Effects of thiamethoxam on toxicity and detoxification metabolic enzyme activity of Nilaparvata lugens
-
摘要:目的
明确噻虫嗪对褐飞虱Nilaparvata lugens的抗药性及解毒代谢酶活性的影响。
方法采用稻苗浸渍法测定褐飞虱温室种群对吡虫啉、噻虫嗪、噻嗪酮和毒死蜱的抗药性,以及对新型防控药剂氟啶虫胺腈和三氯苯嘧啶的敏感性;研究增效剂胡椒基丁醚 (PBO)、马来酸二乙酯 (DEM)和磷酸三苯酯 (TPP)对噻虫嗪的增效作用;测定了羧酸酯酶、谷胱甘肽S−转移酶和细胞色素 P450s 酶活性。
结果褐飞虱种群对噻虫嗪表现出高水平抗性,抗性倍数达到277.92倍,对氟啶虫胺腈和三氟苯嘧啶仍处于敏感水平,对三氟苯嘧啶无交互抗性。PBO对噻虫嗪的增效作用最强,增效倍数为1.99倍。温室抗性种群的细胞色素P450s活性达到4.70×10−3 IU/mg,为室内敏感品系的2.13倍。
结论细胞色素P450s活性的增强可能是褐飞虱对噻虫嗪产生代谢抗性的主要原因。氟啶虫胺腈和三氟苯嘧啶轮换使用可有效防控褐飞虱。
Abstract:ObjectiveTo clarify the effects of thiamethoxam on resistance and detoxification metabolic enzyme activity of Nilaparvata lugens.
MethodThe resistance levels of N. lugens population in greenhouse against four insecticides (imidacloprid, thiamethoxam, buprofezin, chlopyrifos) and the sensitivities to two new types of insecticides (sulfoxaflor, triflumezopyrim) were measured using rice seedling immersion method. The synergistic effect of three synergists [piperonyl butoxide (PBO), diethyl maleate (DEM), triphenyl phosphate (TPP)] on thiamethoxazine, and three detoxification enzymes (carboxylesterase, qlutathioneS-transferase, cytochrome P450s) activities were analyzed.
ResultN. lugens population showed high resistance to thiamethoxam with the resistance ratio of 277.92 folds, sensitive to sulfoxaflor and triflumezopyrim, and no cross resistance to triflumezopyrim. PBO had the strongest synergistic effect on thiamethoxam with the synergistic ratio of 1.99. Cytochrome P450s activity of greenhouse population reached 4.70×10−3 IU/ mg, which was 2.13 folds to that of susceptible strain.
ConclusionThe increased activity of cytochrome P450s could be the main factor resulting in the metabolic resistance of N. lugens to thiamethoxam. The alternate use of sulfoxaflor and triflumezopyrim can effectively control the occurrence of N. lugens.
-
Keywords:
- Nilaparvata lugens /
- rice seedling immersion method /
- thiamethoxam /
- piperonyl butoxide /
- P450s
-
表 1 6种杀虫剂对褐飞虱的毒力
Table 1 The toxicities of six insecticides on Nilaparvata lugens
药剂名称
Insecticide处理种群
Population斜率±标准误
Slope±SELC50/
(μg·mL−1)95%置信区间1)/(μg·mL−1)
95% confidence intervalχ2 (df) 抗性倍数
Resistance ratio毒死蜱
Chlorpyrifos敏感基线[10]
Sensitive baseline4.259±3.144 1.721 1.400~12.810 1.00 温室种群
Greenhouse population3.148±0.614 16.613 11.841~20.580 13.74(16) 9.65 吡虫啉
Imidacloprid敏感基线[10]
Sensitive baseline6.677±1.512 0.078 0.050~0.100 1.00 温室种群
Greenhouse population2.666±0.332 148.399 118.147~180.048 11.35(13) 1 902.55 噻虫嗪
Thiamethoxam敏感基线[10]
Sensitive baseline7.134±2.184 0.105 0.090~0.120 1.00 温室种群
Greenhouse population2.895±0.353 29.182 23.613~35.186 10.30(13) 277.92 噻嗪酮
Buprofezin敏感基线[10]
Sensitive baseline10.019±4.248 0.066 0.060~0.070 1.00 温室种群
Greenhouse population2.006±0.291 56.500 43.570~73.084 10.50(13) 856.06 三氟苯嘧啶
Triflumezopyrim敏感品系
Susceptible strain1.668±0.308 0.111 0.060~0.155 7.23(13) 1.00 温室种群
Greenhouse population1.778±0.300 0.205 0.118~0.287 11.02(13) 1.85 氟啶虫胺腈
Sulfoxaflor敏感品系
Susceptible strain3.115±0.391 1.013 0.834~1.175 10.34(16) 1.00 温室种群
Greenhouse population4.154±0.741 3.293 2.564~3.844 10.28(13) 3.25 1)LC50值95%置信区间不重叠视为差异显著
1) LC50 values are considered significantly different when the 95% confidence intervals do not overlap表 2 3种增效剂对噻虫嗪的增效作用
Table 2 Synergistic effects of three synergists on thiamethoxam
处理种群
Population处理
Treatment斜率±标准误
Slope±SELC50 /
(μg·mL−1)95%置信区间1)/(μg·mL−1)
95% confidence intervalχ2 (df) 增效倍数
Synergism ratio敏感品系
Susceptible strain噻虫嗪
Thiamethoxam2.930±0.280 2.589 2.201~3.030 6.36(16) 1.00 噻虫嗪+TPP
Thiamethoxam+TPP2.269±0.228 2.410 1.994~2.898 14.39(16) 1.07 噻虫嗪+PBO
Thiamethoxam+PBO2.900±0.277 2.262 1.921~2.653 8.71(16) 1.14 噻虫嗪+DEM
Thiamethoxam+DEM2.871±0.275 2.489 2.114~2.920 7.34(16) 1.04 温室种群
Greenhouse population噻虫嗪
Thiamethoxam2.745±0.391 27.073 20.467~33.345 13.3(13) 1.00 噻虫嗪+TPP
Thiamethoxam+TPP2.499±0.249 19.357 15.400~23.925 21.6(16) 1.40 噻虫嗪+PBO
Thiamethoxam+PBO2.271±0.259 13.575 10.601~16.666 13.4(16) 1.99 噻虫嗪+DEM
Thiamethoxam+DEM2.590±0.297 21.128 17.025~25.394 13.19(16) 1.28 1)LC50值95%置信区间不重叠视为差异显著
1)LC50 values are considered significantly different when the 95% confidence intervals do not overlap -
[1] 洪晓月,丁锦华. 农业昆虫学[M]. 北京: 中国农业出版社, 2007: 87-93. [2] 董必琴. 褐飞虱田间种群的抗药性逆转及其对水稻品种的适应性[D]. 金华: 浙江师范大学, 2013. [3] 王鹏, 甯佐苹, 张帅, 等. 我国主要稻区褐飞虱对常用杀虫剂的抗性监测[J]. 中国水稻科学, 2013, 27(2): 191-197. doi: 10.3969/j.issn.1001-7216.2013.02.012 [4] 王彦华, 王强, 沈晋良, 等. 褐飞虱抗药性研究现状[J]. 应用昆虫学报, 2009, 46(4): 518-524. doi: 10.3969/j.issn.0452-8255.2009.04.004 [5] 徐鹿, 赵均, 赵春青, 等. 灰飞虱对杀虫剂的抗性分子机制研究进展[J]. 农药学学报, 2018, 20(2): 135-145. [6] 邹啸文. 褐飞虱防治药剂增效技术及其机理研究[D]. 南宁: 广西大学, 2010. [7] 王彦华, 王鸣华. 害虫对噻虫嗪抗药性及其治理[J]. 世界农药, 2008, 30(4): 42-45. doi: 10.3969/j.issn.1009-6485.2008.04.010 [8] 肖汉祥, 李燕芳, 凌善锋, 等. 广东褐飞虱种群对4种杀虫剂的抗药性[J]. 华南农业大学学报, 2018, 39(2): 70-74. doi: 10.7671/j.issn.1001-411X.2018.02.011 [9] 刘磊磊, 杨洪, 金道超. 白背飞虱对稻田常用杀虫剂的敏感性测定[J]. 农药, 2015, 54(3): 227-230. [10] MU X C, ZHANG W, WANG L X, et al. Resistance monitoring and cross-resistance patterns of three rice planthoppers, Nilaparvata lugens, Sogatella furcifera and Laodelphax striatellus to dinotefuran in China[J]. Pestic Biochem Physiol, 2016, 134: 8-13. doi: 10.1016/j.pestbp.2016.05.004
[11] 中华人民共和国农业部. 水稻褐飞虱抗药性监测技术规程: NY/T1708—2009[S]. 北京: 中国农业出版社, 2009. [12] WANG X, XIANG X, YU H, et al. Monitoring and biochemical characterization of beta-cypermethrin resistance in Spodoptera exigua, (Lepidoptera: Noctuidae) in Sichuan Province, China[J]. Pestic Biochem Physiol, 2018, 146: 71-79. doi: 10.1016/j.pestbp.2018.02.008
[13] ROSE R L, BARBHAIYA L, ROE R M, et al. Cytochrome P450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens[J]. Pestic Biochem Physiol, 1995, 51(3): 178-191. doi: 10.1006/pest.1995.1018
[14] ZHANG X, LIAO X, MAO K, et al. Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens(Stål) in China 2012-2014[J]. Pestic Biochem Physiol, 2016, 132: 13-20. doi: 10.1016/j.pestbp.2015.10.003
[15] DAWKAR V V, CHIKATE Y R, LOMATE P R, et al. Molecular in-sights into resistance mechanisms of Lepidopteran insect pests against toxicants[J]. J Proteome Res, 2013, 12(11): 4727-4737. doi: 10.1021/pr400642p
[16] 范银君, 史雪岩, 高希武. 新烟碱类杀虫剂吡虫啉和噻虫嗪的代谢研究进展[J]. 农药学学报, 2012, 14(6): 587-596. doi: 10.3969/j.issn.1008-7303.2012.06.01 [17] 庄安祥. 新烟碱类杀虫剂及其类似物的毒力分析与毒理特性研究[D]. 南京: 南京农业大学, 2015. [18] 张平艳, 周小毛. 桃蚜对噻虫嗪代谢抗性机制研究[J]. 植物保护, 2015, 41(1): 39-44. doi: 10.3969/j.issn.0529-1542.2015.01.007 [19] GAO C F, MA S Z, SHAN C H, et al. Thiamethoxam resistance selected in the western flower thrips Frankliniella occidentalis(Thysanoptera: Thripidae): Cross-resistance patterns, possible biochemical mechanisms and fitness costs analysis[J]. Pestic Biochem Physiol, 2014, 114: 90-96. doi: 10.1016/j.pestbp.2014.06.009
[20] 毛旭连. 灰飞虱对噻嗪酮和噻虫嗪的抗性风险、交互抗性及生化抗性机理[D]. 泰安: 山东农业大学. 2015. [21] SUN X Q, GONG Y H, HOU M L, et al. Mechanisms of resistance to thiamethoxam and dinotefuran compared to imidacloprid in the brown planthopper: Roles of cytochrome P450 monooxygenase and a P450 gene CYP6ER1[J]. Pestic Biochem Physiol, 2018, 150: 17-26. doi: 10.1016/j.pestbp.2018.06.014
[22] PANG R, CHEN M, LIANG Z K, et al. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens[J]. Sci Rep, 2016, 6: 34992. doi: 10.1038/srep34992
[23] ZHANG Y X, YANG Y X, SUN H H, et al. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes[J]. Insect Biochem Molec, 2016, 79: 50-56. doi: 10.1016/j.ibmb.2016.10.009