Improvement of sewage sludge and enhanced measure on soil of rare earth mine wasteland
-
摘要:目的
探究添加城市污泥对稀土矿废弃地土壤的改良作用,以及在添加污泥基础上添加蔗渣和土壤调理剂的强化效果,以期为稀土矿区土壤改良提供理论依据,也为城市污泥资源化利用提供新思路。
方法以稀土矿区土壤为研究对象,设置3个处理:添加污泥(T1)、添加污泥+蔗渣(T2)、添加污泥+蔗渣+土壤调理剂(T3),矿区土壤作为对照(CK),以剑豆Canavalia gladiata为种植材料,通过盆栽试验验证土壤改良效果;测定土壤理化性质和剑豆生长指标,运用主成分分析和模糊隶属函数分析方法综合分析不同处理的土壤改良效果。
结果与对照相比,3种处理均极大地改善了矿区土壤的理化性质,促进了剑豆生长和氮、磷、钾养分元素吸收。其中,T1处理使土壤容重降低27.64%,总孔隙度提高23.91%,毛管持水量提高42.41%,有机质含量提高11.01倍,全磷、碱解氮、速效磷、速效钾含量大幅增加;T2处理的土壤物理性质优于T1,有机质含量提高25.9%,pH提高0.32;T3处理的土壤pH(7.22)最高,较T2提高49.17%,速效磷、速效钾含量分别提高0.46%和11.05%。T2和T3处理植株的总生物量显著高于T1和CK,且T2和T3处理之间无显著差异;单株氮、磷、钾的积累量均在T2处理达到最大值,分别为934.43、172.07、931.35 mg,且与其他处理差异显著。CK、T1、T2、T3的隶属函数平均值分别为0.06、0.56、0.83、0.90,土壤改良效果排序为T3>T2>T1。
结论添加污泥显著改良矿区土壤,在添加污泥基础上加入蔗渣和土壤调理剂的改良效果显著增强。
Abstract:ObjectiveTo study the improvement effect of urban sewage sludge addition on soil of rare earth mine wasteland, and the strengthening effects of adding bagasse and soil conditioner on the basis of sewage sludge, and provide a theoretical guidance for soil improvement of rare earth mining areas and utilization of urban sewage sludge resources.
MethodThe soil of rare earth mine wasteland was selected as research object. Three treatments including adding sewage sludge (T1), adding sewage sludge and bagasse (T2), adding sewage sludge, bagasse and soil conditioner (T3) were set. The soil of rare earth mine wasteland was used as control (CK). Canavalia gladiata was chosen as test material to verify soil improvement effect through pot experiment. The physicochemical properties of testing soil and C. gladiata growth indexes were determined, and the soil improvement effects of different treatments were comprehensively analyzed by principal component analysis and fuzzy membership function analysis.
ResultCompared with the control, three treatments greatly improved the physicochemical properties of soil in mining area, promoted the growth of C. gladiata and the absorption of N, P and K nutrient elements. T1 reduced soil bulk density by 27.64%, increased total porosity by 23.91%, increased capillary water holding capacity by 42.41%, increased the content of organic matter by 11.01 times, and meanwhile greatly increased the contents of total P, alkaline hydrolytic N, available P and available K. The soil physical properties of T2 were better than those of T1, with organic matter content increased by 25.9% and pH increased by 0.32. The soil pH (7.22) of T3 was the highest, which was 49.17% higher than T2, and the contents of available P and available K increased by 0.46% and 11.05% respectively. The total plant biomasses of T2 and T3 were significantly higher than those of T1 and CK, and there was no significant difference between T2 and T3. The accumulations of N, P and K per plant reached the maximums in T2, which were 934.43, 172.07 and 931.35 mg respectively, and significantly different from other treatments. The average subordinate function values of CK, T1, T2 and T3 were 0.06, 0.56, 0.83, 0.90 respectively, and the soil improvement effects were ranked as T3>T2>T1.
ConclusionThe addition of urban sewage sludge significantly improves the soil of mining area, and the improvement effect is significantly enhanced by adding bagasse and soil conditioner on the basis of adding sewage sludge.
-
Keywords:
- Canavalia gladiata /
- rare earth soil /
- sewage sludge /
- bagasse /
- soil conditioner
-
藏猪是少有的高原型地方猪种,是我国宝贵的地方品种资源[1]。据调查,藏猪产仔数并不低,母猪的营养水平低下和乳腺发育不佳以及生存条件较恶劣可能是导致仔猪死亡率高的主要原因[2]。乳腺的良好发育是正常泌乳的前提,仔猪的存活率与母猪的乳腺发育密不可分。因此,研究藏猪妊娠期乳腺发育状况对于判断乳腺是否正常发育以及提高藏猪繁殖能力具有重要意义。
妊娠期是母猪乳腺发育的关键时期,特别是妊娠后1/3阶段,即妊娠75 d后,乳腺快速发育,其质量快速增加,乳腺结构由怀孕初期的以脂肪细胞为主转化为怀孕后期以导管和腺泡结构为主[3];妊娠期乳腺发育受到雌二醇(Estradiol,E2)、孕酮(Progesterone,P)、催乳素(Prolactin,PRL)[4]等激素的调控。E2对于乳腺导管的伸长和分支具有重要作用[5];P与E2相似,由卵巢分泌,调控乳腺组织的导管分枝、腺泡形成[6];PRL促进乳腺腺泡的发育及乳汁的分泌[7-8]。此外,在信号通路方面,PI3K/Akt是细胞内重要的信号转导通路,在乳腺细胞的增殖、分化、凋亡等活动中发挥重要的生物学功能[9-11]。Jak2/STAT5信号通路对乳腺腺泡的生成和多种乳汁蛋白基因的转录有着重要的调控作用[12-13]。但是,目前对于藏猪妊娠期乳腺的发育情况及激素和信号通路调控尚不清楚。
本试验以藏猪为对象,选取妊娠期不同时间点,在研究乳腺发育形态的基础上,进一步探索不同时间点血清中E2、P、PRL的水平,乳腺中激素受体的表达及乳腺发育关键信号通路PI3K/Akt和Jak2/STAT5的变化。研究旨在初步探究妊娠期藏猪乳腺发育过程及其潜在调控机制,为日后藏猪乳腺发育规律的揭示和地方品种的保护提供科学依据。
1. 材料与方法
1.1 试验动物
妊娠藏猪选取4个时间点(妊娠33、50、75和90 d)进行屠宰采样,采集血后离心取血清,采集第3、4对乳腺组织提取蛋白质,取第4对靠近乳头部乳腺进行石蜡切片染色。
1.2 试验材料
雌二醇、孕酮和催乳素ELISA试剂盒购于南京建成生物工程有限公司;催乳素受体(Prolactin receptor,PRLR)(货号:382057)、雌激素受体(Estrogen receptor,ER)(货号:220467)、孕酮受体(Progesterone receptor, PR)(货号:220124)抗体购于正能生物有限公司,蛋白酪氨酸激酶2(Janus kinase 2, Jak2)(货号:3230)、磷酸化蛋白酪氨酸激酶2 (p-Jak2)(货号:3771)、信号转导及转录激活因子5 (Signal transducers and activators of transduction 5, STAT5)(货号:9359)、磷酸化信号转导及转录激活因子5 (p-STAT5)(货号:4322)、磷脂酰肌醇三激酶(Phosphatidylinositol 3-kinase, PI3K)(货号:4249)、磷酸化磷脂酰肌醇三激酶(p-PI3K)(货号:4228)、蛋白激酶B (Protein kinase B, AKT)(货号:9272)和磷酸化蛋白激酶B (p-AKT)(货号:4060)抗体购于Cell Signaling Technology公司;苏木素染液、伊红染液、苏木素分化液和苏木素返蓝液购于塞维尔生物公司;BCA蛋白定量试剂盒购自白泰克生物技术有限公司(北京);ECL化学发光液购自上海雅酶生物医药科技有限公司。
1.3 测定指标及方法
乳腺采集和HE染色:切下右侧乳腺腹腺体(第4对乳腺),体积分数为4%的多聚甲醛溶液固定24 h,石蜡包埋,切片,进行HE染色,显微镜下观察并拍照。
蛋白质免疫印迹(Western blot):按照每10 μg乳腺组织加入100 μL裂解液进行匀浆,试剂盒抽提法提取蛋白质,按照BCA蛋白定量试剂盒进行蛋白浓度测定,调整蛋白浓度并用5×loading buffer制样,按照每孔20 μg总蛋白上样电泳,经电转至聚偏二氟乙烯(PVDF) 膜上后封闭,孵育一抗过夜,并用TBST缓冲液洗净孵育二抗,TBST缓冲液洗净后按照ECL化学发光底物说明书1∶1配置工作液,使PVDF膜与其充分反应30 s,置于曝光仪中曝光显色并拍照。
血清激素检测:按照南京建成ELISA试剂盒说明书进行检测;加入准备好的样品、标准品和生物素抗原,37 ℃条件下反应30 min;洗板5次,加入亲和素−HRP,37 ℃条件下反应30 min;洗板5次,加入显色液A、B,37 ℃条件下显色10 min;加入终止液;10 min之内读取D450 nm,计算浓度。
1.4 统计分析
数据结果用平均值±标准误表示,统计分析采用SigmaPlot 12.5软件分析,采用单因素方差分析,并用Duncan’s法对各组进行多重比较分析。
2. 结果与分析
2.1 藏猪妊娠期乳腺形态变化
乳腺HE染色结果如图1所示,妊娠33 d时,藏猪乳腺中主要是导管结构;50 d时,乳腺中出现少量腺泡结构;75 d时,乳腺中腺泡结构快速增多;至90 d时,乳腺中主要是腺泡结构。
2.2 藏猪妊娠期乳腺发育标志蛋白的表达
利用Western blot方法检测了藏猪妊娠期不同时间点乳腺发育标志蛋白Elf-5和PLIN2的表达,结果发现,在妊娠50、75和90 d时,Elf-5蛋白表达水平显著高于33 d;PLIN2的蛋白水平在75和90 d时显著高于33 d (图2、图3)。
图 3 藏猪妊娠期不同时间点乳腺发育标志蛋白相对表达量相同标志蛋白柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’s法)Figure 3. Relative expressions of marker proteins for mammary gland development at different time points during gestation in Tibetan pigsDifferent lowercase letters on bars of the same marker protein indicate significant differences (P<0.05,Duncan’s method)2.3 藏猪妊娠期血清激素水平
如表1所示,妊娠期不同时间点藏猪血清中E2、P和PRL的水平随着妊娠的进行呈升高趋势。其中E2水平逐渐升高,到妊娠90 d达到最高水平,为42.82 ng/L;P水平在75和90 d显著高于33和50 d,90 d P水平达到36.76 μg/L;PRL水平在50 d升高,75 d显著高于33 d但与50 d无显著差异,90 d时达到最高,为66.53 μg/L,显著高于其他时间点。
表 1 藏猪妊娠期不同时间点的血清激素水平1)Table 1. Serum hormone levels at different time points during gestation in Tibetan pigst妊娠/d
Days of gestationρ(E2)/
(ng·L−1)ρ(P)/
(μg·L−1)ρ(PRL)/
(μg·L−1)33 14.56±0.82a 31.55±1.15a 44.86±1.36a 50 22.30±0.71b 32.36±0.62a 54.12±2.73b 75 27.56±0.91c 35.19±0.90b 52.91±1.31b 90 42.82±2.25d 36.76±0.94b 66.53±2.87c 1)同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s 法)
1) Different lowercase letters in the same column indicate significant differences (P<0.05,Duncan’s method)2.4 藏猪妊娠期激素受体的蛋白表达模式
利用Western blot方法检测了藏猪妊娠期不同时间点乳腺中激素受体的蛋白表达。结果显示,妊娠50 d时PRLR表达水平显著高于33 d,在90 d时达到最高;ER表达水平在50 d时显著增加,在50、75和90 d时水平相当;在75 d时PR表达水平显著高于33和50 d,在90 d时达到更高(图4、图5)。
图 5 藏猪妊娠期不同时间点乳腺中激素受体蛋白相对表达量相同激素受体柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’s法)Figure 5. Relative expressions of the hormone receptors at different time points during gestation in mammary glands of Tibetan pigsDifferent lowercase letters on bars of the same hormone receptor indicate significant differences (P<0.05,Duncan’s method)2.5 藏猪妊娠期乳腺发育相关信号通路变化
利用Western blot方法检测藏猪妊娠期不同时间点乳腺发育相关信号通路Jak2/STAT5和PI3K/AKT的激活情况。由图6、图7可知,妊娠75 d时,Jak2、STAT5、PI3k和AKT的磷酸化水平显著升高,90 d时,Jak2、STAT5和PI3k的磷酸化水平显著升高,提示Jak2/STAT5和PI3K/AKT信号通路被显著激活。
图 7 藏猪妊娠期不同时间点乳腺中Jak2/STAT5和PI3K/AKT信号通路的蛋白相对表达量相同信号通路柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’s法)Figure 7. Relative expressions of proteins from Jak2/STAT5 and PI3K/AKT signaling pathways at different time points during gestation in mammary glands of Tibetan pigsDifferent lowercase letters on bars of the same signaling pathway indicate significant differences (P<0.05,Duncan’s method)3. 讨论与结论
3.1 藏猪妊娠期乳腺形态变化及发育标志蛋白的表达模式
妊娠期是母猪乳腺发育的重要时期。我们的研究发现,妊娠33 d时,藏猪乳腺中主要是导管结构,50 d时出现少量腺泡结构,75 d时腺泡快速增多,90 d时乳腺中主要是腺泡结构。与我们的研究结果类似的是,Ji等[14]研究发现,母猪乳腺在妊娠45 d仅316 g,75 d乳腺质量达1606 g,90 d达到2357 g;此外,Kensinger等[15]研究表明,母猪乳腺在90 d时,腺泡数量达到最大,在90~105 d,乳腺腺泡开始分泌并蓄积大量乳汁,泌乳活动即将开始等。高慧杰等[16]在奶山羊的妊娠前期也发现乳腺并没有进入快速增殖分化阶段,而是代谢和呼吸作用增强,妊娠中期有大量细胞增殖分化。
Elf-5在妊娠期和哺乳期对乳腺腺泡的增殖和分化有重要作用,是调节乳腺发育中必不可少的调控因子[17-18]。PLIN2是调控乳脂生成的关键分子[19]。我们的研究结果显示,Elf-5和PLIN2在妊娠50 d后表达量显著升高,结合乳腺的形态和Elf-5、PLIN2蛋白水平,说明50 d乳腺开始发育出腺泡,75 d乳腺进入快速发育的阶段,90 d达到更高的发育程度,其中主要是腺泡结构。
3.2 藏猪妊娠期血清激素水平、乳腺激素受体及关键信号通路的蛋白表达模式
妊娠期乳腺发育受到多种激素的调节,其中,E2、P是调节妊娠期乳腺发育的主要激素,PRL是调节泌乳期乳腺发育及泌乳的的主要激素[5-6]。激素通过与其受体结合发挥作用,若敲除其受体,则乳腺无法正常发育[20]。方莉莉等[21]研究发现,在牦牛的妊娠早中期,PR在乳腺组织中表达量较少,与本文藏猪妊娠早中期PR蛋白表达较少一致。本文研究结果显示,E2、P和PRL等激素及其受体在妊娠期呈升高趋势,与乳腺的发育程度相吻合。类似地,Horigan等[22]通过体外给卵巢切除并抑制PRL分泌的猪注射E2、P、E2+PRL、E2+PRL+P,结果表明,注射E2+PRL+P这3种激素的组合方式才能最大程度地促进乳腺导管和腺泡产生,说明E2、P和PRL之间的相互作用对母猪乳腺发育起着关键作用。
PI3K/Akt和Jak2/STAT5信号通路在乳腺发育中起着重要调控作用。其中,PI3K/Akt是细胞内参与细胞信号转导的重要通路,参与细胞生长、增殖及分化等细胞过程[9, 23]。Meng等[10-11]研究表明,PI3K/Akt信号通路对乳腺发育和乳腺细胞的增殖具有重要作用。此外,JAK2/STAT5信号通路对乳腺腺泡的生成和多种乳汁蛋白基因的转录有着重要的调控作用[12-13]。我们的研究结果表明,PI3K/Akt和Jak2/STAT5信号通路在妊娠75 d后被显著激活,这与乳腺的高度发育及泌乳活动的开始有关。Palin等[24]的研究表明,梅山猪与大白猪乳腺组织实质中STAT5A和STAT5B的表达水平存在差异,STAT5发生磷酸化后易位至细胞核,与产乳靶基因启动子结合,激活并维持泌乳,梅山猪妊娠期乳腺组织中STAT5A和STAT5B的表达水平更高,能够生成更多的磷酸二聚体易位至核,同时梅山猪乳腺发育情况更好,具有更高的泌乳力。
综上所述,本文研究了藏猪妊娠期乳腺形态和乳腺发育标志蛋白、相关激素及信号通路的变化。结果发现,在藏猪妊娠过程中,其乳腺在妊娠50 d开始腺泡发育,75 d乳腺进入腺泡快速发育期,90 d发育程度更高,同时伴随着血清中乳腺发育相关激素(E2、P和PRL)和乳腺中激素受体表达的显著升高,以及乳腺发育相关通路PI3K/AKT和Jak2/STAT5的激活。研究结果为认识藏猪的乳腺发育和繁殖功能奠定了科学依据,为保护藏猪资源奠定了理论基础。
-
图 2 土壤改良效果综合评价的主成分分析
图b中,1:pH,2:容重,3:总孔隙度,4:毛管持水量,5:有机质含量,6:全氮含量,7:全磷含量,8:全钾含量,9:碱解氮含量,10:速效磷含量,11:速效钾含量,12:植株高度,13:单株总生物量,14:单株氮积累量,15:单株磷积累量,16:单株钾积累量
Figure 2. Principal component analysis of comprehensive evaluation on soil improvement effect
In figure b, 1: pH, 2: Bulk density, 3: Total porosity, 4: Capillary moisture, 5: Organic matter content, 6: Total N content, 7: Total P content, 8: Total K content, 9: Alkaline hydrolytic N content, 10: Available P content, 11: Available K content, 12: Plant height, 13: Total biomass per plant, 14: Accumulation of N per plant, 15: Accumulation of P per plant, 16: Accumulation of K per plant
表 1 供试原土、污泥、土壤调理剂的理化性质及土地改良用泥国标
Table 1 Physicochemical properties of raw soil, sewage sludge, soil conditioner and national standard of sewage sludge for land improvement
供试材料
Test materialw/(g·kg−1) w/(mg·kg−1) 有机质
Organic matter全氮
Total N全磷
Total P全钾
Total K碱解氮
Alkaline hydrolytic N速效磷
Available P速效钾
Available K矿区土 Mine soil 7.93 1.71 0.01 42.85 17.38 2.85 105.49 污泥 Sewage sludge 220.20 21.04 23.63 13.83 1 658.67 1 750.53 2 229.47 土壤调理剂 Soil conditioner 8.31 0.08 0.30 18.39 5.83 8.50 405.61 供试材料
Test materialpH w/(mg·kg−1) Cu Zn Pb Cd Ni 矿区土 Mine soil 4.36 5.08 49.74 76.04 0.25 1.76 污泥 Sewage sludge 5.01 423.66 863.49 48.51 4.55 47.96 土壤调理剂 Soil conditioner 12.14 16.02 89.75 66.61 0.99 8.85 土地改良用泥国标[19] <6.5 <800 <2 000 <300 <5 <100 National standard of sewage sludge for land improvement ≥6.5 ≤1 500 ≤4 000 ≤1 000 ≤20 ≤200 表 2 不同处理对土壤物理性质的影响
Table 2 Effects of different treatments on soil physical properties
处理1)
Treatment容重 Bulk density 总孔隙度 Total porosity 毛管持水量 Capillary moisture 容重2)/(g·cm−3)
Bulk density变化率3)/%
Change rate总孔隙度2)/%
Total porosity变化率3)/%
Change rate毛管持水量2)/(g·kg−1)
Capillary moisture变化率3)/%
Change rateCK 1.23±0.02a 53.66±0.82c 345.44±19.86c T1 0.89±0.01b −27.64 66.49±0.47b 23.91 491.94±13.54b 42.41 T2 0.77±0.01c −37.40 70.17±0.46a 30.77 600.34±14.23a 73.89 T3 0.76±0.02c −38.21 70.78±0.69a 31.90 614.34±45.14a 77.84 1)CK:矿区土壤,T1:添加污泥,T2:添加污泥、蔗渣,T3:添加污泥、蔗渣、土壤调理剂;2)表中数据为平均值±标准误(n=5),同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法);3)各处理的变化率均为与对照比较
1)CK: Mine soil, T1: Adding sewage sludge, T2: Adding sewage sludge and bagasse, T3: Adding sewage sludge, bagasse and soil conditioner; 2)Data were means ± standard errors (n=5), and different letters in the same column indicated significant differences(P<0.05, Duncan’s test); 3)The change rates of different treatments were compared with control表 3 不同处理对土壤化学性质的影响1)
Table 3 Effects of different treatments on soil chemical properties
处理
TreatmentpH w/(g·kg−1) w/(mg·kg−1) 有机质
Organic matter全氮
Total N全磷
Total P全钾
Total K碱解氮
Alkaline hydrolytic N速效磷
Available P速效钾
Available KCK 4.36±0.12c 7.93±1.10c 1.71±0.55b 0.02±0.01c 42.85±1.59a 17.38±0.17b 2.85±0.26b 105.49±12.97d T1 4.52±0.02c 95.25±5.60b 5.97±0.24ab 8.44±1.48b 35.19±1.94b 757.22±53.20a 675.27±4.24a 866.26±20.51c T2 4.84±0.02b 119.92±9.34a 8.14±1.22a 10.07±0.40a 30.76±0.61b 849.43±77.01a 692.16±7.45a 1 014.74±51.03b T3 7.22±0.02a 120.46±3.54a 9.64±1.28a 11.42±0.31a 31.23±0.80b 739.68±29.22a 695.35±6.51a 1 126.88±14.44a 1)CK:矿区土壤,T1:添加污泥,T2:添加污泥、蔗渣,T3:添加污泥、蔗渣、土壤调理剂;表中数据为平均值±标准误(n=5),同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
1)CK: Mine soil, T1: Adding sewage sludge, T2: Adding sewage sludge and bagasse, T3: Adding sewage sludge, bagasse and soil conditioner; Data were means ± standard errors (n=5), and different letters in the same column indicated significant differences(P<0.05, Duncan’s test)表 4 不同处理对植株生长的影响1)
Table 4 Effects of different treatments on the growth of plants
处理
Treatment植株高度/cm
Plant height单株生物量/g Biomass per plant 地上部
Aboveground of plant地下部
Underground of plant全株
Total plantCK 221.97±57.98a 5.90±1.57c 1.18±0.21a 7.08±1.73c T1 224.83±20.03a 13.48±0.34b 0.48±0.09b 13.96±0.43b T2 288.70±35.95a 23.41±1.55a 0.75±0.17ab 24.16±1.70a T3 318.17±43.50a 19.82±2.45a 0.52±0.04b 20.34±2.41a 1)CK:矿区土壤,T1:添加污泥,T2:添加污泥、蔗渣,T3:添加污泥、蔗渣、土壤调理剂;表中数据为平均值±标准误(n=5),同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
1)CK: Mine soil, T1: Adding sewage sludge, T2: Adding sewage sludge and bagasse, T3: Adding sewage sludge, bagasse and soil conditioner; Data were means ±standard errors (n=5), and different letters in the same column indicated significant differences(P<0.05, Duncan’s test)表 5 土壤理化性质和植物生长状况的隶属函数值
Table 5 Subordinate function values of soil physicochemical properties and plant growth status
指标1) Index CK T1 T2 T3 pHa 0 0.12 0.17 1.00 容重b Bulk density 0 0.72 0.98 1.00 总孔隙度a Total porosity 0 0.75 0.96 1.00 毛管持水量a Capillary moisture 0 0.54 0.95 1.00 有机质含量a Organic matter content 0 0.78 1.00 1.00 全氮含量a Total N content 0 0.54 0.81 1.00 全磷含量a Total P content 0 0.74 0.88 1.00 全钾含量a Total K content 1.00 0.37 0 0.04 碱解氮含量aAlkaline hydrolytic N content 0 0.89 1.00 0.87 速效磷含量aAvailable P content 0 0.97 1.00 1.00 速效钾含量aAvailable K content 0 0.74 0.89 1.00 植株高度a Plant height 0 0.03 0.69 1.00 总生物量a Total biomass 0 0.40 1.00 0.78 单株氮积累量aN accumulation of plant 0 0.41 1.00 0.93 单株磷积累量aP accumulation of plant 0 0.51 1.00 0.96 单株钾积累量aK accumulation of plant 0 0.50 1.00 0.86 平均值 Mean 0.06 0.56 0.83 0.90 综合排序 Synthetic ordering 4 3 2 1 1) “a”表示该指标与土壤改良效果呈正相关,“b”表示呈负相关
1)“a” indicated the index was positively correlated with soil improvement effect, and “b” indicated the negative correlation -
[1] 罗才贵, 罗仙平, 苏佳, 等. 离子型稀土矿山环境问题及其治理方法[J]. 金属矿山, 2014(6): 91-96. [2] 钟志刚, 周贺鹏, 胡洁, 等. 南方离子型稀土矿绿色提取技术研究进展[J]. 金属矿山, 2017(12): 76-81. doi: 10.3969/j.issn.1001-1250.2017.12.016 [3] 郭伟, 付瑞英, 赵仁鑫, 等. 稀土开发导致的环境问题及土壤稀土污染治理措施初探[J]. 安全与环境学报, 2014, 14(5): 245-251. [4] 曾敏, 彭红霞, 刘凤梅, 等. 安远新龙稀土矿山地质环境综合治理研究[J]. 金属矿山, 2011(3): 136-139. [5] 闫美, 王璐, 郝存忠, 等. 煤矿废弃地生态修复的土壤有机碳效应[J]. 生态学报, 2019, 39(5): 1838-1845. [6] 白中科, 周伟, 王金满, 等. 再论矿区生态系统恢复重建[J]. 中国土地科学, 2018, 32(11): 1-9. [7] 李小飞, 陈志彪, 陈志强. 南方稀土采矿恢复地土壤稀土元素含量及植物吸收特征[J]. 生态学杂志, 2013, 32(8): 2126-2132. [8] ROBINSON B, GREEN S, MILLS T M, et al. Phytoremediation: Using plants as biopumps to improve degraded environments[J]. Soil Res, 2003, 41(3): 599-611. doi: 10.1071/SR02131
[9] 陈莺燕, 刘文深, 丁铿博, 等. 有机改良剂及生物炭对离子型稀土矿尾砂地生态修复的改良探究[J]. 环境科学学报, 2018, 38(12): 4769-4778. [10] 何士龙, 钱奎梅, 王丽萍, 等. 污泥在矿区废弃地复垦中的应用实验[J]. 环境科技, 2009, 22(4): 15-21. doi: 10.3969/j.issn.1674-4829.2009.04.005 [11] 赖发英, 王国锋, 孙永明, 等. 城市污泥对矿区土壤性状的影响[J]. 核农学报, 2010, 24(2): 349-354. doi: 10.11869/hnxb.2010.02.0349 [12] 徐雪云, 朱航, 邹华. 混合污泥堆肥在无锡茶园的应用研究[J]. 华南农业大学学报, 2013, 34(2): 277-280. doi: 10.7671/j.issn.1001-411X.2013.02.029 [13] 何飞飞, 曾建兵, 吴爱平, 等. 改良剂修复利用镉污染菜地土壤的田间效应研究[J]. 中国农学通报, 2012, 28(31): 247-251. doi: 10.3969/j.issn.1000-6850.2012.31.047 [14] 孙文博, 莫创荣, 安鸿雪, 等. 施用蔗渣对土壤镉赋存形态和生物有效性的影响研究[J]. 农业环境科学学报, 2013, 32(9): 1793-1799. doi: 10.11654/jaes.2013.09.013 [15] 黄庆, 林小明, 柯玉诗, 等. 多元酸性土壤调理剂在辣椒上的施用效果研究[J]. 广东农业科学, 2007, 34(1): 42-44. doi: 10.3969/j.issn.1004-874X.2007.01.019 [16] 中国科学院《中国植物志》编委会. 中国植物志: 第41卷[M]. 北京: 科学出版社, 1995: 208. [17] DE MELO RANGEL W, DE OLIVEIRA LONGATTI S M, FERREIRA P A A, et al. Leguminosae native nodulating bacteria from a gold mine As-contaminated soil: Multi-resistance to trace elements, and possible role in plant growth and mineral nutrition[J]. Int J Phytorem, 2017, 19(10): 925-936. doi: 10.1080/15226514.2017.1303812
[18] 董坚. 一种钼尾矿酸性土壤调理剂及其生产工艺: CN102826926A[P]. 2012-12-19. [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 城镇污水处理厂污泥处置土地改良用泥质: GB/T24600—2009[S]. 北京: 中国标准出版社, 2009. [20] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. [21] 王婧, 莫其锋, 储双双, 等. 污泥堆肥对园林植物合果芋(Syngonium podophyllum)生长及重金属吸收累积的影响[J]. 生态学杂志, 2018, 37(6): 1752-1758. [22] 梁丹妮, 郭兴燕, 兰剑. 6份沿阶草种质对干旱胁迫的生理响应[J]. 草业科学, 2016, 33(2): 184-191. doi: 10.11829/j.issn.1001-0629.2015-0346 [23] 万俐, 赵君凤, 付永胜, 等. 不同絮凝剂对活性污泥特性及除污效能的影响研究[J]. 环境工程, 2017, 35(2): 49-52. [24] 黄殿男, 谭杰, 傅金祥, 等. 城市污水处理厂污泥对沙漠化土壤的改良效果[J]. 水土保持学报, 2017, 31(1): 326-330. [25] 丘锦荣, 卫泽斌, 吴长安, 等. 不同干燥处理对城市污泥物理性质和农业利用的影响[J]. 生态环境学报, 2009, 18(1): 106-110. doi: 10.3969/j.issn.1674-5906.2009.01.021 [26] 孙永明, 郭衡焕, 孙辉明, 等. 城市污泥在矿区废弃地复垦中应用的可行性研究[J]. 环境科学与技术, 2008, 31(6): 28-31. [27] 张硕, 余宏军, 蒋卫杰. 发酵玉米芯或甘蔗渣基质的黄瓜育苗效果[J]. 农业工程学报, 2015, 31(11): 244-250. [28] 陈婵婵, 肖斌, 余有本, 等. 陕南茶园土壤有机质和pH值空间变异及其与速效养分的相关性[J]. 西北农林科技大学学报(自然科学版), 2009, 37(1): 182-188. [29] 王洋, 刘景双, 王金达, 等. 土壤pH值对冻融黑土重金属Cd赋存形态的影响[J]. 农业环境科学学报, 2008, 27(2): 574-578. doi: 10.3321/j.issn:1672-2043.2008.02.032 [30] 吴敏, 韦家少, 孙海东, 等. 植物物料及其生物炭对酸性土壤的改良[J]. 热带作物学报, 2016, 37(12): 2276-2282. doi: 10.3969/j.issn.1000-2561.2016.12.006 [31] 付克强, 王殿武, 李贵宝, 等. 城市污泥与湖泊底泥土地利用对土壤−植物系统中养分及重金属Cd, Pb的影响[J]. 水土保持学报, 2006, 20(4): 62-66. doi: 10.3321/j.issn:1009-2242.2006.04.015 [32] 张林丰, 任乐辉, 何月田, 等. 利用制糖副产物土壤化赤泥的效果[J]. 环境工程学报, 2018, 12(4): 1228-1236. doi: 10.12030/j.cjee.201710120 [33] 储双双, 赖灿, WEI X H, 等. 污泥堆肥混合基质对香彩雀生长开花的影响及植物适应性评价[J]. 生态学杂志, 2014, 33(4): 966-972. [34] 刘强, 陈玲, 邱家洲, 等. 污泥堆肥对园林植物生长及重金属积累的影响[J]. 同济大学学报(自然科学版), 2010, 38(6): 870-875. doi: 10.3969/j.issn.0253-374x.2010.06.016 [35] 安志装, 王校常, 施卫明, 等. 重金属与营养元素交互作用的植物生理效应[J]. 土壤与环境, 2002, 11(4): 392-396. [36] 杨旭初, 叶会财, 李大明, 等. 基于模糊数学和主成分分析的长期施肥红壤旱地土壤肥力评价[J]. 中国土壤与肥料, 2018(3): 79-84. doi: 10.11838/sfsc.20180313 [37] 吴海燕, 金荣德, 范作伟, 等. 基于主成分和聚类分析的黑土肥力质量评价[J]. 植物营养与肥料学报, 2018, 24(2): 325-334. doi: 10.11674/zwyf.17225 [38] 刘梦娇, 夏少攀, 王峻, 等. 城市污泥农用对植物−土壤系统的影响[J]. 应用生态学报, 2017, 28(12): 4134-4142. [39] 杨帅, 高照良, 白皓, 等. 矿山废弃地植物种植模式对土壤改良效果[J]. 水土保持学报, 2017, 31(3): 134-140. -
期刊类型引用(2)
1. 韩江涛,张帅博,秦雅蕊,韩硕洋,张雅康,王吉庆,杜清洁,肖怀娟,李猛. 甜瓜β-淀粉酶基因家族的鉴定及对非生物胁迫的响应. 生物技术通报. 2025(03): 171-180 . 百度学术
2. 梅玉琴,刘意,王崇,雷剑,朱国鹏,杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析. 作物学报. 2023(06): 1715-1725 . 百度学术
其他类型引用(3)