Analysis of haplotype diversity of an invasive leaf-eating pest Opisina arenosella
-
摘要:目的
分析危害棕榈科Palmae植物的一种重要入侵食叶害虫椰子织蛾Opisina arenosella 单倍型在原产地和入侵地的分布特点,揭示椰子织蛾入侵我国的虫源信息。
方法利用线粒体COI基因分析16个地理种群共计172个样本,比较椰子织蛾印度种群和入侵地(中国、马来西亚和泰国)种群的遗传关系。
结果片段长度为625 bp的172条序列共鉴定出12个单倍型,包含15个变异位点,构成2个明显的单倍型分支,其中一个分支由11个单倍型(IN1~IN11)组成,均来自印度种群,单倍型IN1是6个印度种群的共享单倍型,IN2~IN11为独享单倍型;另一个分支为单倍型HAP,由来自中国、马来西亚和泰国的种群共享;HAP与11个来自印度的单倍型IN1~IN11均存在4个变异位点。
结论入侵地区的椰子织蛾种群来自同一基因型或者具有相同的入侵源;椰子织蛾种群入侵后受环境选择压力,在新栖息地产生新的突变或杂交。
Abstract:ObjectiveOpisina arenosella is an important invasive leaf-eating pest that attack Palmae plants. The goal was to analyze the distribution characteristics of haplotypes of O. arenosella in native and invaded zones, and reveal the insect source information of O. arenosella invading China.
MethodA total of 172 samples from 16 geographical populations were analyzed by mitochondrial COI gene, and the genetic relationship of O. arenosella from India and invading areas (China, Malaysia and Thailand) was compared.
ResultTwelve haplotypes were identified in 172 sequences with fragment length of 625 bp. Fifteen variation sites were detected in the haplotype alignment. Two obvious haplotype branches were formed, one of which was composed of 11 haplotypes IN1-IN11 and they were all from Indian populations. Haplotype IN1 was shared by six O. arenosella populations from India. IN2-IN11 were exclusive haplotypes and not shared with other populations. The other branch was haplotype HAP and shared by populations from China, Malaysia and Thailand. There were four variation sites between HAP and 11 haplotypes IN1-IN11 from India.
ConclusionO. arenosella populations in these invading areas are from the same genotype type or have the same invasion source. O. arenosella invading populations produce new mutations or hybrids in new habitats under environmental selection pressure.
-
Keywords:
- Opisina arenosella /
- mitochondrial DNA /
- haplotype /
- geographic population /
- invasion
-
-
表 1 不同地理种群椰子织蛾样本信息
Table 1 Sample information of Opisina arenosella from different geographical populations
序号
Serial
number种群代码1)
Population
code采集地点
Collecting place采集时间
Collecting time样本量
Sample
size经纬度
Longitude and latitude虫态
Insect stage寄主
Host1 HNHK 中国海南海口
Haikou, Hainan, China2018−08 17 110.32°E
20.07°N幼虫 Larva、
蛹 Pupa椰子 Cocos nucifera、
糖棕 Borassus flabellifer、
蒲葵 Livistona chinensis2 HNWC 中国海南文昌
Wenchang, Hainan, China2018−08 20 110.82°E
19.35°N幼虫 Larva、
蛹 Pupa椰子C. nucifera 3 HNQH 中国海南琼海
Qionghai, Hainan, China2018−08 23 110.44°E
19.25°N幼虫 Larva、
蛹 Pupa椰子 C. nucifera、
大王棕 Roystonea regia、
蒲葵 L. chinensi4 HNWN 中国海南万宁
Wanning, Hainan, China2018−08 14 110.24°E
18.49°N幼虫 Larva、
蛹 Pupa椰子C. nucifera 5 HNLS 中国海南陵水
Lingshui, Hainan, China2018−08 26 110.08°E
18.49°N幼虫 Larva、
蛹 Pupa椰子C. nucifera 6 HNSY 中国海南三亚
Sanya, Hainan, China2018−08 16 109.16°E
18.32°N幼虫 Larva、
蛹 Pupa椰子 C. nucifera、
蒲葵 L. chinensis7 HNDZ 中国海南儋州
Danzhou, Hainan, China2018−08 15 109.33°E
19.61°N幼虫 Larva 椰子C. nucifera 8 GDFS 中国广东佛山
Foshan, Guangdong, China2018-09 6 113.28°E
22.88°N幼虫 Larva 椰子C. nucifera 9 MLSY 马来西亚,吉隆坡
Kuala Lumpur, Malaysia2018-12 5 101.72°E
2.99°N幼虫 Larva 椰子C. nucifera 10 TLBB 泰国,北碧府
Kanchanaburi, Thailand2018-12 2 99.52°E
14.03°N蛹 Pupa 椰子C. nucifera 11 IDKL 印度,喀啦啦,加瑟勒戈德
Kerala, Kasaragod, India2019-04 10 74.99°E
12.51°N幼虫 Larva 椰子C. nucifera 12 IDSR* 印度,安得拉, 斯里加古兰
Srikakulam, Andhra, India2016 3 80.85°E
16.19°N幼虫 Larva 椰子C. nucifera 13 IDVZ* 印度, 安得拉, 维济亚讷格勒姆
Vizianagaram, Andhra, India2016 4 83.39°E
18.11°N幼虫 Larva 椰子C. nucifera 14 IDVS* 印度, 安得拉, 维沙卡帕特南
Visakhapatnam, Andhra, India2016 5 82.00°E
16.90°N幼虫 Larva 椰子C. nucifera 15 IDEG* 印度, 安得拉, 东戈达瓦里
East Godavari, Andhra, India2016 2 82.23°E
16.85°N幼虫 Larva 椰子C. nucifera 16 IDWG* 印度, 安得拉, 西戈达瓦里
West Godavari, Andhra, India2016 4 81.76°E
16.59°N幼虫 Larva 椰子C. nucifera 1)“*”表示该种群的序列从GenBank下载获得;IDSR的序列号为KP995715~KP995717,IDVZ的序列号为KP995718~KP995721,IDVS的序列号为KP995722~KP995726,IDEG的序列号为KP995727~KP995728,IDWG的序列号为KP995729~KP995732
1) “*”indicates the sequence of the population is downloaded from GenBank; The serial number of IDSR is KP995715-KP995717, IDVZ is KP995718-KP995721, IDVS is KP995722-KP995726, IDEG is KP995727-KP995728, and IDWG is KP995729-KP995732表 2 椰子织蛾12个COI单倍型在不同地区的分布
Table 2 Distribution of 12 OpisinaarenosellaCOI haplotypes in different regions
单倍型
Haplotype种群分布
Population distribution国别
Country种群代码1)
Population codeHAP 中国 China HNQH(23)、HNLS(26)、
HNHK(17)、HNWC(20)、
HNWN(14)、HNSY(16)、
GDFS(6)马来西亚 Malaysia MLSY(5) 泰国 Thailand TLBB(2) IN1 印度 India IDKL(8)、IDSR(2)、
IDVS(2)、IDEG(1)、
IDWG(3)、IDVZ(2)IN2 印度 India IDSR(1) IN3 印度 India IDVS(1) IN4 印度 India IDEG(1) IN5 印度 India IDWG(1) IN6 印度 India IDVZ(1) IN7 印度 India IDKL(1) IN8 印度 India IDKL(1) IN9 印度 India IDVS(1) IN10 印度 India IDVS(1) IN11 印度 India IDVZ(1) 1)括号中数据为共享单倍型的样本数
1)Numbers of samples sharing haplotypes are shown in parentheses -
[1] PIMENTEL D, LACH L, ZUNIGA R, et al. Environmental and economic costs of nonindigenous species in the United States[J]. Bio Sci, 2000, 50(1): 53-66.
[2] PERERA P, HASSELL M, GODFRAY H. Population dynamics of the coconut caterpillar, Opisina arenosella Walker (Lepidoptera: Xyloryctidae), in Sri Lanka[J]. Bull Entomol Res, 1988, 78(3): 479-492. doi: 10.1017/S0007485300013237
[3] MOHAO C, NAIR C R, NAMPOOTHIRI C K, et al. Leaf-eating caterpillar (Opisina arenosella)-induced yield loss in coconut palm[J]. Int J Trop Insect Sci, 2010, 30(3): 132-137. doi: 10.1017/S174275841000024X
[4] 吕宝乾, 严珍, 金启安, 等. 警惕椰子织蛾Opisina arenosella Walker(鳞翅目: 织蛾科)传入中国[J]. 生物安全学报, 2013, 22(1): 17-22. doi: 10.3969/j.issn.2095-1787.2013.01.003 [5] 阎伟, 吕宝乾, 李洪, 等. 椰子织蛾传入中国及其海南省的风险性分析[J]. 生物安全学报, 2013, 22(3): 163-168. doi: 10.3969/j.issn.2095-1787.2013.03.003 [6] 阎伟, 刘丽, 李朝绪, 等. 入侵害虫椰子织蛾对海南椰子造成的经济损失评估[J]. 中国南方果树, 2015, 44(4): 156-159. [7] 刘向蕊, 吕宝乾, 金启安, 等. 新入侵害虫椰子织蛾飞行能力测定[J]. 热带作物学报, 2014, 35(8): 1610-1614. doi: 10.3969/j.issn.1000-2561.2014.08.027 [8] 刘向蕊, 吕宝乾, 金启安, 等. 5种杀虫剂对入侵害虫椰子织蛾的室内毒力测定[J]. 生物安全学报, 2014, 23(1): 13-17. doi: 10.3969/j.issn.2095-1787.2014.01.003 [9] 黄山春, 李朝绪, 阎伟, 等. 海南发现椰子织蛾的重要天敌褐带卷蛾茧蜂[J]. 生物安全学报, 2017, 26(3): 256-258. doi: 10.3969/j.issn.2095-1787.2017.03.013 [10] 孙晓东, 阎伟, 李朝绪, 等. 苏云金芽胞杆菌的鉴定及对椰子织蛾的致死作用[J]. 生物安全学报, 2016, 25(1): 49-53. doi: 10.3969/j.issn.2095-1787.2016.01.011 [11] 陆永跃, 王敏. 椰子织蛾的形态特征识别[J]. 环境昆虫学报, 2013, 35(6): 838-842. [12] 金涛, 李应梅, 林玉英, 等. 椰子木蛾的产卵节律及其对寄主植物的产卵选择性[J]. 生物安全学报, 2016, 25(1): 39-43. doi: 10.3969/j.issn.2095-1787.2016.01.009 [13] YANG F, KAWABATA E, TUFAIL M, et al. r/K‐like trade‐off and voltinism discreteness: The implication to allochronic speciation in the fall webworm, Hyphantria cunea complex (Arctiidae)[J]. Ecol Evol, 2017, 7(24): 10592-10603. doi: 10.1002/ece3.3334
[14] CHEN F, LUO Y, KEENA M A, et al. DNA barcoding of gypsy moths from China (Lepidoptera: Erebidae) reveals new haplotypes and divergence patterns within gypsy moth subspecies[J]. J Econ Entom, 2015, 109(1): 366-374.
[15] 张亚楠, 龚治, 牛黎明, 等. 基于COI基因片段的瓜实蝇遗传多样性分析[J]. 热带作物学报, 2017, 38(5): 926-931. doi: 10.3969/j.issn.1000-2561.2017.05.023 [16] DU Y Z, TANG X T, WANG L P, et al. Genetic differentiation of geographical populations of Liriomyzasativae (Diptera: Agromyzidae) in China based on mitochondrial COI gene sequences[J]. Mitochond DNA, 2016, 27(6): 3936-3940. doi: 10.3109/19401736.2014.987271
[17] LAVRINIENKO A, KESäNIEMI J, WATTS P C, et al. First record of the invasive pest Drosophila suzukii in Ukraine indicates multiple sources of invasion[J]. J Pest Sci, 2017, 90(2): 421-429. doi: 10.1007/s10340-016-0810-3
[18] NADEL R L, SLIPPERS B, SCHOLES M C, et al. DNA bar-coding reveals source and patterns of Thaumastocoris peregrinus invasions in South Africa and South America[J]. Biol Inv, 2010, 12(5): 1067-1077. doi: 10.1007/s10530-009-9524-2
[19] 印红, 刘晓丽, 王彦芳, 等. 一种改进的昆虫基因组DNA的提取方法[J]. 河北大学学报(自然科学版), 2002, 22(1): 80-83. [20] 张德华, 周开亚, 孙红英. 乙醇保存的动物标本基因组DNA提取方法的比较[J]. 生物杂志, 2004, 21(6): 46-48. [21] HALL T. A user-friendly biological sequence alignment editor and analysis program for Windows TM[J]. Bioed Vers, 1999, 7(41): 95-98.
[22] CLEMENT M, POSADA D, CRANDALL K A. TCS: A computer program to estimate gene genealogies[J]. Mol Ecol, 2000, 9(10): 1657-1659. doi: 10.1046/j.1365-294x.2000.01020.x
[23] ZHOU Z, HUANG Y, SHI F. The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length[J]. Genome, 2007, 50(9): 855-866. doi: 10.1139/G07-057
[24] 施雯, 耿宇鹏, 欧晓昆. 遗传多样性与外来物种的成功入侵: 现状和展望[J]. 生物多样性, 2010, 18(6): 590-597. [25] AUSTERLITZ F, JUNG-MULLER B, GODELLE B, et al. Evolution of coalescence times, genetic diversity and structure during colonization[J]. Theor Popul Biol, 1997, 51(2): 148-164. doi: 10.1006/tpbi.1997.1302
[26] DLUGOSCH K M, PARKER I. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions[J]. Mol Ecol, 2008, 17(1): 431-449. doi: 10.1111/j.1365-294X.2007.03538.x
[27] TSUTSUI N D, SUAREZ A V, HOLWAY D A, et al. Reduced genetic variation and the success of an invasive species[J]. Proc Nat Acad Sci USA, 2000, 97(11): 5948-5953. doi: 10.1073/pnas.100110397
[28] VAN HEERWAARDEN B, WILLI Y, KRISTENSEN T N, et al. Population bottlenecks increase additive genetic variance but do not break a selection limit in rain forest drosophila[J]. Genetics, 2008, 179(4): 2135-2146. doi: 10.1534/genetics.107.082768
[29] WILLI Y, VAN BUSKIRK J, HOFFMANN A A. Limits to the adaptive potential of small populations[J]. Annu Rev Ecol Evol Syst, 2006, 37: 433-458.
[30] STAPLEY J, SANTURE A W, DENNIS S R. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species[J]. Mol Ecol, 2015, 24(9): 2241-2252. doi: 10.1111/mec.13089
[31] NIU X M, XU Y C, LI Z W, et al. Transposable elements drive rapid phenotypic variation in Capsella rubella[J]. Proc Nat Acad Sci USA, 2019, 116(14): 6908-6913. doi: 10.1073/pnas.1811498116
[32] SUN J T, DUAN X Z, HOFFMANN A A, et al. Mitochondrial variation in small brown planthoppers linked to multiple traits and likely reflecting a complex evolutionary trajectory[J]. Mol Ecol, 2019, 28(14): 3306-3323.
[33] JALALI S, SINGH S, VENKATESAN T. Selection of promising species of trichogrammatid egg parasitoid for field evaluation against coconut leaf eating caterpillar, Opisina arenosella Walker[J]. J Plant Crop, 2002, 30(2): 30-32.
[34] 唐真正, 王谨, 刘向蕊, 等. 热带两种入侵棕榈害虫耐寒性比较[J]. 植物检疫, 2016, 30(2): 40-44. -
期刊类型引用(3)
1. 秦国峰,刘根林. 84消毒液对非洲猪瘟病毒的杀灭效果. 上海畜牧兽医通讯. 2025(02): 19-20+24 . 百度学术
2. 王量,刘敏,郭星辉,姚帆,段聪康,姚军. 猪场外围环境非洲猪瘟病毒阳性率的影响因素分析. 上海畜牧兽医通讯. 2024(01): 15-19 . 百度学术
3. 邓毅,漆信桥,张继甫,张勋,周娜娜,徐志文,刘天强. 养猪场烟雾消毒机消毒效果评价. 中国猪业. 2024(04): 37-43 . 百度学术
其他类型引用(1)