• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

华南地区优质高产水稻品种(组合)的适应性研究

朱锋, 陈荣朴, 周华倩, 周柏权, 甘道建, 刘桂富, 金玲玲

朱锋, 陈荣朴, 周华倩, 等. 华南地区优质高产水稻品种(组合)的适应性研究[J]. 华南农业大学学报, 2020, 41(5): 43-48. DOI: 10.7671/j.issn.1001-411X.202002018
引用本文: 朱锋, 陈荣朴, 周华倩, 等. 华南地区优质高产水稻品种(组合)的适应性研究[J]. 华南农业大学学报, 2020, 41(5): 43-48. DOI: 10.7671/j.issn.1001-411X.202002018
ZHU Feng, CHEN Rongpu, ZHOU Huaqian, et al. Adaptability of rice varieties or combinations with good quality and high yield in South China[J]. Journal of South China Agricultural University, 2020, 41(5): 43-48. DOI: 10.7671/j.issn.1001-411X.202002018
Citation: ZHU Feng, CHEN Rongpu, ZHOU Huaqian, et al. Adaptability of rice varieties or combinations with good quality and high yield in South China[J]. Journal of South China Agricultural University, 2020, 41(5): 43-48. DOI: 10.7671/j.issn.1001-411X.202002018

华南地区优质高产水稻品种(组合)的适应性研究

基金项目: 广州市科技计划(201707010340)
详细信息
    作者简介:

    朱 锋(1995—),男,硕士研究生,E-mail: 327292678@qq.com

    陈荣朴(1968—),男,农艺师,E-mail: 1798496230@qq.com;†对本文贡献相同

    通讯作者:

    刘桂富(1963—),男,副教授,博士,E-mail: guifuliu@scau.edu.cn

    金玲玲(1964—),女,副教授,硕士,E-mail: jinlingling@scau.edu.cn

    †同等贡献

  • 中图分类号: S31

Adaptability of rice varieties or combinations with good quality and high yield in South China

  • 摘要:
    目的 

    筛选出适合于华南地区种植的水稻品种(组合)直接用于生产,或作为育种材料间接利用。

    方法 

    采用完全随机试验设计,2019年早季在广东省珠海市对5个优质高产水稻品种(组合)‘华航48’、‘粳籼优0405’、‘粳籼优0505’、‘软华优1179’和‘软华优6100’进行了示范种植试验,考察了产量性状及其构成因素和外观品质性状,对照为优质稻‘美香占2号’。

    结果 

    5个参试材料均属于大粒高产类型,单穴有效穗数均不到22,低于对照‘美香占2号’(24);单穗实粒数超过117粒、千粒质量大于20 g,均显著大于对照(对照分别为85.8粒和17.9 g);单穴粒质量大于47.3 g,比对照增产28%以上。5个参试材料外观品质性状均稍逊于对照,表现为粒长<9.7 mm、粒宽>2.5 mm、粒长/粒宽<3.8、粒投影周长<20.5 mm和粒投影面积>16.8 mm2。相关分析结果表明,单穗实粒数、千粒质量、粒宽、粒投影面积与产量呈显著正相关;粒长、粒长/粒宽、粒投影周长与产量呈显著负相关,进一步证实了单穗实粒数与千粒质量的增产作用,也反映了外观品质与产量之间的矛盾。

    结论 

    ‘华航48’、‘软华优1179’和‘软华优6100’在华南地区早季表现优异,可直接推广应用;‘粳籼优0405’和‘粳籼优0505’适合于产量目标的生产,或作为高产优质育种的中间材料。

    Abstract:
    Objective 

    In order to screen out good quality and high yield rice varieties or combinations suitable to be planted in Southern China for direct production or indirect utilization as breeding materials.

    Method 

    A complete randomized design was adopted to investigate, the demonstration planting trial was conducted in Zhuhai of Guangdong Province in the early season of 2019, using five varieties or combinations including ‘Huahang 48’, ‘Jingxianyou 0405’, ‘Jingxianyou 0505’, ‘Ruanhuayou 1179’ and ‘Ruanhuayou 6100’ as experimental materials, and the variety of ‘Meixiangzhan 2’ with good quality and high yield as the contrast. Yield traits and yield components as well as exterior quality traits were analyzed.

    Result 

    All of five test materials belonged to the type of high yield and large grain. Their panicle number per hole were less than 22 panicles, which were lower than that of the contrast ‘Meixiangzhan 2’ with 24 panicles. Filled grain number per panicle and thousand-grain weight of all exceeded 117 and 20 g respectively , being significantly higher than the contrast. Five materials with over 47.3 g grain weight per hole increased production by more 28% compared with the contrast. On the other hand, the exterior qualities of five test materials were slightly inferior to the contrast, with grain length being less than 9.7 mm, grain width more than 2.5 mm, ratio of grain length to width less than 3.8, grain projection girth less than 20.5 mm and grain projection area more than 16.8 mm2. The results of correlation analysis indicated that there were significantly positive correlation between grain number per panicle, thousand-grain weight, grain width, grain projection area and yield, but negative correlation between grain length, ratio of grain length to width, grain projection girth and yield, which confirmed the increasing yield effects from filled grain number per panicle and thousand-grain weight, and reflected the conflict between exterior quality and yield.

    Conclusion 

    ‘Huahang 48’, ‘Ruanhuayou 1179’ and ‘Ruanhuayou 6100’ have excellent performance in Southern China in early season, which can be directly applied in production. ‘Jingxianyou 0405’ and ‘Jingxianyou 0505’ can be applied to the aim of production to improve yield, or indirectly utilized as the middle breeding materials for high yield and good quality.

  • 表  1   参试材料与对照‘美香占2号’各性状平均数及差异显著性1)

    Table  1   The average values of traits and their difference significance between the experimental materials and the contrast of ‘Meixiangzhan 2’

    性状
    Trait
    美香占2号
    Meixiangzhan 2
    华航48
    Huahang 48
    粳籼优0405
    Jingxianyou 0405
    粳籼优0505
    Jingxianyou 0505
    软华优6100
    Ruanhuayou 6100
    软华优1179
    Ruanhuayou 1179
    PN 24.0 21.2 21.4 21.1 18.8* 19.7*
    GN 121.6 138.0** 143.1** 146.9** 153.6** 158.7**
    FGN 85.8 120.5** 117.3** 119.4** 124.7** 123.7**
    SSP 0.7 0.9** 0.8** 0.8** 0.8** 0.8**
    GL/mm 9.9 9.7** 8.7** 8.8** 9.4** 9.4**
    GWD/mm 2.4 2.5** 2.9** 3.0** 2.5** 2.6**
    RLW 4.2 3.8** 3.0** 3.0** 3.7** 3.7**
    GPG/mm 20.7 20.5** 19.1** 19.4** 20.0** 20.0**
    GPA/mm2 16.2 17.5** 17.9** 18.7** 16.8* 16.9**
    TGW/g 17.9 21.9** 22.8** 23.8** 20.3** 20.4**
    GW/g 36.9 55.7** 57.0** 59.2** 47.3* 48.8*
     1)PN:单穴穗数,GN:每穗粒数,FGN:每穗实粒数,SSP:结实率,GL:粒长,GWD:粒宽,RLW:粒长/粒宽,GPG:粒投影周长,GPA:粒投影面积,TGW:千粒质量,GW:单穴粒质量;“*”、“**”分别表示差异达0.05、0.01显著水平(LSD法)
     1) PN: Panicle number per hole, GN: Grain number per panicle, FGN: Filled grain number per panicle, SSP: Seed setting percentage, GL: Grain length, GWD: Grain width, RLW: Ratio of grain length to width, GPG: Grain projection girth, GPA: Grain projection area, TGW: Thousand grain weight, GW: Grain weight per hole; “*” and “**” indicated the significances at the levels of 0.05 and 0.01, respectively (LSD method)
    下载: 导出CSV

    表  2   单个性状的方差分析及遗传率

    Table  2   Analysis of variance and heritability for single trait

    性状
    Trait
    处理方差
    Treatment variance
    误差方差
    Error variance
    F1)
    F-value
    遗传率/%
    Heritability
    单穴穗数 Panicle number per hole 9.539 4.506 2.117 27.13
    每穗粒数 Grain number per panicle 512.910 35.040 14.638** 81.97
    每穗实粒数 Filled grain number per panicle 646.998 39.659 16.314** 83.62
    结实率 Seed setting percentage 0.010 0.001 20.617** 86.74
    粒长 Grain length 0.623 0.003 186.479** 98.41
    粒宽 Grain width 0.173 0.001 347.528** 99.14
    粒长/粒宽 Ratio of grain length to width 0.666 0.001 626.099** 99.52
    粒投影周长 Grain projection girth 1.149 0.017 66.041** 95.59
    粒投影面积 Grain projection area 2.320 0.056 41.618** 93.12
    千粒质量 Thousand grain weight 13.494 0.059 227.085** 98.69
    单穴粒质量 Grain weight per hole 205.235 35.620 5.762** 61.35
     1) “**”为0.01显著水平(F检验法)
     1)“**” indicated the significant level of 0.01 (F-test)
    下载: 导出CSV

    表  3   考察性状间的表型相关系数1)

    Table  3   Correlation coefficients of phenotypes among investigated traits

    性状 Trait GN FGN SSP GL GWD RLW GPG GPA TGW GW
    PN −0.594** −0.580* −0.289 0.222 −0.156 0.208 0.221 −0.137 −0.269 0.078
    GN 0.871** 0.321 −0.461* 0.302 −0.401 −0.461* 0.239 0.331 0.417
    FGN 0.743** −0.482* 0.412 −0.485* −0.442 0.468* 0.606** 0.677**
    SSP −0.328 0.410 −0.415 −0.250 0.598** 0.739** 0.763**
    GL −0.944** 0.978** 0.989** −0.755** −0.778** −0.649**
    GWD −0.990** −0.897** 0.915** 0.889** 0.696**
    RLW 0.941** −0.873** −0.871** −0.708**
    GPG −0.662** −0.699** −0.581*
    GPA 0.950** 0.775**
    TGW 0.819**
     1)PN:单穴穗数,GN:每穗粒数,FGN:每穗实粒数,SSP:结实率,GL:粒长,GWD:粒宽,RLW:粒长/粒宽,GPG:粒投影周长,GPA:粒投影面积,TGW:千粒质量,GW:单穴粒质量;“*”、“**”分别表示达0.05、0.01水平显著相关(临界相关系数法)
     1)PN: Panicle number per hole, GN: Grain number per panicle, FGN: Filled grain number per panicle, SSP: Seed setting percentage, GL: Grain length, GWD: Grain width, RLW: Ratio of grain length to width, GPG: Grain projection girth, GPA: Grain projection area, TGW: Thousand grain weight, GW: Grain weight per hole; “*” and “**”indicated the significant correlation at the levels of 0.05 and 0.01, respectively (Critical correlation coefficient method)
    下载: 导出CSV
  • [1] 王飞, 彭少兵. 水稻绿色高产栽培技术研究进展[J]. 生命科学, 2018, 30(10): 1129-1136.
    [2] 李敏, 黄贵民, 丁军, 等. 贵州省水稻品种利用现状及发展策略[J]. 种子, 2019, 38(6): 84-87.
    [3] 王毅, 赵伏伟, 伍振华, 等. 华南地区引进水稻品种(系)在江汉平原的适应性研究[J]. 中国稻米, 2020, 26(1): 57-62. doi: 10.3969/j.issn.1006-8082.2020.01.014
    [4] 秦延春. 广西优质稻育种现状与对策[J]. 广东农业科学, 2013, 40(19): 3-5. doi: 10.3969/j.issn.1004-874X.2013.19.002
    [5] 王依明, 张珍, 顾春军, 等. 浅谈优质稻米生产现状与发展建议[J]. 上海农业科技, 2015(4): 10. doi: 10.3969/j.issn.1001-0106.2015.04.006
    [6] 杨琨瑜, 杨蕙铭. 云南省粮食全产业链发展探究[J]. 粮食和饲料工业, 2019(1): 15-18.
    [7]

    LI D, LIU M, DENG G. Willingness and determinants of farmers’ adoption of new rice varieties[J]. China Agri Econ Rev, 2010, 2(4): 456-471. doi: 10.1108/17561371011097759

    [8] 林尤珍, 王惠艰, 符研, 等. 优质常规稻黄华占在海南的引种试验[J]. 广东农业科学, 2013, 40(24): 4-6. doi: 10.3969/j.issn.1004-874X.2013.24.002
    [9] 唐建忠, 李家文, 覃雪明, 等. 特色水稻品种引种试验、示范及推广[J]. 种子, 2014, 33(6): 99-102. doi: 10.3969/j.issn.1001-4705.2014.06.030
    [10] 沈足金, 秦叶波, 王士磊, 等. 桐乡市2018年优质高产水稻品种评选试验[J]. 浙江农业科学, 2019, 60(10): 1750-1752.
    [11]

    TAKANE M, FUMIO K, KINEO K, et al. Studies on the adaptability of rice: I: Comparative studies on the adaptability of rice varieties tested under different conditions in temperate zone[J]. Japan J Breed, 1972, 22(2): 83-91. doi: 10.1270/jsbbs1951.22.83

    [12]

    SAMBA S, DAVID N, ALLEN M. Adaptability of improved rice varieties in Senegal[J]. Agr Syst, 1998, 57(1): 10l-l14.

    [13] 游弈来, 周伯权, 李伯欣, 等. 狼尾草属牧草在南亚热带的引种试验[J]. 华南农业大学学报, 2004, 25(S2): 41-45.
    [14]

    MARTIN G J, PADMANATHAN P K, SUBRAMANIAN E. Identification on suitable rice variety adaptability to aerobic irrigation[J]. J Agr Biol Sci, 2007, 2(2): 1-3.

    [15] 郭文刚, 郭松平, 姜玥宏, 等. 南京六合引种冬枣气候适宜性分析及种植研究[J]. 江苏农业科学, 2010, 38(6): 229-232. doi: 10.3969/j.issn.1002-1302.2010.02.094
    [16] 孙炜. 2011年郎溪县水稻新品种展示及适应性试验[J]. 现代农业科技, 2012(9): 81-82. doi: 10.3969/j.issn.1007-5739.2012.09.046
    [17] 陈启康, 沙文锋, 顾拥建, 等. 海涂米草与水稻远缘杂交种质资源发掘与创新[J]. 西南农业学报, 2009, 22(4): 877-883. doi: 10.3969/j.issn.1001-4829.2009.04.001
    [18] 朱海涛, 刘桂富, 曾瑞珍, 等. 水稻单片段代换聚合系的产量比较试验[J]. 华南农业大学学报, 2015, 36(4): 43-49. doi: 10.7671/j.issn.1001-411X.2015.04.008
    [19]

    ISLAM M R, SARKER M R, SHARMA N, et al. Assessment of adaptability of recently released salt tolerant rice varieties in coastal regions of South Bangladesh[J]. Field Crops Res, 2016, 190: 34-43. doi: 10.1016/j.fcr.2015.09.012

    [20] 徐春金. 优质杂交水稻新品种比较试验[J]. 现代农业科技, 2018(7): 50. doi: 10.3969/j.issn.1007-5739.2018.07.033
    [21] 王凌志, 潘宗东, 龙凯珍. 水稻新品种引种试验示范初报[J]. 耕作与栽培, 2019, 39(1): 16-18.
    [22] 蒙宏德. 杂交水稻新品种引种试验[J]. 农业与技术, 2019, 39(9): 39-41.
    [23] 刘桂珍, 冉午玲, 周新保, 等. 河南省引种工作回顾及发展建议[J]. 中国种业, 2019(9): 27-30. doi: 10.3969/j.issn.1671-895X.2019.07.010
    [24]

    KANKWATSA P, MUZIRA R, MUTENY H, et al. Improved upland rice: Adaptability, agronomic and farmer acceptability assessment under semi-arid conditions of South Western Uganda[J]. OALib J, 2019, 6: e5660.

    [25] 黎晓红, 王东. 珠海市1962~2010年降水量气候变化特征[J]. 广东气象, 2012, 34(2): 35-37. doi: 10.3969/j.issn.1007-6190.2012.02.009
表(3)
计量
  • 文章访问数:  1706
  • HTML全文浏览量:  15
  • PDF下载量:  2384
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-23
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2020-09-09

目录

    /

    返回文章
    返回