;06-17、06-26:花粒期
     1) 04-30, 05-20: Jointing stage; 05-31, 06-07: Booting stage; 06-17, 06-26: Flowering-maturing stage
    下载: 导出CSV 
    | 显示表格

    4月6日,按照试验设计将土壤、部分氮肥和全部P、K肥混匀装入试验桶,4月7日每桶播4粒已催芽的玉米种子,长到“四叶一心”时,间苗定苗,每桶留长势均匀的玉米苗1株。4月27日(播后20 d),对供试玉米进行控水处理,常规滴灌土壤水分下限为田间持水量的70%,上限为田间持水量的80%,当含水量降至或接近该处理水分下限时进行灌水,灌水至水分控制上限。根据作物生长和天气情况,每隔1~2 d于下午称量CDI处理桶质量,用水量平衡法确定所需的灌水量。ADI和FDI各施N处理每次灌水量按常规滴灌相应施N处理灌水量的80%进行滴灌。每次灌水量用量筒量取,并记录各处理灌水量。7月11日试验结束。

    土壤有机碳(SOC)用高温外加热重铬酸钾氧化−容量法测定[14];土壤活性有机碳(LOC)用浓度333 mmol·L–1的高锰酸钾氧化土样,并测D565 nm[15]

    本试验将不施N肥处理土壤(N0)作为对照土壤。碳库指数及碳库管理指数等相关指标参照徐明岗等[16]的方法计算,计算公式如下:

    非活性有机碳含量 = 有机碳含量−活性有机碳含量, (1)

    碳库指数 (ICP) = 土壤有机碳含量/参考土壤有机碳含量, (2)

    碳库活度 (A) = 活性有机碳含量/非活性有机碳含量, (3)

    碳库活度指数 (IA) = 碳库活度/参考碳库活度, (4)

    碳库管理指数 (ICPM) = 碳库指数/碳库活度指数×100。 (5)

    过氧化氢酶活性用高锰酸钾滴定法测定,脲酶活性用苯酚−次氯酸钠比色法测定,转化酶活性用3,5−二硝基水杨酸比色法测定[17]

    显著性检验用方差分析法,方差分析包括不同施氮处理、滴灌方式以及两者间的交互效应,分析结果用P值表示(P<0.05,显著;P<0.01,极显著;P>0.05,不显著),用SPSS 20.0软件进行分析。多重比较采用Duncan’s法。用Pearson法分析了土壤有机碳含量、活性有机碳含量和碳库管理指数与酶活性的相关性系数。

    表2可知,滴灌方式对土壤有机碳(SOC)含量的影响极显著。与常规滴灌(CDI)相比,N2处理下,交替滴灌(ADI)土壤SOC含量比CDI方式提高9.7%,差异显著;与固定滴灌(FDI)相比,N1和N2处理下,ADI方式土壤SOC含量比FDI方式分别提高15.4%和18.8%,差异显著。

    表  2  不同滴灌方式和施氮处理对土壤碳库的影响1)
    Table  2.  Effects of different drip irrigation methods and nitrogen treatments on soil carbon pool
    施氮处理
    Nitrogen treatment
    (N)
    滴灌方式
    Drip irrigation method
    (DIM)
    w/(g·kg–1) 碳库活度
    Activity of carbon
    pool (A)
    碳库活度指数
    Activity index of
    carbon pool (IA)
    碳库指数
    Carbon pool
    index
    (ICP)
    碳库管理指数
    Carbon pool management
    index (ICPM)
    有机碳
    Soil organic carbon
    活性有机碳
    Labile organic carbon
    N0 CDI 10.62±0.04h 0.85±0.06fgh 0.09±0.01cdefg 1.00±0bc 1.00±0g 100.00±0g
    ADI 10.94±0.10gh 0.97±0.05def 0.10±0.01bcde 1.00±0bc 1.00±0g 100.00±0g
    FDI 10.43±0.04h 0.76±0.02h 0.08±0efg 1.00±0bc 1.00±0g 100.00±0g
    N1 CDI 12.92±0.07cdef 1.10±0.01cde 0.09±0bcdef 1.09±0.09abc 1.22±0.01cdef 132.20±11.40cde
    ADI 14.20±0.84bc 1.33±0.03b 0.10±0.01bcd 1.08±0.14abc 1.30±0.08bcd 138.54±9.80bcd
    FDI 12.30±0.16efg 0.92±0.03fgh 0.08±0.01efg 1.03±0.05bc 1.18±0.02def 120.99±4.72cdef
    N2 CDI 15.02±0.03b 1.49±0.06b 0.11±0.01ab 1.27±0.05a 1.41±0ab 179.50±6.96a
    ADI 16.48±0.42a 1.80±0.05a 0.12±0a 1.27±0.04a 1.51±0.05a 190.49±6.95a
    FDI 13.87±1.16bcd 1.16±0.06c 0.09±0bcdef 1.17±0.09ab 1.33±0.12bc 154.44±3.65b
    N3 CDI 13.49±0.60cde 1.13±0.10cd 0.09±0.01cdefg 1.06±0.06bc 1.27±0.05cd 133.77±2.31cde
    ADI 13.82±0.41bcd 1.34±0.02b 0.11±0abc 1.10±0.04abc 1.26±0.04cd 139.63±8.93bc
    FDI 12.78±0.07def 0.89±0.06fgh 0.07±0.01g 0.95±0.06c 1.23±0cde 116.61±7.15efg
    N4 CDI 11.61±0.10fgh 0.95±0.04efg 0.09±0defg 1.02±0.05bc 1.09±0.01efg 112.01±5.25fg
    ADI 12.15±0.20efg 1.15±0.08c 0.10±0.01bcd 1.08±0.03abc 1.11±0.01efg 119.49±2.42defg
    FDI 11.32±0.10gh 0.80±0.04gh 0.08±0fg 0.96±0.05bc 1.09±0.01fg 104.87±6.38fg
    P N < 0.001 < 0.001 <0.001 <0.001 <0.001 <0.001
    DIM < 0.001 < 0.001 <0.001 0.104 0.045 <0.001
    N×DIM 0.042 0.053 0.914 0.978 0.607 0.319
     1) 表中数据为平均值±标准误,同列数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
     1) The values in the table are mean ± standard error, and different lowercase letters in the same column indicate significant difference (P<0.05, Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    施氮处理对SOC含量的影响极显著。与N0相比,N1~N3处理的SOC含量均显著提高。CDI方式下,N2处理的SOC含量比其他施氮处理提高11.3%~41.4%;ADI方式下,N2处理的SOC含量较其他施氮处理提高16.1%~50.6%;FDI方式下,N2处理的SOC含量较N0、N1和N4处理分别提高33.0%、12.8%和22.5%。

    施氮处理与滴灌方式的交互作用对SOC含量的影响显著,此外,不同处理相比,以N2-ADI处理的SOC含量最高。

    表2表明,滴灌方式对土壤活性有机碳(LOC)含量有极显著的影响。与CDI方式相比,N1~N4处理时ADI方式的土壤LOC含量提高18.6%~21.1%,差异显著;与CDI方式相比,N1~N3处理时FDI方式的土壤LOC含量降低16.4%~22.1%,差异显著。

    施氮处理对土壤LOC含量的影响极显著。与N0处理相比,CDI方式时N1~N3处理的土壤LOC含量提高29.4%~43.0%,FDI方式时N2处理的土壤LOC含量提高52.6%,ADI方式时N1~N4处理的LOC含量提高18.6%~85.6%,差异均显著。

    施氮处理与滴灌方式的交互作用对土壤LOC含量的影响不显著。

    此外,不同处理相比,以N2-ADI处理的土壤LOC含量最高。

    表2可知,滴灌方式对碳库活度指数的影响不显著,而对碳库活度、碳库指数和碳库管理指数的影响显著或极显著。与FDI方式相比,N1~N3处理时ADI方式的土壤碳库活度提高25.0%~57.1%,N2和N3处理时ADI方式的碳库管理指数分别提高23.3%和19.7%。

    施氮处理对碳库活度、碳库活度指数、碳库指数和碳库管理指数均有极显著的影响。与N0处理相比,ADI方式时N2处理的土壤碳库活度提高20.0%,CDI方式时N1~N3处理的碳库管理指数提高32.2%~79.5%,ADI方式时N1、N2和N3处理的碳库管理指数分别提高38.5%、90.5%和39.6%,FDI方式时N1和N2处理的碳库管理指数分别提高21.0%和54.4%,均达显著水平。

    此外,不同处理相比,N2-ADI处理的土壤碳库管理指数最高。

    表3可知,滴灌方式和施氮处理对土壤过氧化氢酶活性均有极显著的影响。与CDI方式相比,N2处理时ADI方式的土壤过氧化氢酶活性提高12.3%,差异显著。

    表  3  不同滴灌方式和施氮处理对土壤酶活性的影响1)
    Table  3.  Effects of different drip irrigation methods and nitrogen treatments on enzyme activities in soil
    施氮处理
    Nitrogen treatment
    (N)
    滴灌方式
    Drip irrigation method
    (DIM)
    过氧化氢酶活性/
    (mL·g–1)
    Catalase activity
    脲酶活性/
    (mg·kg–1·d–1)
    Urease activity
    转化酶活性/
    (mg·g–1·d–1)
    Invertase activity
    N0 CDI 1.45±0.04c 0.69±0.09bc 11.18±1.88bc
    ADI 1.58±0.03bc 0.73±0.03abc 11.88±0.80abc
    FDI 1.44±0.04c 0.61±0.02c 9.80±0.74c
    N1 CDI 1.60±0.01bc 0.77±0.05abc 13.83±1.34abc
    ADI 1.74±0.12b 0.84±0.05ab 14.38±1.07ab
    FDI 1.57±0.06bc 0.70±0.04bc 12.91±0.25bc
    N2 CDI 1.79±0.07b 0.82±0.01abc 16.03±1.79abc
    ADI 2.01±0.04a 0.92±0.01a 17.26±1.11a
    FDI 1.72±0.08b 0.77±0.04abc 14.43±1.07abc
    N3 CDI 1.63±0.07bc 0.72±0.11abc 15.06±1.30abc
    ADI 1.74±0.03b 0.77±0.09abc 15.71±0.98abc
    FDI 1.62±0.03bc 0.71±0.10abc 13.48±1.21abc
    N4 CDI 1.47±0.10c 0.67±0.06bc 13.41±1.69bc
    ADI 1.58±0.14bc 0.70±0.08bc 14.37±0.62bc
    FDI 1.43±0.04bc 0.63±0.06bc 13.21±1.33bc
    P N <0.001 0.016 <0.001
    DIM <0.001 0.043 0.054
    N×DIM 0.983 0.997 0.999
     1) 表中数据为平均值±标准误,同列数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
     1) The values in the table are mean ± standard error, and different lowercase letters in the same column indicate significant difference (P<0.05, Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    与N0相比,CDI方式时N2处理的土壤过氧化氢酶活性提高23.4%,ADI方式时N2处理的土壤过氧化氢酶活性提高27.2%,FDI方式时N2处理的土壤过氧化氢酶活性提高19.4%,均差异显著。

    此外,不同处理相比,以N2-ADI处理的土壤过氧化氢酶活性最高。

    表3可知,滴灌方式和施氮处理均对土壤脲酶活性的影响显著。其中,N2-ADI处理的土壤脲酶活性较N0-CDI显著提高33.3%。不同处理相比,以N2-ADI处理的土壤脲酶活性最高。

    表3可知,施氮处理对土壤转化酶活性的影响极显著,而滴灌方式对土壤转化酶活性的影响不显著。N2-ADI处理的土壤转化酶活性较N0-CDI处理显著提高54.4%。不同处理相比,以N2-ADI处理土壤转化酶活性最高。

    表4可知,土壤有机碳、活性有机碳含量和碳库管理指数与3种土壤酶活性之间的相关性均达0.01显著水平,说明土壤碳库的变化与土壤酶活性大小关系密切。

    表  4  土壤碳库指标与土壤酶活性的相关性1)
    Table  4.  Correlation between carbon pool index and enzyme activity in soil
    指标
    Index
    过氧化氢酶活性
    Catalase activity
    脲酶活性
    Urease activity
    转化酶活性
    Invertase activity
    土壤有机碳含量 Soil organic carbon content (SOC) 0.669** 0.595** 0.628**
    活性有机碳含量 Labile organic carbon content (LOC) 0.755** 0.533** 0.651**
    碳库管理指数 Carbon pool management index (ICPM) 0.750** 0.545** 0.620**
     1) “**” 表示相关性达到 0.01 的显著水平,r0.01=0.372 1,n=45
     1) “**” indicates significant correlation at P<0.01 level,r0.01=0.372 1, n=45
    下载: 导出CSV 
    | 显示表格

    土壤碳库的微小变化对整个大气的CO2浓度甚至全球的碳平衡产生重大影响,在某种程度上甚至可以认为,大气CO2浓度的高低取决于土壤碳库的变化[18],因此正向培育土壤碳库具有重大的现实意义。有研究表明,适量施用无机氮肥较不施肥处理使土壤碳储量平均增加21 t·hm–2[19]。李亚杰[20]发现,滴灌条件下适量增施氮肥可以增加土壤SOC含量。李玲等[21]研究表明,6年单施氮肥能明显提高坡旱地土壤有机碳含量,比不施肥平均增加14.8%,因为施氮促进了作物生长并因此带来了更多的土壤碳输入[22]。此外,Russell等[23]研究表明,施用氮肥一方面可以促进土壤中作物残体的腐殖化作用,以此来增加土壤有机碳含量,另一方面也可以加速碳的矿化作用,以减少土壤有机碳的含量。与以往研究结果相似,本试验表明,与不施氮处理N0相比,ADI方式时N1~N4处理的LOC含量提高18.6%~85.6%,差异均显著,N1~N3处理的SOC含量均显著提高,N4处理有所提高,但未达显著水平,表明不同滴灌施氮量对土壤碳库有一定的影响。这可能是因为滴灌施氮影响了土壤微生物的活性与功能,也有可能是不同滴灌施氮量对土壤碳的矿化程度不同,改变了土壤中碳的循环与转化,但其生物学机理还需要进一步研究。

    本研究表明,与常规滴灌相比,交替滴灌能显著提高土壤活性有机碳含量。以往研究也发现,交替滴灌有利于土壤有机碳的积累[24]和可溶性有机碳的活性[25]。王金凤等[26]研究发现,由于交替灌溉使两侧根区土壤处于交替干燥和湿润状态,在提供生命活动所需水分的同时,使根区土壤处于良好的通气状态,为土壤微生物提供了有益的生存条件,与本研究结果相对应,因此交替滴灌方式较常规滴灌和固定滴灌更有利于土壤碳的固持。

    土壤酶活性是评价土壤肥力状况的重要指标[27]。脲酶对土壤氮素循环的促进作用具有重要意义;过氧化氢酶可以氧化对生物体(包括土壤)有危害的具有很强氧化作用的过氧化氢,常用以表征土壤的氧化强度;转化酶又称蔗糖酶,对土壤中碳素转化以及土壤有机碳含量的变化均有重要的作用[28-29]。有研究显示,与常规滴灌相比,交替滴灌在不同时期可提高其湿润区土壤转化酶、脲酶和过氧化氢酶活性[30-31]

    张笑培等[32]发现,土壤有机碳含量与土壤脲酶、蔗糖酶和过氧化氢酶活性呈极显著或显著相关。张静等[33]在不同土地利用方式下赤红壤生物学性状及其与土壤肥力的关系研究中发现,土壤有机碳含量与脲酶和转化酶活性均呈极显著正相关,与本研究的结果相似。然而,文月荣[34]在不同植被恢复模式下煤矿排土场土壤碳库管理指数与土壤酶活性的研究结果显示,土壤有机碳含量与脲酶活性之间关系不显著,土壤有机碳含量与过氧化氢酶活性呈极显著的负相关关系,与本试验结果有所不同。这可能是不同土壤类型下土壤酶活性不同,或交替滴灌条件下3种土壤酶活性总体较高的缘故,此外,还可能是土壤有机碳库变化较为缓慢,本研究前后时间相对较短造成的,因此,需要进一步研究。

    本试验条件下,与N0-CDI相比,N2-ADI处理土壤有机碳含量提高55.2%,活性有机碳含量提高111.8%,土壤碳库管理指数提高90.5%。此外,土壤有机碳含量、活性有机碳含量和碳库管理指数与土壤过氧化氢酶、脲酶、转化酶活性之间的关系显著。因此,滴灌施氮量0.18 g·kg–1结合交替滴灌处理是赤红壤碳库管理的最佳滴灌施氮模式。

  • 图  1   不同浓度虾青素对RAW264.7细胞活力的影响

    相同处理时间柱子上的不同小写字母表示不同处理组间差异显著(P<0.05,Duncan’s法)

    Figure  1.   Effect of astaxanthin on the viability of RAW264.7 cells at different concentration

    Different lowercase letters on bars of the same treatment time indicate significant difference among treatment groups (P<0.05, Duncan’s method)

    图  2   不同质量浓度脂多糖对RAW264.7细胞活力的影响

    相同处理时间柱子上的不同小写字母表示不同处理组间差异显著(P<0.05,Duncan’s法)

    Figure  2.   Effect of different content of lipopolysaccharide on the viability of RAW264.7 cells

    Different lowercase letters on bars of the same treatment time indicate significant difference among treatment groups (P<0.05, Duncan’s method)

    图  3   虾青素预保护对脂多糖刺激RAW264.7细胞炎症因子分泌量的影响

    虾青素(AST)浓度为100 μmol/L,脂多糖(LPS)质量浓度为2 μg/mL;各图中,柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’s法)

    Figure  3.   Effects of astaxanthin pre-protection on inflammatory factor secretion from RAW264.7 cells stimulated by lipopolysaccharide

    The astaxanthin(AST) concentration is 100 μmol/L, the lipopolysaccharide(LPS) content is 2 μg/mL; In each figure, different lowercase letters on bars indicate significant difference (P<0.05, Duncan’s method)

    图  4   虾青素预保护对脂多糖刺激的RAW264.7细胞中炎症因子mRNA相对表达量的影响

    虾青素(AST)浓度为100 μmol/L,脂多糖(LPS)质量浓度为2 μg/mL;各图中,柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’s法)

    Figure  4.   Effects of astaxanthin pre-protection on mRNA expression of inflammatory factor in RAW264.7 cells stimulated by lipopolysaccharide

    The astaxanthin(AST) concentration is 100 μmol/L, the lipopolysaccharide (LPS) content is 2 μg/mL;In each figure, different lowercase letters on bars indicate significant difference (P<0.05, Duncan’s method)

    图  5   虾青素预保护下脂多糖刺激的RAW264.7细胞中炎症因子蛋白的电泳图

    Figure  5.   Electrophoresis of inflammatory factor in RAW264.7 cells stimulated by lipopolysaccharide under astaxanthin pre-protection

    图  6   虾青素预保护对脂多糖刺激的RAW264.7细胞中炎症因子蛋白相对表达量的影响

    各图中,柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’s法)

    Figure  6.   Effects of astaxanthin pre-protection on relative protein expression of inflammatory factor in RAW264.7 cells stimulated by lipopolysaccharide

    In each figure, different lowercase letters on bars indicate significant difference (P<0.05, Duncan’s method)

    表  1   qPCR的引物序列

    Table  1   qPCR primer sequence

    基因 Gene 正向引物(5′→3′) Forward primer 反向引物(5′→3′) Reverse primer
    18s RNA CTCAACACGGGAAACCTCAC CGCTCCACCAACTAAGAACG
    IL-1β GGCTACTGCCTTCCCTACC CCTGATTGAACCCAGATTGG
    TNF-α ACCTGCCTGTGCTGAGTT ATGAAGTGCTGGGACACC
    IL-18 GGCCGACTTCACTGTACAACCG GGTCACAGCCAGTCCTCTTACTTC
    下载: 导出CSV
  • [1]

    TANG B F, LI X C, REN Y L, et al. MicroRNA-29a regulates lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages through the Akt1/NF-κB pathway[J]. Exp Cell Res, 2017, 360(2): 74-80. doi: 10.1016/j.yexcr.2017.08.013

    [2]

    YANG H F, JIANG C M, CHEN X L, et al. Protective effects of sinomenine against LPS-induced inflammation in piglets[J]. Microb Pathog, 2017, 110: 573-577.

    [3]

    LI Y, ZENG Y M, HUANG Q F, et al. Helenalin from Centipeda minima ameliorates acute hepatic injury by protecting mitochondria function, activating Nrf2 pathway and inhibiting NF-κB activation[J]. Biomed Pharmacother, 2019, 119: 109435.

    [4]

    KWON D H, CHA H J, CHIO E O, et al. Schisandrin A suppresses lipopolysaccharide-induced inflammation and oxidative stress in RAW 264.7 macrophages by suppressing the NF-κB, MAPKs and PI3K/Akt pathways and activating Nrf2/HO-1 signaling[J]. Int J Mol Med, 2018, 41(1): 264-274.

    [5]

    XU W X, WANG M Y, CUI G Y, et al. Astaxanthin protects OTA-induced lung injury in mice through the Nrf2/NF-кB pathway[J]. Toxins(Basel), 2019, 11(9): 540.

    [6]

    HWANG J H, KIM K J, RYU S J, et al. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish[J]. Chem-Biol Interact, 2016, 248: 1-7. doi: 10.1016/j.cbi.2016.01.020

    [7]

    CAVAILLON J M. Exotoxins and endotoxins: Inducers of inflammatory cytokines[J]. Toxicon, 2018, 149: 49-53.

    [8]

    MASPI N, ABDOLI A, GHAFFARIFAR F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: A review[J]. Pathog Glob Health, 2016, 110(6): 247-260. doi: 10.1080/20477724.2016.1232042

    [9] 潘灵辉. 细胞因子平衡在炎症反应中作用的研究进展[J]. 医学综述, 2005, 11(9): 775-777. doi: 10.3969/j.issn.1006-2084.2005.09.004
    [10]

    KAUR S, BANSAL Y, KUMAR R, et al. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors[J]. Bioorg Med Chem, 2020, 28(5): 115327.

    [11]

    KRISHNAN S M, SOBEY C G, LATZ E, et al. IL-1β and IL-18: Inflammatory markers or mediators of hypertension?[J]. Br J Pharmacol, 2014, 171(24): 5589-5602. doi: 10.1111/bph.12876

    [12]

    WOJDASIEWICZ P, PONIATOWSKI Ł A, SZUKIE-WICZ D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis[J]. Mediat Inflamm, 2014: 1-19.

    [13] 朱凌羽, 张子琪, 兰海楠, 等. 虾青素对脂多糖通过TLR4/MyD88/NF-κB信号通路诱导的IPEC-J2细胞炎症的影响[J]. 华南农业大学学报, 2018, 39(5): 53-58. doi: 10.7671/j.issn.1001-411X.2018.05.008
    [14]

    PATRA S, MUTHURAMAN M S, MEENU M, et al. Anti-inflammatory effects of royal poinciana through inhibition of toll-like receptor 4 signaling pathway[J]. Int Immunopharmacol, 2016, 34: 199-211.

    [15]

    LIU C, TANG X, ZHANG W J, et al. 6-bromoindirubin-3′-oxime suppresses LPS-induced inflammation via inhibition of the TLR4/NF-κB and TLR4/MAPK signaling pathways[J]. Inflammation, 2019, 42(6): 2192-2204. doi: 10.1007/s10753-019-01083-1

    [16] 张晓音, 张珊珊, 吴旻, 等. β-胡萝卜素对脂多糖刺激巨噬细胞RAW264.7炎症因子的影响及其机制[J]. 中国免疫学杂志, 2017, 33(6): 838-843. doi: 10.3969/j.issn.1000-484X.2017.06.007
    [17]

    ZHAO L, LI M Y, SUN K C, et al. Hippophae rhamnoides polysaccharides protect IPEC-J2 cells from LPS-induced inflammation, apoptosis and barrier dysfunction in vitro via inhibiting TLR4/NF-κB signaling pathway[J]. Int J Biol Macromol, 2020, 155: 1202-1215.

    [18] 陈静波, 董国忠, 孙雅望, 等. 脂多糖引起炎症反应的表观遗传学机制及其营养调控[J]. 动物营养学报, 2018, 30(1): 59-65.
    [19]

    HE W, QU T, YU Q, et al. LPS induces IL-8 expression through TLR4, MyD88, NF-kappaB and MAPK pathways in human dental pulp stem cells[J]. Int Endod J, 2013, 46(2): 128-136.

  • 期刊类型引用(2)

    1. 张晓龙,杨倩楠,李祥东,陈静,王超,张池,刘科学. 基于主成分和聚类分析的赤红壤区不同土地利用方式土壤肥力综合评价. 江苏农业科学. 2023(09): 247-254 . 百度学术
    2. 陈思静,杜爱林,李伏生. 不同滴灌施肥处理对种植马铃薯土壤有机碳组分和酶活性的影响. 华南农业大学学报. 2022(03): 34-41 . 本站查看

    其他类型引用(1)

图(6)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-02-16
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2020-09-09

目录

/

返回文章
返回