Effects of short-term exposure to high temperature at larval stage on the development and fecundity of Assara inouei
-
摘要:目的
明确幼虫期短时高温对井上蛀果斑螟 Assara inouei 存活、生长发育及生殖的影响。
方法将井上蛀果斑螟初孵幼虫和老熟幼虫在32、35、38、41和44 ℃条件下,分别处理1、2和4 h,测定其存活率;将井上蛀果斑螟初孵幼虫和老熟幼虫在35、38、41 ℃条件下,分别处理1、2和4 h后,研究其发育历期、化蛹率、羽化率、雌雄虫寿命、单雌产卵量及子代卵孵化率等。
结果随着温度的升高和处理时间的延长,井上蛀果斑螟幼虫存活率逐渐减小。井上蛀果斑螟初孵幼虫在35 ℃处理下发育历期缩短,38和41 ℃处理下发育历期延长。老熟幼虫经短时高温处理后,随着温度的升高及处理时间的延长,化蛹率、蛹质量、蛹羽化率、产卵期、雌虫寿命及产卵量均逐渐减小,蛹历期逐渐延长。
结论井上蛀果斑螟初孵幼虫对短时高温的适应性高于老熟幼虫,短时高温对井上蛀果斑螟老熟幼虫的存活、生长发育及生殖有显著影响。本研究揭示了井上蛀果斑螟幼虫对高温的适应性,可为井上蛀果斑螟种群动态的预测预报提供科学依据。
Abstract:ObjectiveTo investigate the effects of short-term exposure to high temperature at larval stage on the survival rate, development and fecundity of Assara inouei.
MethodNeonate larvae or mature larvae of A. inouei were exposed to high temperatures of 35, 38, 41 and 45 ℃ for 1, 2 and 4 h, respectively, and the survival rate was measured. After neonate larvae or mature larvae of A. inouei were exposed to high temperatures of 35, 38 and 41 ℃ for 1, 2 and 4 h, respectively, biological parameters of developmental duration, pupation rate, emergence rate, male and female longevity, number of eggs laid per female and egg hatching rate were investigated.
ResultThe survival rate of neonate larvae decreased gradually with the increase of temperature and treatment time. The developmental duration of neonate larvae was shortened by 35 ℃ treatment, but the developmental durations were prolonged by 38 and 41 ℃ treatments. After mature larvae were exposed to high temperature for short term, the pupation rate, pupal weight, emergence rate, oviposition period, female longevity and number of eggs laid per female decreased gradually, and pupal duration prolonged gradually with the increase of temperature and treatment time.
ConclusionNeonate larvae have higher adaptability to short-term high temperature than mature larvae. Short-term exposure to high temperature has significant effects on the survival, development and fecundity of mature larvae of A. inouei. The results reveal the adaptability of A. inouei larvae to high temperature, and provide a scientific basis for predicting the population dynamics of A. inouei.
-
Keywords:
- Assara inouei /
- short-term high temperature /
- survival /
- development /
- reproduction
-
红壤是我国南方地区主要土壤类型之一,其面积约为2.04亿hm2,占全国土壤总面积的22.7%[1]。红壤由于长期被氧化淋溶,大多数呈酸性,肥力较低,同时保肥保水性能差。贫瘠红壤严重影响了我国南方地区的农业经济可持续发展[1],因此施加土壤修复剂,改善红壤理化性质,对于提高红壤的农业产出具有重要意义[2-3]。生物质炭是有机生物质(如农林废弃物和畜禽废弃物等)在限氧或绝氧条件下经过高温热解炭化而成的比表面积大的富碳型产物。生物质炭具有丰富的孔隙、表面官能团和表面活性物质,能够通过络合、静电、阳离子交换等作用吸附肥料中的各种矿质元素,并且生物质炭原料廉价、易得、性质稳定[4-6],可作为农田肥料缓释剂的优良载体[7]。同时,Qiao等[8]研究发现,生物质炭返回土壤可增加土壤水分,提高土壤对养分的保留,减少土壤NO2、CO2和CH4的排放,释放可溶性碳和微量营养素,并提高土壤的pH,促进土壤微生物群落的生长,提高作物产量[9-10],因此,生物质炭也被认为是贫瘠土壤的优良修复剂。
土壤理化性质的动态变化因施加生物质炭周期长短而不同。从短期施加来看,生物质炭改变了土壤性质,包括土壤容重、pH以及速效钾和有机质含量等方面。其中有机质含量是土壤肥力的重要指标[11],有机质也能改善土壤微生物多样性、微生物区系结构[12]。从长期施加来看,生物质炭的施加可能会造成过度的营养积累、增加硝化细菌和磷酸盐损失以及向大气中排放气体[13]。杨采迪等[14]在土壤中施用不同生物质炭,使土壤pH均较对照组有不同程度的提高,但增幅随着作用时间延长而下降,同时,交换性酸显著降低且随着时间显著性增强。Li等[15]研究发现,老化的生物质炭失去对潜在氨氧化的初始作用,而几年前所用生物质炭改良土壤与新鲜生物质炭功效相似。因此,需要进一步研究探索土壤理化性质与施用生物质炭的长期关系。我国壳类资源丰富,将其制备成壳类生物质炭,使之成为治理土壤的重要原料,既可以充分利用资源,又可以带来良好的经济效益[16]。近年来,壳类生物质炭在农业领域的应用研究比较广泛。廖芬等[17]研究发现,生物质炭对作物的效应与生物质炭的原料来源有关。但是,不同原料的壳类生物质炭在施用期内,对南方红壤的理化性质的动态影响研究报道较少。本文选取松子壳炭、稻壳炭和油茶壳炭作为壳类生物质炭施加于土壤,探究施加不同种类及不同施加量的壳类生物质炭对南方红壤有机质含量的动态影响,以及对土壤其他理化性质如红壤容重、pH和速效钾含量的动态影响,并通过表征分析研究壳类炭对土壤改良的原因,以期为阻控红壤酸化,提高红壤理化性质提供一定的理论依据。
1. 材料与方法
1.1 壳类生物质炭的制备
分别以松子壳、稻壳和油茶壳为原料,在干燥箱内70 ℃条件下干燥24 h,在缺氧状态下热解炉慢速热解,并在500 ℃条件下保温1 h,所制得的生物质炭随炉降温,收集后研磨,并过40目筛备用。
1.2 壳类生物质炭修复红壤试验
试验的南方红壤土采集于广东省番禺区菜田,采用五点采样法采集0~20 cm深的表层红壤,土壤风干后,除去石子、草根等杂物,磨细后过20目筛备用。试验红壤pH为6.6,速效钾为62 mg·kg−1,有机质为5.3 g·kg−1。红壤粒径范围为:20%(w)的0.05~2.00 mm砂粒,70%(w)的0.002~0.050 mm粉粒和10%(w)的<0.002 mm黏粒,因此本试验土壤为红壤土。
自制的壳类生物质炭和红壤土置于直径15 cm、高12 cm的花盆中进行室内土壤试验。研究不同壳类生物质炭对红壤理化性质的动态影响,松子壳炭、稻壳炭和油茶壳炭施加量(炭土质量比)均为5%,即土壤添加量均为1 kg,不同生物质炭的施加量为50 g。同时,研究不同施加量的壳类生物质炭对土壤理化性质的动态影响,以松子壳炭为研究对象,其炭土比例分别为0 (对照,CK)、2%、5%和8%,即土壤添加量均为1 kg,则松子壳炭施加量分别为0、20、50和80 g。土壤培养周期为90 d,每30 d取土样进行理化分析,共取样4次。每处理设3组平行试验。
1.3 壳类生物质炭理化性质表征
壳类生物质炭水分、挥发分和灰分含量使用长沙友欣仪器制造有限公司、型号为YX-GYFX 7701的全自动工业分析仪进行测试,固定碳含量采用差减法计算[18];壳类生物质炭官能团采用德国布鲁克公司、型号为BRUKER TENSOR Ⅱ的傅里叶变换红外光谱(FTIR)仪测定;壳类生物质炭pH采用上海三信仪表厂、型号为Mettler-Toledo的pH计测量,生物质炭与水的质量比为1∶20;壳类生物质炭的比表面积和孔径采用美国麦克默瑞提克公司、型号为ASAP2000Micromeritics的全自动比表面积和孔隙分析仪测试。
1.4 土壤理化性质测试
采用环刀法采集土壤样品100 cm3,测定土壤容重[19]。土壤pH采用pH计测试,土水质量比为10∶25的悬浊液搅拌5 min,静置30 min[20]。有机质含量采用油浴加热重铬酸钾氧化−容量法测定[21]。速效钾含量采用1 mol/L的NH4OAc浸提−火焰光度计法测试[22]。
1.5 亚甲基蓝和碘吸附量的测定
亚甲基蓝吸附试验,往锥形瓶中加入土壤样本0.5 g和100 mg/L的亚甲基蓝溶液100 mL,在25 ℃条件下以150 r/min搅拌30 min并过滤,滤液的亚甲基蓝浓度用紫外分光光度计(UV 762,中国)进行测定。碘吸附试验按照GB/T 7702.7—2008[23]方法进行,取土壤样品0.5 g,加入0.1 mol/L的碘液50.0 mL,混合后搅拌15 min,用滴定法测定生物质基活性炭的碘吸附量。
1.6 数据处理与分析
采用Excel 2007和Origin 9.0软件对数据进行处理及绘图。采用SPSS 22.0统计分析软件对土壤有机质含量、土壤容重、pH和速效钾含量进行统计学分析,显著性分析采用Duncan’s法。
2. 结果与分析
2.1 壳类生物质炭的理化性质分析
表1为松子壳、稻壳和油茶壳3种原料在500 ℃条件下热裂解所得壳类生物质炭的理化性质。500 ℃热解的壳类生物质炭均具有较高的pH[24],其中,松子壳炭为10.74,稻壳炭为9.50,油茶壳炭为9.20。稻壳炭灰分含量最高,油茶壳炭次之,松子壳炭最低,其质量分数分别为23.46%、7.51%和1.17%;松子壳炭挥发分含量最高,油茶壳炭次之,稻壳炭最低,其质量分数分别为77.77%、69.82%和65.09%;油茶壳炭固定碳含量最高,松子壳炭次之,稻壳炭最低,其质量分数分别为22.67%、21.06%和11.34%。松子壳炭、稻壳炭和油茶壳炭的比表面积分别为47.86、16.28和1.14 m2·g−1,平均孔径分别为19.72、20.20和50.43 nm,对碘的吸附量分别为67.51、40.85和48.63 mg·g−1,对亚甲基蓝的吸附量分别为26.46、24.77和25.15 mg·g−1。根据国际理论和应用化学协会(International Union of Pure and Applied Chemistry,IUPAC)分类样品,孔隙按孔径(d)大小分为大孔(d>50 nm)、介孔(d=2~50 nm)和微孔(d<2 nm)[25]。吸附剂对亚甲基蓝的吸附主要依靠介孔,对碘分子的吸附则主要依靠微孔,吸附结果可作为评价生物质炭孔径分布的重要指标[26-27]。亚甲基蓝吸附结果表明,3种壳类生物质炭的介孔数量及对亚甲基蓝的吸附能力相当。碘吸附结果表明,松子壳炭表现出较优的碘吸附能力。因此松子壳炭相较于其他2种壳类生物质炭含有更丰富的微孔[28]。
表 1 3种壳类生物质炭的理化性质Table 1. Physical and chemical properties of three kinds of biochars样本
SamplepH w/% 比表面积/
(m2·g−1)
Specific
surface area平均孔径/nm
Average
pore size吸附量/(mg·g−1)
Adsorption capacity灰分1)
Ash挥发物1)
Volatile
matter固定碳1)
Fixed
carbon碘
Iodine亚甲基蓝
Methylene blue松子壳炭 Pine nut shell biochar
10.74 1.17 77.77 21.06 47.86 19.72 67.51 26.46 稻壳炭 Rice husk biochar
9.50 23.46 65.09 11.34 16.28 20.20 40.85 24.77 油茶壳炭 Camellia oleifera shell biochar
9.20 7.51 69.82 22.67 1.14 50.43 48.63 25.15 1)灰分、挥发物和固定碳含量均以绝干基计算
1)Ash, volatile matter and fixed carbon content were calculated on the absolute dry basis2.2 壳类生物质炭氮气吸附特性与孔径分布分析
由图1A可知,松子壳炭、稻壳炭和油茶壳炭氮气吸附–脱附等温线均可归为IV型等温线,中间段出现吸附回滞环,表明3种壳类生物质炭存在一定的大孔、介孔和微孔[29-30]。由图1B可知,微孔的丰富度大小关系为:松子壳炭的微孔丰富度更高,稻壳炭次之,油茶壳的微孔丰富度最低。与氮气吸附–脱附等温线一致[31]。壳类生物质炭的微孔丰富度与其对碘的吸附能力呈正相关。在孔径范围4~6 nm内,松子壳炭具有更多的介孔丰富度。
2.3 壳类生物质炭的红外光谱分析
由壳类生物质炭的红外光谱分析(图2)可知,松子壳炭、稻壳炭和油茶壳炭均在羟基(—OH)区域(3 100~3 750 cm−1)出现振动峰,波数为3 600~3 650 cm−1的振动峰属于醇类、酚类的游离羟基基团。松子壳炭、稻壳炭和油茶壳炭均在3 043 cm−1处有芳香烃的C—H伸缩振动峰[32]。1 300~1 800 cm−1波数范围为“指纹”区域,松子壳炭、稻壳炭和油茶壳炭均出现峰强相似的酸酐C=O的振动峰(1 877 cm−1)、酰胺I带C=N的振动峰(1 600~1 700 cm−1)、芳香烃C=C(1 589 cm−1)和酚醛O—H的振动峰(1 477 cm−1)[33]。波数为1 178 cm−1附近的振动峰为C—O,其中松子壳炭具有最高的C—O振动峰。松子壳炭在波数为796 cm−1附近吸收峰可能为C—H[28]。红外光谱数据表明,3种壳类生物质炭均含有丰富的含氧官能团。
2.4 壳类生物质炭修复盆栽土壤的试验结果
2.4.1 壳类生物质炭对土壤有机质含量的影响
不同壳类生物质炭类型及松子壳炭施加水平对土壤有机质含量的动态影响如图3所示。由图3A可知,相比于CK组,1~90 d试验期内,不同种类的壳类生物质炭对土壤有机质含量都有显著性影响,使其显著升高。其中,在30~90 d试验期内,施加5%(w)松子壳炭较其他壳类生物质炭使土壤有机质含量上升幅度更大(258.94%~284.92%)。因此,选择松子壳炭研究其不同施加量对土壤有机质含量及其他土壤理化性质的动态影响。由图3B可知,相比于CK组,不同施加量的松子壳炭对土壤的有机质含量都有显著性影响,除30 d外,施加8%(w)松子壳炭使土壤有机质含量的增加最显著,在90 d时较CK组上升了317.46%。
图 3 壳类生物质炭对土壤有机质含量的影响各图中,相同处理时间柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)Figure 3. Effects of shell biochars on organic matter content in soilIn each figure, different lowercase letters on bars of the same treatment time indicate significant differences among different treatments (P<0.05, Duncan’s method)2.4.2 壳类生物质炭对土壤容重的影响
不同壳类生物质炭类型及松子壳炭添加水平对土壤容重的动态影响如图4所示。由图4A可知,1~90 d试验期内,不同种类的壳类生物质炭对土壤容重影响不一致,施加5%(w)稻壳炭在处理期内降低了土壤容重,在30~90 d试验期内,施加5%(w)稻壳炭使土壤容重较CK组下降了9.72%~15.38%。另外,施加5%(w)松子壳炭与CK组相比,处理前期和中期的土壤容重有所增加,但在90 d时土壤容重较CK组下降了11.57%。由图4B可知,在60 d时施加8%(w)松子壳炭处理对土壤容重有显著性影响,90 d时与CK组相比,2%~8%(w)松子壳炭使土壤容重下降了5.25%~11.98%。
2.4.3 壳类生物质炭对土壤pH的影响
不同壳类生物质炭类型及松子壳炭施加水平对土壤pH的动态影响如图5所示。由图5A可知,1~90 d试验期内,不同种类壳类生物质炭对土壤pH影响不一致。其中,施加5%(w)油茶壳炭在处理期均提高了土壤pH,且相比于CK组具有显著性差异。在30~90 d试验期内,施加5%(w)油茶壳炭使土壤pH较CK组增加了16.91%~29.53%。另外,试验期内,与CK组相比,施加5%(w)松子壳炭处理土壤的pH有波动上升的趋势。由 图5B可知,除60 d以外,施加8%(w)的松子壳炭在30~90 d内对土壤的pH均有显著性影响,且随着松子壳炭添加量的增加,土壤pH也增加。在90 d时,施加8%(w)的松子壳炭使土壤pH较CK组提高了9.58%。
2.4.4 壳类生物质炭对土壤速效钾含量的影响
不同壳类生物质炭类型及松子壳炭添加水平对土壤速效钾含量的动态影响如图6所示。从图6A可以看出,与CK组相比,1~90 d处理期内,不同种类的壳类生物质炭对土壤速效钾含量都有显著性影响,使其显著升高。其中,在30~90 d 试验期内,施加5%(w)稻壳炭和5%(w)松子壳炭的处理使土壤速效钾含量分别上升了429.98%~716.58%和222.05%~358.86%。从图6B可以看出,在1~90 d试验期内,除施加2%(w)松子壳炭在60 d没有显著性影响以外,其他施加量的松子壳炭对土壤速效钾含量都有显著性影响,其中施加8%(w)松子壳炭使土壤速效钾含量增加的效果更显著,在90 d时使土壤速效钾含量较CK组上升了300.12%。
图 6 壳类生物质炭对土壤速效钾含量的影响各图中,相同处理时间柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)Figure 6. Effects of shell biochars on the content of available potassium in soilIn each figure, different lowercase letters on bars of the same treatment time indicate significant differences among different treatments (P<0.05, Duncan’s method)3. 讨论与结论
壳类生物质炭对土壤的有机质含量的影响因修复处理期不同而不同。修复初期,由于壳类生物质炭本身的易挥发物质及其表面官能团的氧化使得土壤有机质含量显著升高,但随着修复时间的增加,生物质炭表面钝化[34],并与土壤相互作用,产生保护基质,因而土壤中有机质含量有所降低。同时,相对于稻壳炭和油茶壳炭,施加松子壳炭土壤中的有机质含量增加较多,其原因是松子壳炭具有较多的表面官能团以及较大的比表面积(47.86 m2·g−1),且含有大量的微孔和介孔(4~6 nm)。松子壳炭为土壤微生物提供了活动场所,加速了土壤中动植物残体向腐殖质转化,从而提高红壤中有机质的含量[31, 35]。
施用不同种类的壳类生物质炭对土壤pH的影响表明,不同种类的壳类生物质炭均使土壤pH有不同幅度的增加。生物质炭提高土壤pH主要有2个原因:1) 生物质炭中灰化碱的释放可直接中和土壤酸度,提高土壤pH;2) 生物质炭被土壤微生物分解,生物质炭的有机氮矿化形成铵态氮,从而消耗质子,提高土壤pH[36]。另外,油茶壳炭能显著提高土壤pH是因为油茶壳炭平均孔径最大(50.43 nm),丰富的大孔可以增加土壤的阳离子交换量,对于吸附带正电离子具有积极效应,从而增加土壤的pH[31]。
不同种类的壳类生物质炭对土壤容重的影响取决于壳类生物炭本身的理化性质。添加稻壳炭使南方红壤容重显著降低,是因为稻壳炭的疏松、多孔结构,其容重远低于南方土壤,可以有效截留水分和养分,有利于土壤水分保留[31]。
不同种类的壳类生物质炭对土壤速效钾含量都有显著性影响。一方面,壳类生物质炭(松子壳炭、稻壳炭和油茶壳炭)本身来源于经济作物,作物在生长过程中积累的可溶性钾保留在壳类生物质炭中,从而可提高土壤的钾含量[2]。另一方面,从FTIR表征分析得知,壳类生物质炭表面具有丰富的含氧官能团(如酚类和羟基等),因而生物质炭产生的负电荷使其具有较高的阳离子交换量,施入土壤后可促进土壤钾离子的释放[37]。因此,施用不同种类的壳类生物质炭均增加了土壤速效钾含量。
本研究以松子壳、稻壳和油茶壳3种壳类原料制备生物质炭,研究了不同类型壳类生物质炭以及添加水平对红壤理化性质的动态影响,探讨了生物质炭本身特性,从而筛选出较佳的壳类生物质炭,通过调控生物质炭的施加量,提高了土壤的理化性质。本文结论如下:
1)添加不同类型的壳类生物质炭均显著提高了土壤有机质含量。在90 d时,添加8%(w)松子壳炭,使土壤有机质增长最显著,较CK组增加了317.46%。
2)添加不同壳类生物质炭对土壤pH的动态影响的研究表明,施加碱性的生物质炭以后,随着时间的增加,壳类生物质炭中的碱性物质逐渐释放到酸性土壤并中和酸性土壤,提高了土壤pH。
3)添加不同类型的壳类生物质炭均提高了土壤的速效钾含量,在30~90 d内,施加5%(w)稻壳炭和松子壳炭的处理,使土壤速效钾含量较CK组分别上升了429.98%~716.58%和222.05%~358.86%。
4)添加不同类型的壳类生物质炭对土壤容重的动态影响的研究表明,容重决定于壳类生物炭本身的理化性质。在30~90 d试验期内,稻壳炭使土壤容重较CK组下降了9.72%~15.38%。
5)不同类型的壳类生物质炭能提高土壤农艺特性和pH,提高土壤有机质和速效钾含量,降低土壤容重,这为壳类生物质炭还田修复贫瘠红壤提供了理论和实践依据。
-
表 1 幼虫期短时高温处理对井上蛀果斑螟幼虫存活率的影响1)
Table 1 Effects of short-term exposure of Assara inouei larvae to high temperature on their survival rates
虫期
Developmental staget(处理)/h
Treatment time存活率/% Survival rate 32 ℃ 35 ℃ 38 ℃ 41 ℃ 44 ℃ 初孵幼虫
Neonate larvae1 100.00aA 100.00aA 92.62aA 52.14aB 0.00aC 2 100.00aA 98.56aA 89.82aB 20.39bC 0.00aD 4 100.00aA 88.32bB 72.14bC 12.14cD 0.00aE 老熟幼虫
Mature larvae1 100.00aA 100.00aA 100.00aA 82.25aB 11.80aC 2 100.00aA 100.00aA 100.00aA 67.62bB 7.51aC 4 100.00aA 100.00aA 91.57bB 45.27cC 0.00bD 1) 相同虫期同列数据后不同小写字母表示不同处理时间存在显著差异,同行数据后不同大写字母表示不同温度间存在显著差异(P<0.05,Duncan’s法)
1) Different lowercase letters within the same column at the same larval stage indicate significant difference among different treatment time, and different uppercase letters within the same row indicate significant difference among different treatment temperature (P<0.05, Duncan’s test)表 2 幼虫期短时高温处理对井上蛀果斑螟初孵幼虫发育历期及存活率的影响1)
Table 2 Effects of short-term exposure of neonate larvae to high temperature on the larval duration and survival rate of Assara inouei
t(处理)/h
Treatment time发育历期/d Larval duration 存活率/% Survival rate 35 ℃ 38 ℃ 41 ℃ 35 ℃ 38 ℃ 41 ℃ 0(CK) 17.56±1.97aA 17.56±1.97cA 17.56±1.97bA 68.24±2.68aA 68.24±2.68aA 68.24±2.68aA 1 16.32±1.52aB 19.16±2.43bA 20.19±1.09abA 64.38±4.51aA 40.06±2.47bB 33.35±1.02bC 2 16.08±1.34aB 21.25±2.30aA 19.83±2.12bA 53.74±2.34bA 37.83±2.39bcB 26.77±2.11cC 4 15.69±1.21aB 20.84±1.23abA 21.74±1.34aA 48.86±1.78cA 34.51±0.76cB 22.24±0.64cC 1) 表中数据为平均值 ± 标准差,对同一参数,同列数据后不同小写字母表示不同处理时间存在显著差异,同行数据后不同大写字母表示不同温度间存在显著差异(P<0.05,Duncan’s法)
1) Datum in the table is mean ± SE, for the same parameter, different lowercase letters within the same column indicate significant difference among different treatment time, and different uppercase letters within the same row indicate significant difference among different treatment temperature(P<0.05, Duncan’s test)表 3 井上蛀果斑螟幼虫期短时高温处理对化蛹率的影响1)
Table 3 Effect of short-term exposure of larvae to high temperature on the pupation rate of Assara inouei
处理 Treatment 化蛹率/% Pupation rate θ/℃
t/h
初孵幼虫
Neonate larvae老熟幼虫
Mature larvae25 (CK) 87.72±4.95a 87.72±4.95a 35 1 89.35±4.56a 86.49±5.43a 2 85.94±5.31a 83.15±3.64ab 4 87.13±6.37a 78.89±5.20bc 38 1 88.32±5.44a 74.72±6.31c 2 86.09±6.32a 75.40±5.96c 4 85.41±2.56a 67.67±3.67d 41 1 86.38±4.27a 70.44±4.19d 2 88.84±5.19a 58.98±6.04e 4 85.63±3.38a 50.53±4.77f 1) 表中数据为平均值 ± 标准差,同列数据后不同小字母表示差异显著(P<0.05,Duncan’s法)
1) Datum in the table is mean ± SE, different lowercase letters within the same column indicate significant difference (P<0.05, Duncan’s test)表 4 井上蛀果斑幼虫期短时高温处理对蛹质量、蛹历期及羽化率的影响1)
Table 4 Effects of short-term exposure of larvae to high temperature on the pupal weight, pupa duration and emergence rate of Assara inouei
处理 Treatment 蛹质量/mg Pupal weight 蛹历期/d Pupa duration 羽化率/% Emergence rate θ/℃
t/h
初孵幼虫
Neonate larvae老熟幼虫
Mature larvae初孵幼虫
Neonate larvae老熟幼虫
Mature larvae初孵幼虫
Neonate larvae老熟幼虫
Mature larvae25 (CK) 15.65±0.67a 15.65±0.67a 7.76±0.55a 7.76±0.55b 94.48±2.35a 94.48±2.35a 35 1 14.67±0.72a 14.43±1.21ab 6.82±0.48a 7.20±1.58b 93.32±4.57a 91.74±5.31ab 2 15.91±0.81a 15.07±0.94a 7.74±0.61a 7.69±1.57b 94.74±4.32a 90.53±3.67ab 4 13.89±0.76a 13.91±0.78ab 7.63±0.39a 7.65±1.49b 91.90±5.38a 88.57±4.45b 38 1 14.26±1.13a 14.60±080ab 7.72±0.60a 8.47±2.54ab 93.37±3.48a 83.79±5.70c 2 14.75±0.94a 13.87±0.75ab 8.25±0.42a 8.78±2.83ab 93.59±5.31a 84.31±2.61c 4 13.79±0.98a 12.67±0.54bc 8.41±0.79a 9.31±2.70a 92.86±3.35a 77.62±3.70d 41 1 14.61±0.76a 13.14±0.62bc 7.95±0.95a 9.04±2.63a 92.24±4.06a 79.85±3.66cd 2 13.94±0.88a 12.85±0.83bc 8.04±0.72a 9.23±2.71a 92.73±4.58a 66.76±4.22e 4 13.85±1.01a 11.28±0.87c 7.79±0.86a 9.18±1.48a 91.31±2.34a 68.39±3.38e 1) 表中数据为平均值 ± 标准差,同列数据后不同小字母表示差异显著(P<0.05,Duncan’s法)
1) Datum in the table is mean ± SE, different lowercase letters within the same column indicate significant difference (P<0.05, Duncan’s test)表 5 井上蛀果斑幼虫期短时高温处理对成虫产卵期及寿命的影响1)
Table 5 Effects of short-term exposure of larvae to high temperature on the oviposition period and longevity of Assara inouei adult
处理
Treatment产卵前期/d
Pre-oviposition period产卵期/d
Oviposition period雌虫寿命/d
Female longevity雄虫寿命/d
Male longevityθ/℃
t/h
初孵幼虫
Neonate
larvae老熟幼虫
Mature
larvae初孵幼虫
Neonate
larvae老熟幼虫
Mature
larvae初孵幼虫
Neonate
larvae老熟幼虫
Mature
larvae初孵幼虫
Neonate
larvae老熟幼虫
Mature
larvae25 (CK) 1.71±0.02a 1.71±0.02a 8.69±0.74a 8.69±0.74 a 14.47±1.73a 14.47±1.73a 12.59±1.46a 12.59±1.46a 35 1 1.68±0.03a 1.62±0.04a 7.31±0.85a 8.31±0.85a 13.38±1.18a 15.14±2.14a 11.87±1.33a 12.37±1.36a 2 1.84±0.05a 2.10±0.02a 7.55±1.09a 8.14±1.09a 15.11±1.36a 13.81±1.59ab 12.69±1.78a 11.76±1.80a 4 1.56±0.03a 1.74±0.04a 6.57±0.67a 7.63±0.67abc 14.28±1.55a 13.44±1.37ab 11.77±0.89a 13.04±1.93a 38 1 2.05±0.03a 1.60±0.00a 6.86±0.98a 6.48±0.98abc 13.71±1.42a 15.06±2.00a 12.28±1.74a 12.68±1.38a 2 1.79±0.02a 1.77±0.05a 7.25±0.54a 5.59±0.54c 13.69±1.97a 14.87±1.42a 11.12±1.62a 12.31±1.55a 4 2.04±0.05a 2.08±0.04a 7.84±0.71a 6.25±0.71bc 14.23±2.18a 11.90±1.63bc 10.94±0.90a 11.84±1.63a 41 1 1.73±0.06a 1.69±0.03a 6.63±0.66a 6.17±0.66bc 13.56±1.92a 12.78±1.81b 12.50±1.34a 12.00±1.49a 2 1.80±0.04a 1.84±0.02a 7.39±0.82a 5.80±0.82c 13.89±1.49a 11.06±1.76bc 11.53±1.12a 11.64±1.07a 4 1.89±0.07a 1.95±0.06a 6.76±0.47a 5.21±0.47c 14.04±1.85a 9.57±2.05c 11.67±1.37a 12.17±1.22a 1) 表中数据为平均值 ± 标准差,同列数据后不同小字母表示差异显著(P<0.05,Duncan’s法)
1) Datum in the table is mean ± SE, different lowercase letters within the same column indicate significant difference (P<0.05, Duncan’s test)表 6 井上蛀果斑幼虫期短时高温处理对成虫平均单雌产卵量及卵孵化率的影响1)
Table 6 Effects of short-term exposure of larvae to high temperature on the number of eggs laid per female and egg hatching rate of Assara inouei adult
处理
Treatment平均单雌产卵量/粒
Number of eggs laid per female卵孵化率/%
Egg hatching rateθ/℃
t/h
初孵幼虫
Neonate larvae老熟幼虫
Mature larvae初孵幼虫
Neonate larvae老熟幼虫
Mature larvae25 (CK) 89.47±5.26a 89.47±5.26a 57.89±2.65a 57.89±3.65a 35 1 91.87±4.56a 84.45±4.57ab 60.14±1.54a 58.20±1.58a 2 88.69±4.34a 86.60±3.65ab 54.27±2.17a 64.69±2.57a 4 83.79±3.90a 85.09±3.32ab 56.63±2.23a 54.25±1.49a 38 1 90.28±4.96a 90.15±5.94a 59.72±3.75a 60.61±3.54a 2 91.12±4.62a 87.42±4.06a 62.25±2.69a 57.31±2.83a 4 86.34±3.98a 80.62±3.41ab 55.18±2.58a 63.74±2.70a 41 1 84.57±5.34a 76.88±2.94b 55.33±1.63a 54.24±2.63a 2 86.53±3.12a 75.09±4.51b 62.87±2.54a 59.23±2.71a 4 88.67±4.37a 64.30±5.37c 53.62±1.06a 58.48±1.48a 1) 表中数据为平均值 ± 标准差,同列数据后不同小字母表示差异显著(P<0.05,Duncan’s法)
1) Datum in the table is mean ± SE, different lowercase letters within the same column indicate significant difference (P<0.05, Duncan’s test) -
[1] 何超, 沈登荣, 尹立红, 等. 不同石榴品种对井上蛀果斑螟生长发育和繁殖的影响[J]. 应用生态学报, 2017, 28(3): 935-940. [2] PAEK M K, CHA J Y, BAE Y S. Two new records of phycitine moths (Lepidoptera, Pyralidae) in Korea[J]. Korean J Entomol, 2002, 32(2): 95-98. doi: 10.1111/j.1748-5967.2002.tb00017.x
[3] DU Y L, LI H H, WANG S X. A taxonomic study on the genus Assara walker from China (Lepidoptera: Pyralidae: Phycitinae)[J]. Acta Zootaxonomica Sinica, 2002, 27(1): 8-19.
[4] 白玲玲, 张祖兵, 杨仕生, 等. 云南石榴新纪录害虫井上蛀果斑螟的形态学及种群动态特征[J]. 云南农业大学学报(自然科学), 2005, 20(2): 183-187. [5] 秦卓, 蒋智林, 李正跃, 等. 石榴不同部位对井上蛀果螟(Assara inoue)产卵行为的影响[J]. 云南大学学报(自然科学), 2008, 30(S1): 123-126. [6] 邵淑霞, 李春艳, 杨仕生, 等. 井上蛀果斑螟幼虫和蛹的形态描述及生物学特性[J]. 云南农业大学学报(自然科学), 2008, 23(1): 22-24. [7] 何超, 沈登荣, 尹立红, 等. 井上蛀果斑螟成虫饲养密度对其寿命及繁殖力的影响[J]. 西北农业学报, 2017, 26(6): 950-955. doi: 10.7606/j.issn.1004-1389.2017.06.020 [8] CUI Y D, DU Y Z, LU M X, et al. Antioxidant responses of Chilo suppressalis (Lepidoptera: Pyralidae) larvae exposed to thermal stress[J]. J Therm Biol, 2011, 36(5): 292-297. doi: 10.1016/j.jtherbio.2011.04.003
[9] MIRONIDIS G K, SAVOPOULOU-SOULTANI M. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) adults[J]. J Therm Biol , 2010, 35(2): 59-69. doi: 10.1016/j.jtherbio.2009.11.001
[10] 蒋丰泽, 郑灵燕, 郭技星, 等. 温度对昆虫繁殖力的影响及其生理生化机制[J]. 环境昆虫学报, 2015, 37(3): 189-199. [11] RUKKE B A, AAK A, EDGAR K S. Mortality, temporary sterilization, and maternal effects of sublethal heat in bed bugs[J]. PLoS One, 2015, 10(5): e0127555. doi: 10.1371/journal.pone.0127555
[12] ZHAO M T, WANG Y, ZHOU Z S, et al. Effects of periodically repeated heat events on reproduction and ovary development of Agasicles hygrophila (Coleoptera: Chrysomelidae)[J]. J Econ Entomol, 2016, 109(4): 1586-1594. doi: 10.1093/jee/tow093
[13] 梁菲菲, 王振营, 何康来, 等. 幼虫期短时高温暴露对二点委夜蛾存活和繁殖的影响[J]. 昆虫学报, 2016, 59(9): 991-996. [14] 李定旭, 雷喜红, 徐艳彩, 等. 短时高温对桃小食心虫生长发育与繁殖的影响[J]. 昆虫学报, 2014, 57(2): 218-225. [15] 范秀娟, 陈丹, 孙志娟, 等. 短时高温对烟蚜生长发育、繁殖和取食行为的影响[J]. 昆虫学报, 2014, 57(10): 1188-1197. [16] 鲍晓文, 房爱省, 仵均祥, 等. 短期高温对梨小食心虫成虫生殖及寿命的影响[J]. 果树学报, 2019, 36(4): 486-492. [17] 姜姗, 李帅, 张彬, 等. 极端高温对西花蓟马存活、繁殖特性及体内海藻糖、山梨醇含量的影响[J]. 中国农业科学, 2016, 49(12): 2310-2321. doi: 10.3864/j.issn.0578-1752.2016.12.007 [18] 何超, 沈登荣, 尹立红, 等. 井上蛀果斑螟生物学特性研究[J]. 应用昆虫学报, 2017, 54(2): 292-297. [19] GENG S, JUNG C. Effect of temperature on longevity and fecundity of Phyllonorycter ringoniella (Lepidoptera: Gracillariidae) and its oviposition model[J]. J Asia-Pac Entomol, 2017, 20(4): 1294-1300. doi: 10.1016/j.aspen.2017.09.012
[20] 李国平, 封洪强, 黄博, 等. 短时高温暴露对绿盲蝽和中黑盲蝽存活及生殖的影响[J]. 生态学报, 2017, 37(11): 3939-3945. [21] 杨帅, 赵冰梅, 李广云, 等. 短时高温暴露对土耳其斯坦叶螨和截形叶螨的影响[J]. 昆虫学报, 2013, 56(3): 276-285. [22] 全玉东, 何康来, 王振营, 等. 短时极端高温对亚洲玉米螟卵、初孵幼虫和成虫的影响[J]. 植物保护学报, 2015, 42(6): 985-990. [23] MAHROOF R, ZHU K Y, SUBRAMANYAM B. Change in expression of heat shock proteins in Tribolium castaneum (Herbst) (Coleopteran: Tenebrionidae) in relation to developmental stage, exposure time, and temperature[J]. Ann Entomol Soc Am, 2005, 98(1): 100-107. doi: 10.1603/0013-8746(2005)098[0100:CIEOHS]2.0.CO;2
[24] 马罡, 马春森. 气候变化下极端高温对昆虫种群影响的研究进展[J]. 中国科学: 生命科学, 2016, 46(5): 556-564. [25] ZHU G D, XUE M, LUO Y, et al. Effects of short-term heat shock and physiological responses to heat stress in two Bradysia adults, Bradysia odoriphaga and Bradysia difformis[J]. Sci Rep, 2017, 7: 13381. doi: 10.1038/s41598-017-13560-4
[26] ZHANG W, CHANG X Q, HOFFMANN A, et al. Impact of hot events at different developmental stages of a moth: The closer to adult stage, the less reproductive output[J]. Sci Rep, 2015, 5: 10436. doi: 10.1038/srep10436
[27] PIYAPHONGKUL J, PRITCHARD J, BALE J. Heat stress impedes development and lowers fecundity of the brown planthopper Nilaparvata lugens (Stål)[J]. PLoS One, 2012, 7(10): e47413. doi: 10.1371/journal.pone.0047413
-
期刊类型引用(3)
1. 刘婉,袁芳,曾慧聪,汪美凤. 农林废弃物生物炭的制备及其应用进展. 生物化工. 2024(03): 251-256 . 百度学术
2. 周英杰,刘艳伟,黄一峰,刘小刚. 生物质种类和添加量对肥液灌溉土壤入渗特征和养分运移的影响. 华南农业大学学报. 2023(04): 585-592 . 本站查看
3. 李少能,张蔚男,吴嵘泰,庞锡明,杨铭飞,简秀梅. 生物质理化特性与热解动力学参数相关性研究. 广州化工. 2022(22): 138-142 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 936
- HTML全文浏览量: 8
- PDF下载量: 753
- 被引次数: 6