• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

氨水低温冻融联合预处理对高粱秸秆酶解产糖的影响

李天沛, 丁为民, 熊佳定, 王文鑫

李天沛, 丁为民, 熊佳定, 等. 氨水低温冻融联合预处理对高粱秸秆酶解产糖的影响[J]. 华南农业大学学报, 2020, 41(4): 104-110. DOI: 10.7671/j.issn.1001-411X.201909023
引用本文: 李天沛, 丁为民, 熊佳定, 等. 氨水低温冻融联合预处理对高粱秸秆酶解产糖的影响[J]. 华南农业大学学报, 2020, 41(4): 104-110. DOI: 10.7671/j.issn.1001-411X.201909023
LI Tianpei, DING Weimin, XIONG Jiading, et al. Effect of pretreatment using ammonia water combined with freezing and thawing on enzymatic hydrolysis and sugar production of sorghum straw[J]. Journal of South China Agricultural University, 2020, 41(4): 104-110. DOI: 10.7671/j.issn.1001-411X.201909023
Citation: LI Tianpei, DING Weimin, XIONG Jiading, et al. Effect of pretreatment using ammonia water combined with freezing and thawing on enzymatic hydrolysis and sugar production of sorghum straw[J]. Journal of South China Agricultural University, 2020, 41(4): 104-110. DOI: 10.7671/j.issn.1001-411X.201909023

氨水低温冻融联合预处理对高粱秸秆酶解产糖的影响

基金项目: 国家科技支撑计划(2013BAD08B04)
详细信息
    作者简介:

    李天沛(1994—),男,硕士研究生,E-mail: 2386944416@qq.com

    通讯作者:

    丁为民(1957—),男,教授,博士,E-mail: wmding@njau.edu.cn

  • 中图分类号: TK6;S216.2

Effect of pretreatment using ammonia water combined with freezing and thawing on enzymatic hydrolysis and sugar production of sorghum straw

  • 摘要:
    目的 

    降低预处理成本、提高秸秆预处理后的酶解效果,模拟自然界低温环境并结合氨水对高粱秸秆进行预处理。

    方法 

    通过单因素试验分别探究氨水低温冻融预处理中浸泡液的液固质量比、冷冻温度、冷冻时长、氨水质量分数对高粱秸秆酶解的影响,采用正交试验对预处理条件进行优化,对预处理前后高粱秸秆的成分采用范式法测定,物理化学结构用红外光谱和X射线衍射分析。

    结果 

    单因素试验中,浸泡液的液固质量比、冷冻温度、冷冻时长和氨水质量分数在不同水平下均显著提高了高粱秸秆酶解还原糖的产量(P<0.05)。正交试验最优预处理条件为浸泡液的液固质量比12,冷冻时长12 h,冷冻温度−10 ℃,氨水质量分数8%。相较于未进行预处理的秸秆,氨水低温冻融处理的秸秆半纤维素含量下降42.42%;木质素含量下降50.76%;秸秆的还原糖产量为302.87 mg·g−1,较未预处理组提高了80.34%;纤维素结晶度提高 了57.02%。

    结论 

    氨水低温冻融预处理能有效破坏高粱秸秆木质纤维素间原有的连接结构,溶解半纤维素,木质素的单体和聚合结构被破坏,提高了高粱秸秆的酶解还原糖得率以及纤维素结晶度。

    Abstract:
    Objective 

    To reduce the cost of pretreatment and improve the enzymatic hydrolysis effect afterstraw pretreatment, sorghum straw was pretreated with simulated natural low temperature environment andammonia water.

    Method 

    We studied the effects of the liquid-solid ratio in soaking solution, freezingtemperature, freezing time and ammonia content in pretreatment using ammonia water combined withfreezing and thawing on enzymatic hydrolysis of sorghum straw through single factor tests. We optimized the pretreatment conditions using orthogonal test design. The compositions of sorghum straw before and after pretreatment were measured using normal form method, and the physical and chemical structures were investigated using infrared spectrum and X-ray diffraction analyses.

    Result 

    In single factor tests, liquid-solid ratio in soaking solution, freezing temperature, freezing time and ammonia content at different levels all significantly increased the production of reducing sugar through enzymatic digestion(P<0.05). The optimum pretreatment conditions of the orthogonal test were 12 liquid-solid ratio in soaking solution, 12 h freezing time, 10 ℃ freezing temperature, and ammonia content of 8%. Compared with straw without pretreatment, in straw with pretreatment using ammonia water combined with freezing and thawing, the hemicellulose content decreased by 42.42% , the lignin content decreased by 50.76%, the yield of reducing sugar for straw was 302.87 mg·g−1, which was 80.34% higher than that of straw without pretreatment, and the crystallinity of cellulose increased by 57.02%.

    Conclusion 

    The pretreatment using ammonia water combined with freezing and thawing can effectively destroy the original connection structure between lignocellulose of sorghum straw, dissolve hemicellulose, destroy the monomer and polymeric structure of lignin. It improves the yield of reducing sugar by enzymatic hydrolysis of sorghum straw, and also improves the crystallinity of sorghum straw cellulose.

  • 图  1   不同单因素对高粱秸秆酶解还原糖产量的影响

    “*”表示与CK差异显著(P<0.05,t检验)

    Figure  1.   Effect of different single factor on the yield of reducing sugar by enzymatic hydrolysis of sorghum straw

    “*” indicates significant difference from CK (P<0.05, t test)

    图  2   高粱秸秆氨水低温冻融联合预处理前后傅里叶红外光谱图

    Figure  2.   Fourier infrared spectra of sorghum straw before and after pretreatment using ammonia water combined with freezing and thawing

    图  3   高粱秸秆氨水低温冻融联合预处理前后X射线衍射图谱

    Figure  3.   X-ray diffraction pattern of sorghum straw before and after pretreatment using ammonia water combined with freezing and thawing

    表  1   高粱秸秆氨水低温冻融联合预处理正交试验因素与水平

    Table  1   Orthogonal test factors and levels of pretreatments of sorghum straw using ammonia water combined with freezing and thawing

    水平
    Level
    液固质量比
    Liquid-solid ratio
    冷冻时长/h
    Freezing time
    冷冻温度/℃
    Freezing temperature
    氨水质量分数/%
    Ammonia content
    1 8∶1 4.0 −10 4
    2 10∶1 12.0 −15 6
    3 12∶1 24.0 −20 8
    下载: 导出CSV

    表  2   高粱秸秆氨水低温冻融联合预处理正交表及分析结果

    Table  2   Orthogonal table and analysis result for pretreatment of sorghum straw using ammonia water combined with freezing and thawing

    试验号
    Test No.
    因素及水平 Factor and level 还原糖产量/(mg·g−1)
    Yield of reducing sugar
    液固质量比
    Liquid-solid ratio
    冷冻时长
    Freezing time
    冷冻温度
    Freezing temperture
    氨水质量分数
    Ammonia content
      1(CK) 167.94
    2 1 1 1 1 235.11
    3 1 2 2 2 235.04
    4 1 3 3 3 248.54
    5 2 1 2 3 291.45
    6 2 2 3 1 224.36
    7 2 3 1 2 243.72
    8 3 1 3 2 248.49
    9 3 2 1 3 302.87
    10 3 3 2 1 251.93
    K1 239.56 258.35 260.57 237.13
    K2 253.18 254.09 259.47 242.42
    K3 267.76 248.06 240.47 280.95
    R 28.20 10.29 20.10 43.82
    下载: 导出CSV

    表  3   氨水低温冻融联合预处理对高粱秸秆成分变化的影响

    Table  3   Influence of pretreatment using ammonia water combined with freezing and thawing on compositional change of sorghum straw w/%

    秸秆 Straw     纤维素 Cellulose 半纤维素 Hemicellulose 木质素 Lignin 灰分 Ash
    未处理 Untreated 42.23±1.78 28.57±0.14 14.46±1.75 0.97±0.02
    试验最优 Best in test 38.83±1.56 16.45±0.58 7.12±1.82 0.99±0.01
    下载: 导出CSV
  • [1]

    CAMBELL C, LAHERRERE J. The end of cheap oil: Global production of conventional oil will begin to decline sooner than most people think, probably within 10 years[J]. Sci Am, 1998, 3: 78-83.

    [2] 李洪飞, 孙大庆, 曹龙奎. 高粱秸秆预处理方法的研究进展[J]. 安徽农学通报, 2018, 24(9): 93-95. doi: 10.3969/j.issn.1007-7731.2018.09.039
    [3] 刘一星, 赵广杰. 木质资源材料学[M]. 北京: 中国林业出版社, 2004:4-26.
    [4] 漆楚生. 生物质秸秆–高密度聚乙烯定向秸塑板的制备及其热压成材机理研究[D]. 杨凌: 西北农林科技大学, 2013: 5.
    [5] 中华人民共和国农业农村部种植业管理司. 农作物数据库[DB/OL]. (2017-01-25)[2018-08-17]. http://www.zzys.moa.gov.cn/.
    [6] 谢光辉, 韩东倩, 王晓玉, 等. 中国禾谷类大田作物收获指数和秸秆系数[J]. 中国农业大学学报, 2011, 16(1): 1-8.
    [7] 王晓玉, 薛帅, 谢光辉. 大田作物秸秆量评估中秸秆系数取值研究[J]. 中国农业大学学报, 2012, 17(1): 1-8.
    [8]

    ABDESHAHIAN P, LIM J S, HO W S, et al. Potential of biogas production from farm animal waste in Malaysia[J]. Renew Sust Energ Rev, 2016, 60: 714-723. doi: 10.1016/j.rser.2016.01.117

    [9]

    ARAMRUEANG N, ZICARI S M, ZHANG R. Characterization and compositional analysis of agricultural crops and residues for ethanol production in California[J]. Biomass Bioenerg, 2017, 105: 288-297. doi: 10.1016/j.biombioe.2017.07.013

    [10] 姜岷, 曲音波, 等. 非粮生物质炼制技术: 木质纤维素生物炼制原理与技术[M]. 北京: 化学工业出版社, 2017: 4-28.
    [11] 邓良伟. 纤维素类物质生产燃料酒精研究进展[J]. 食品与发酵工业, 1995(5): 60-72. doi: 10.3321/j.issn:0253-990X.1995.05.017
    [12]

    LI Q, HE Y C, XIAN M, et al. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment[J]. Bioresour Technol, 2009, 100(14): 3570-3575. doi: 10.1016/j.biortech.2009.02.040

    [13]

    WAKSMAN S A, CORDON T C. Thermophilic decomposition of plant residues in composts by pure and mixed cultures of microorganisms[J]. Soil Sci, 1939, 47(3): 217-226. doi: 10.1097/00010694-193903000-00006

    [14] 武世亮. 冻融对煤体损伤及瓦斯放散影响实验研究[D]. 徐州: 中国矿业大学, 2017: 9-15.
    [15] 常睿, 郝培文. 盐冻融循环对沥青混合料低温性能的影响[J]. 建筑材料学报, 2017, 20(3): 481-488. doi: 10.3969/j.issn.1007-9629.2017.03.027
    [16] 陈曦. 低温环境下钢筋混凝土轴拉构件试验研究及有限元分析[D]. 天津: 天津大学, 2017: 3-9.
    [17] 任国玉, 初子莹, 周雅清, 等. 中国气温变化研究最新进展[J]. 气候与环境研究, 2005, 10(4): 701-716. doi: 10.3878/j.issn.1006-9585.2005.04.01
    [18] 王殿龙, 艾平, 鄢烈亮, 等. 稻秸厌氧消化纤维制取乙醇实验研究[J]. 农业机械学报, 2015, 46(5): 156-163.
    [19] 王殿龙, 艾平, 张衍林. 稻秸酶解和沼气发酵臭氧氨水联合预处理技术研究[J]. 农业机械学报, 2018, 49(9): 295-301. doi: 10.6041/j.issn.1000-1298.2018.09.034
    [20]

    KO J K, BAK J S, JUNG M W, et al. Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes[J]. Bioresour Technol, 2009, 100(19): 4374-4380.

    [21]

    TOMA R B, LEUNG H K. Determination of reducing sugars in French fried potatoes by 3, 5-dinitrosalicylic scid[J]. Food Chem, 1987, 23(1): 29-33. doi: 10.1016/0308-8146(87)90024-0

    [22]

    VANSOEST P J, ROVERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. J Dairy Sci, 1991, 74(10): 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2

    [23]

    SEGAL L, CREELY J J, MARTIN A E JR, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Text Res J, 1959, 29: 786-794. doi: 10.1177/004051755902901003

    [24]

    GAO A H, BULE M V, LASKAR D D, et al. Structural and thermal characterization of wheat straw pretreated with aqueous ammonia soaking[J]. J Agric Food Chem, 2012, 60(35): 8632-8639. doi: 10.1021/jf301244m

    [25] 邓媛方, 邱凌, 王雅君, 等. 低温冻融–酶解预处理对稻杆厌氧发酵产气特性的影响[J]. 农业机械学报, 2017, 48(10): 260-265.
    [26]

    GUO X, YANG F, LIU H, et al. Prediction of cellulose crystallinity in liquid phase using CBS-GFP probe[J]. Macromol Res, 2019, 27(4): 377-385. doi: 10.1007/s13233-019-7059-7

    [27]

    LAUREANO-PEREZ L, TEYMOURI F, ALIZADEH H, et al. Understanding factors that limit enzymatic hydrolysis of biomass: Characterization of pretreated corn stover[J]. Appl Biochem Biotechnol, 2005, 121(1/2/3): 1081-1100.

    [28] 赵超, 邵千钧, 曹艳, 等. 液氨过氧化氢联合预处理对玉米芯酶解的影响[J]. 农业机械学报, 2015, 46(6): 193-200. doi: 10.6041/j.issn.1000-1298.2015.06.027
    [29] 胡林潮, 陈莉娜, 尹勇, 等. 水稻秸秆田间焚烧残留物的结构特征初探[J]. 光谱学与光谱分析, 2015, 35(7): 1844-1847. doi: 10.3964/j.issn.1000-0593(2015)07-1844-04
    [30]

    KIM T H, LEE Y Y. Pretreatment and fractionation of corn stover by ammonia recycle percolation process[J]. Bioresour Technol, 2005, 96(18): 2007-2013. doi: 10.1016/j.biortech.2005.01.015

    [31] 陈尚钘, 勇强, 徐勇, 等. 稀酸预处理对玉米秸秆纤维组分及结构的影响[J]. 中国粮油学报, 2011, 26(6): 13-19.
    [32]

    PANG F, XUE S, YU S, et al. Effects of combination of steam explosion and microwave irradiation(SE-MI) pretreatment on enzymatic hydrolysis, sugar yields and structural properties of corn stover[J]. Ind Crop Prod, 2013, 42: 402-408. doi: 10.1016/j.indcrop.2012.06.016

    [33]

    YANG C P, SHEN Z Q, YU G C, et al. Effect and after effect of γ-radiation pretreatment on enzymatic hydrolysis of wheat straw[J]. Bioresour Technol, 2008, 99: 6240-6245. doi: 10.1016/j.biortech.2007.12.008

  • 期刊类型引用(17)

    1. 侯天元,汤冬梅,张丽萍,周巧红,吴振斌,武俊梅. 抗生素对人工湿地处理水产养殖尾水的影响及其缓解途径. 水生生物学报. 2025(04): 61-71 . 百度学术
    2. 黄丽,高磊,吴松,郝其睿,李晨辉,汤施展,白淑艳,陈中祥,杜宁宁,覃东立,王鹏. 地西泮在模拟养殖环境中的含量变化及累积特征. 南方水产科学. 2024(02): 38-47 . 百度学术
    3. 陈进,余忠花,王亚娟,胡闪闪,高礼,陶红. 不同植物对多西环素污染的胁迫响应及其修复潜力研究. 环境工程. 2024(04): 250-257 . 百度学术
    4. 杨佩汶,林毅,林华,肖玲,甘淑萍,王义安. 不同构型人工湿地-微生物燃料电池对废水中对氯苯酚的净化效果及产电性能的影响. 环境工程学报. 2023(02): 507-516 . 百度学术
    5. 史沉鱼,黄港平. 土霉素胁迫对黄瓜幼苗生理特性的影响. 北方园艺. 2023(06): 1-11 . 百度学术
    6. 秦玉春,邹涛,张璇,王永强,国晓春,刘晓晖,卢少勇. 氧氟沙星胁迫下5种湿地植物及其根系微生物群落的差异性响应. 环境工程技术学报. 2023(03): 1079-1087 . 百度学术
    7. 袁孝康,付绿倩,陈华林,周江敏,刘欣聪,邓仕槐. 水产养殖中抗生素污染治理研究进展. 环境监测管理与技术. 2023(04): 1-6 . 百度学术
    8. 荣渝虹,孙仕仙,张发明,李良,李荣彪,罗超,郑毅. 香根草对水体中磺胺嘧啶单一及联合污染的去除动态研究. 西南林业大学学报(自然科学). 2023(06): 79-90 . 百度学术
    9. 黄伟杰,刘学智,唐红亮,汪义杰,陈军. 植物修复在抗生素污染治理中的应用研究进展. 生态科学. 2022(01): 222-229 . 百度学术
    10. 付雨,剧泽佳,陈慧,赵鑫宇,宋圆梦,王广志,张璐璐,崔建升. 白洋淀喹诺酮类抗生素在底栖动物中的生物富集特征. 中国环境科学. 2022(02): 878-888 . 百度学术
    11. 胡劲召,张璇,王永强,徐佳敏,卢洪斌,叶长兵,刘晓晖,陈中兵,卢少勇. 磺胺甲恶唑胁迫下人工湿地植物与根际微生物的响应. 环境工程技术学报. 2022(05): 1474-1483 . 百度学术
    12. 周海东,黄丽萍,陈晓萌,李丹妍,李昕,崔锦裕. 人工生态系统对城市河流中抗生素和ARGs的去除. 环境科学. 2021(02): 850-859 . 百度学术
    13. 刘昭君,林华,王义安,覃辉,Kong CHHUON. 磷肥种类对李氏禾富集铜、铬的影响及其生理响应. 生态环境学报. 2021(02): 412-419 . 百度学术
    14. 付雨,剧泽佳,付耀萱,田沛龙,张璐璐,赵鑫宇,陈慧,崔建升. 白洋淀优势水生植物中喹诺酮类抗生素的生物富集特征及其与环境因子相关性研究. 环境科学学报. 2021(09): 3620-3630 . 百度学术
    15. 谌和平,邹逸凡,张露荷,纪荣平. 人工湿地基质及其生物膜对生活污水中污染物去除效果的研究. 广东化工. 2021(22): 13-15 . 百度学术
    16. 杜实之. 环境中抗生素的残留、健康风险与治理技术综述. 环境科学与技术. 2021(09): 37-48 . 百度学术
    17. 李梦月,张某,鲁武峰,兰明先,易璟,李成学,吴国星. 紫茎泽兰对四环素的吸收特性. 生物安全学报. 2020(04): 302-305 . 百度学术

    其他类型引用(15)

图(3)  /  表(3)
计量
  • 文章访问数:  1092
  • HTML全文浏览量:  1
  • PDF下载量:  1152
  • 被引次数: 32
出版历程
  • 收稿日期:  2019-09-10
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2020-07-09

目录

    /

    返回文章
    返回