• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

高州油茶人工林碳储量分布特征

郭梦晴, 杨颖, 许叶, 奚如春

郭梦晴, 杨颖, 许叶, 等. 高州油茶人工林碳储量分布特征[J]. 华南农业大学学报, 2020, 41(3): 86-92. DOI: 10.7671/j.issn.1001-411X.201907018
引用本文: 郭梦晴, 杨颖, 许叶, 等. 高州油茶人工林碳储量分布特征[J]. 华南农业大学学报, 2020, 41(3): 86-92. DOI: 10.7671/j.issn.1001-411X.201907018
GUO Mengqing, YANG Ying, XU Ye, et al. Carbon storage and distribution characteristics of Camellia gauchowensis plantation[J]. Journal of South China Agricultural University, 2020, 41(3): 86-92. DOI: 10.7671/j.issn.1001-411X.201907018
Citation: GUO Mengqing, YANG Ying, XU Ye, et al. Carbon storage and distribution characteristics of Camellia gauchowensis plantation[J]. Journal of South China Agricultural University, 2020, 41(3): 86-92. DOI: 10.7671/j.issn.1001-411X.201907018

高州油茶人工林碳储量分布特征

基金项目: 广东省科技计划(2015B020202002);广东省林业科技创新项目(2018KJCX008)
详细信息
    作者简介:

    郭梦晴(1994—),女,硕士研究生,E-mail: 1595213833@qq.com

    通讯作者:

    奚如春(1963—),男,教授,博士,E-mail: xirc2003@126.com

  • 中图分类号: S727.32

Carbon storage and distribution characteristics of Camellia gauchowensis plantation

  • 摘要:
    目的 

    探明高州油茶Camellia gauchowensi人工林碳储量及分布特征,并估算评价其固碳效应。

    方法 

    根据样地植株径级分布特征,选取不同径级样株各2~3株,取树叶、树干、树枝、树根、果实、花芽各器官测定生物量和碳含量,并建立各器官生物量模型;在标准地内按“S”形选取8个样点,沿土壤剖面分层采集0~20、20~40、40~60和60~100 cm土层的土壤样品,测定土壤容重与碳含量,计算碳储量。

    结果 

    高州油茶中龄林植株各器官生物量分配比例依次为树干>树根>树叶>树枝>果实>花芽,各器官生物量均随地径的增大而增大。试验林分总生物量为26.902 t·hm−2,树体平均碳质量分数为483.45 g·kg−1。同径级各器官的碳含量不同,其中,果实平均碳含量最高。林地100 cm深土层中,土壤碳含量随着土层深度的增加呈明显递减规律,其中,0~20 cm土层碳含量最高,碳质量分数为26.550 g·kg−1。高州油茶林地总碳储量为144.538 t·hm−2,其中,树体碳储量为12.857 t·hm−2,占总碳储量的8.90%;林地土壤碳储量为131.681 t·hm−2,占总碳储量的91.10%。根据中国生物多样性国情报告编写组数据,碳价格为260.90元·t−1,则本试验高州油茶林的碳汇经济效益约为3.8万元·hm−2

    结论 

    高州油茶林分碳储量高于广东省经济林平均碳储量,林地土壤碳储量高于广东省平均土壤碳储量,林分总碳储量高于珠三角森林生态系统碳储量,具有较高的生态效益。高州油茶不仅有较好的生产效益,而且具有十分广阔的固碳前景。

    Abstract:
    Objective 

    To investigate carbon storage and distribution characteristics of Camellia gauchowensis plantation, estimate and evaluate the effect of carbon sequestration.

    Method 

    Based on the distribution characteristics of basic diameter class in the sample plot, 2 to 3 sample trees were selected in each diameter class. The biomass and carbon content of various organs (leaves, trunks, branches, roots, fruits and flower buds) were measured and their biomass models were established. According to “S” shape in standard plot, eight sampling points were randomly selected to collect soil samples from 0−20, 20−40, 40−60 and 60−100 cm along the soil profile. The bulk density and carbon content of soil samples were determined and the carbon storage was calculated.

    Result 

    The order of biomass allocation ratio of the organs of middle-aged C. gauchowensis plantation was trunks> roots > leaves > branches > fruits > flower buds. All the biomass of various organs increased with the basal diameter. The total biomass of test stand was 26.902 t·hm−2. The average carbon content of the tree was 483.45 g·kg−1. The carbon contents were different from various organs in the same diameter class, with fruits being the highest. In the soil layers of 100 cm depth in C. gauchowensis forest land, the soil carbon content decreased with the increase of soil depth, with 0−20 cm soil layer being the highest (26.550 g·kg−1). The total carbon storage of C. gauchowensis plantation was 144.538 t·hm−2, which was 12.857 t·hm−2 (accounting for 8.90%) and 131.681 t·hm−2 (accounting for 91.10%) for plant and soil, respectively. According to the authorized data of China biodiversity national condition report, the carbon price is 260.90 CNY per ton, so the economic benefit of the carbon of C. gauchowensi plantation is about 38 000 CNY per hectare.

    Conclusion 

    The carbon storage of C. gauchowensis plantation is higher than that of the average level of non-timber forests in Guangdong, the forest soil carbon storage is higher than the average level in Guangdong, and the total carbon storage of stand is higher than that of forest ecosystem in the Pearl River Delta. C. gauchowensi not only has a good production benefit, but also has a very broad prospect of carbon sequestration.

  • 图  1   高州油茶人工林土壤有机碳含量垂直分布

    Figure  1.   Vertical distribution of soil organic carbon content in Camellia gauchowensi plantation

    表  1   高州油茶人工林标准地林分调查结果

    Table  1   Result of survey in sample plots of Camellia gauchowensi plantation

    径级/cm
    Diameter class
    植株密度/
    (株·hm−2)
    Plant
    density
    株数总林分占比/%
    Percentage of
    plants number
    地径/cm Basal diameter 树高/m Height 冠幅/m2 Canopy diameter
    最大值
    Max.
    最小值
    Min.
    平均值
    Average
    最大值
    Max.
    最小值
    Min.
    平均值
    Average
    最大值
    Max.
    最小值
    Min.
    平均值
    Average
    4 242 14.76 4.98 4.48 4.70±0.24 3.10 2.41 2.74±0.28 2.95 0.72 1.99±0.90
    6 309 18.85 6.99 5.06 6.99±0.51 4.36 1.83 3.04±0.88 5.84 0.79 2.61±0.90
    8 556 33.92 8.99 7.01 7.01±0.61 6.15 1.97 3.23±0.69 7.21 0.99 3.57±1.19
    10 389 23.74 10.99 9.02 9.02±0.59 6.50 2.07 3.57±0.88 8.82 1.47 4.80±1.51
    12 143 8.73 12.79 11.02 11.02±0.67 6.63 2.35 3.85±0.86 14.00 2.72 5.39±1.44
    下载: 导出CSV

    表  2   高州油茶人工林各器官生物量模型拟合

    Table  2   Fitness of biomass models for each organ in Camellia gauchowensi plantation

    器官   
    Organ   
    回归方程1)
    Regression equation
    决定系数(R2)
    Determination coefficient
    P
    树叶 Leaf W=0.023D2.191 0.847 <0.001
    树枝 Branch W=0.200D2.154 0.880 <0.001
    树干 Trunk W=0.022D2.622 0.972 <0.001
    树根 Root W=0.067D2.099 0.912 <0.001
    果实 Fruit W=0.004D2.751 0.758 <0.001
     1)回归方程中,W为生物量,D为地径
     1)In regression equation, W is biomass, D is basal diameter
    下载: 导出CSV

    表  3   高州油茶人工林不同径级各器官生物量及其分配

    Table  3   Biomass and distribution of each organ in different diameter classes of Camellia gauchowensi plantation

    径级/cm
    Diameter class
    生物量/(t·hm−2) Biomass 全株生物量
    占比/%
    Percentage of
    plant biomass
    树叶
    Leaf
    树枝
    Branch
    树干
    Trunk
    树根
    Root
    果实
    Fruit
    花芽
    Flower bud
    全株合计
    Total plant
    4 0.155 0.135 0.316 0.528 0.088 0.010 1.232 4.58
    6 0.555 0.400 0.855 0.835 0.308 0.116 3.069 11.41
    8 1.039 0.788 2.290 2.176 0.479 0.146 6.918 25.71
    10 1.574 0.888 3.587 3.402 0.861 0.566 10.878 40.43
    12 0.500 0.668 1.598 1.539 0.454 0.050 4.809 17.88
    合计 Total 3.822 2.878 8.646 8.479 2.189 0.888 26.902 100.00
    下载: 导出CSV

    表  4   高州油茶人工林各器官生物量及总生物量占比

    Table  4   Biomass and its proportion of each organ in Camellia gauchowensi plantation

    器官  
    Organ  
    生物量/(t·hm−2)
    Biomass
    占比/%
    Percentage
    树叶 Leaf 3.822 14.21
    树枝 Branch 2.878 10.70
    树干 Trunk 8.646 32.14
    树根 Root 8.479 31.52
    果实 Fruit 2.189 8.14
    花芽 Flower bud 0.888 3.30
    合计 Total 26.902 100.00
    下载: 导出CSV

    表  5   高州油茶人工林不同样株各器官碳含量

    Table  5   Carbon contents of different organs in different sample plants of Camellia gauchowensi plantation

    样株号
    Sample plant
    径级/cm
    Diameter class
    w(C)/(g·kg−1)
    树叶
    Leaf
    树枝
    Branch
    树干
    Trunk
    树根
    Root
    果实
    Fruit
    花芽
    Flower bud
    均值
    Average
    1 4 493.40 487.35 478.10 469.87 486.88 490.15 484.29
    2 4 501.89 483.58 473.31 463.95 508.42 484.09 485.87
    3 6 482.01 485.50 474.22 458.95 481.22 481.93 477.31
    4 6 496.24 485.92 478.60 466.53 506.52 488.35 487.03
    5 8 483.98 482.98 476.51 465.45 483.82 484.20 479.49
    6 8 494.03 485.95 480.74 472.39 497.21 490.08 476.51
    7 8 480.16 473.17 470.12 462.43 484.72 488.45 476.51
    8 10 496.12 487.89 481.44 466.24 501.22 489.01 486.99
    9 10 481.44 481.57 481.51 464.54 521.39 483.92 485.73
    10 10 482.25 483.27 478.45 462.66 492.45 482.89 480.33
    11 12 497.12 478.85 467.22 459.06 500.55 490.83 482.27
    12 12 494.90 491.75 479.49 480.40 493.86 492.87 488.88
    均值1) Average 490.30b 483.98cd 476.64d 466.04e 496.52a 487.23c 483.45
     1)该行数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
     1)Different lowercase letters in the row indicate significant differences (P<0.05,Duncan’s test)
    下载: 导出CSV

    表  6   高州油茶人工林各器官碳储量分布

    Table  6   Carbon storage distribution of various organs in Camellia gauchowensi plantation

    器官   
    Organ   
    碳储量/(t·hm−2)
    Carbon storage
    占比/%
    Percentage
    树叶 Leaf 1.868 14.53
    树枝 Branch 1.393 10.84
    树干 Trunk 4.127 32.10
    树根 Root 3.950 30.72
    果实 Fruit 1.088 8.47
    花芽 Flower bud 0.431 3.35
    合计 Total 12.857 100.00
    下载: 导出CSV

    表  7   高州油茶人工林不同土层土壤有机碳储量

    Table  7   Soil organic carbon storages of different soil layers in Camellia gauchowensi plantation

    取样点
    Sample point
    0~20 cm 20~40 cm 40~60 cm 60~100 cm 总碳储量/
    (t·hm−2)
    Total carbon storage
    碳储量/
    (t·hm−2)
    Carbon storage
    占比/%
    Percentage
    碳储量/
    (t·hm−2)
    Carbon storage
    占比/%
    Percentage
    碳储量/
    (t·hm−2)
    Carbon storage
    占比/%
    Percentage
    碳储量/
    (t·hm−2)
    Carbon storage
    占比/%
    Percentage
    1 60.694 44.91 20.457 15.14 20.306 15.02 33.691 24.93 135.149
    2 67.061 54.31 32.058 25.96 16.321 13.22 8.040 6.51 123.480
    3 62.644 34.26 46.490 25.42 29.681 16.23 44.060 24.09 182.874
    4 53.546 54.88 18.374 18.83 10.494 10.76 15.155 15.53 97.569
    5 68.948 63.30 11.286 10.36 8.571 7.87 20.116 18.47 108.921
    6 53.985 46.61 30.693 26.50 15.520 13.40 15.617 13.48 115.815
    7 74.308 45.09 35.120 21.31 21.696 13.16 33.680 20.44 164.803
    8 61.478 49.25 24.254 19.43 13.529 10.84 25.581 20.49 124.841
    均值 Average 62.833 49.08 27.341 20.37 17.015 12.56 24.493 17.99 131.681
    下载: 导出CSV

    表  8   高州油茶人工林总有机碳储量及分配

    Table  8   Organic carbon storage and distribution of Camellia gauchowensi plantation

    林地组成
    Stand land composition
    碳储量/(t·hm−2)
    Carbon storage
    占比/%
    Percentage
    林分 Stand 12.857 8.90
    土壤层 Soil layer 131.681 91.10
    合计 Total 144.538 100.00
    下载: 导出CSV
  • [1] 杨颖, 张鹏, 奚如春, 等. 高州油茶不同产区果实含油率及脂肪酸组成的变异特征[J]. 经济林研究, 2018, 36(4): 104-108.
    [2] 戚嘉敏, 张鹏, 奚如春. 油茶树体氮磷钾养分的年动态变化[J]. 经济林研究, 2017, 35(3): 121-126.
    [3] 方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5): 497-508.
    [4]

    RODRÍGUEZ-VEIGA P, QUEGAN S, CARREIRAS J, et al. Forest biomass retrieval approaches from earth observation in different biomes[J]. Int J Appl Earth Obs Geoinformation, 2019, 77: 53-68. doi: 10.1016/j.jag.2018.12.008

    [5] 唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000, 36(S1): 19-27.
    [6]

    DANGAL S P, DAS A K, PAUDEL S K. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal[J]. J Environ Manag, 2017, 196: 511-517. doi: 10.1016/j.jenvman.2017.03.056

    [7]

    JONKER J G G, VAN DER HILST F, MARKEWITZ D, et al. Carbon balance and economic performance of pine plantations for bioenergy production in the Southeastern United States[J]. Biomass Bioenergy, 2018, 117: 44-55. doi: 10.1016/j.biombioe.2018.06.017

    [8] 谭云峰, 张西西, 陈新媛. 不同经营措施的油茶林生物量和生产力的初步研究[J]. 农业现代化研究, 1982, 3(3): 31-36.
    [9] 谌小勇, 彭元英, 郭照光, 等. 油茶林分生物量及生产力的研究[J]. 经济林研究, 1996, 14(1): 4-6.
    [10] 付达夫, 王永安. 湖南油茶林不同经营措施对生物产量的影响[J]. 林业调查规划, 2004, 29(1): 21-23. doi: 10.3969/j.issn.1671-3168.2004.01.006
    [11] 奚如春, 邓小梅. 我国油茶产业化发展中的现状、要素及其优化[J]. 经济林研究, 2005, 23(1): 83-87. doi: 10.3969/j.issn.1003-8981.2005.01.025
    [12] 唐健, 李娜, 欧阳洁英, 等. 油茶苗期生物量积累及营养分配规律研究[J]. 南方农业学报, 2011, 42(8): 964-967. doi: 10.3969/j.issn.2095-1191.2011.08.034
    [13] 宋贤冲, 唐健, 覃其云, 等. 油茶成熟林生物量积累及营养分配规律[J]. 南方农业学报, 2014, 45(2): 255-258. doi: 10.3969/j:issn.2095-1191.2014.2.255
    [14] 高越. 基于数字图像处理的油茶生物量估测模型研究[D]. 长沙: 湖南农业大学, 2016.
    [15] 汪珍川, 杜虎, 宋同清, 等. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 2015, 35(13): 4462-4472.
    [16] 鲁如坤.土壤农业化学分析方法[M].北京: 中国农业科技出版社,2000:123-125
    [17] 程先富, 史学正, 于东升, 等. 江西省兴国县土壤全氮和有机质的空间变异及其分布格局[J]. 应用与环境生物学报, 2004, 10(1): 64-67. doi: 10.3321/j.issn:1006-687X.2004.01.015
    [18]

    CUI Z Y, DENG X M, XI R C, et al. Organic carbon storage and its allocation characteristics in the oil tree Camellia oleifera ecosystem in Longchuan, Guangdong, China[J]. Fresenius Environ Bull, 2016, 25(6): 2166-2173.

    [19] 杨众养, 陈宗铸, 陈小花, 等. 海南岛北部3种经济林树种的生物量、碳储量及其分配特征[J]. 经济林研究, 2018, 36(3): 62-68.
    [20] 王炳焱. 伏牛山北坡栓皮栎天然次生林不同生长阶段生物量和碳储量研究[D]. 郑州: 河南农业大学, 2015.
    [21] 彭映赫, 许彦明, 王瑞, 等. 不同林龄油茶林土壤有机碳和氮储量特征[J]. 湖南林业科技, 2018, 45(1): 65-70. doi: 10.3969/j.issn.1003-5710.2018.01.013
    [22] 王璟睿, 仵宏基, 孙昕, 等. 广东省森林碳储量与动态变化[J]. 东北林业大学学报, 2016, 44(1): 18-22. doi: 10.3969/j.issn.1000-5382.2016.01.004
    [23] 文雅, 黄宁生, 匡耀求, 等. 广东省山区土壤有机碳密度特征及空间格局[J]. 应用基础与工程科学学报, 2010, 18(S1): 10-18.
    [24] 张修玉, 许振成, 曾凡棠, 等. 珠江三角洲森林生态系统碳密度分配及其储量动态特征[J]. 中国环境科学, 2011, 31(S1): 69-77.
    [25] 谢元贵, 廖小锋, 赵晓朋, 等. 喀斯特峰丛洼地不同适生植物配置模式固碳能力及效益评价[J]. 广东农业科学, 2015, 42(20): 134-139. doi: 10.3969/j.issn.1004-874X.2015.20.026
图(1)  /  表(8)
计量
  • 文章访问数:  33407
  • HTML全文浏览量:  95
  • PDF下载量:  38440
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-10
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2020-05-09

目录

    Corresponding author: XI Ruchun, xirc2003@126.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回