Abstract:
Objective To investigate carbon storage and distribution characteristics of Camellia gauchowensis plantation, estimate and evaluate the effect of carbon sequestration.
Method Based on the distribution characteristics of basic diameter class in the sample plot, 2 to 3 sample trees were selected in each diameter class. The biomass and carbon content of various organs (leaves, trunks, branches, roots, fruits and flower buds) were measured and their biomass models were established. According to “S” shape in standard plot, eight sampling points were randomly selected to collect soil samples from 0−20, 20−40, 40−60 and 60−100 cm along the soil profile. The bulk density and carbon content of soil samples were determined and the carbon storage was calculated.
Result The order of biomass allocation ratio of the organs of middle-aged C. gauchowensis plantation was trunks> roots > leaves > branches > fruits > flower buds. All the biomass of various organs increased with the basal diameter. The total biomass of test stand was 26.902 t·hm−2. The average carbon content of the tree was 483.45 g·kg−1. The carbon contents were different from various organs in the same diameter class, with fruits being the highest. In the soil layers of 100 cm depth in C. gauchowensis forest land, the soil carbon content decreased with the increase of soil depth, with 0−20 cm soil layer being the highest (26.550 g·kg−1). The total carbon storage of C. gauchowensis plantation was 144.538 t·hm−2, which was 12.857 t·hm−2 (accounting for 8.90%) and 131.681 t·hm−2 (accounting for 91.10%) for plant and soil, respectively. According to the authorized data of China biodiversity national condition report, the carbon price is 260.90 CNY per ton, so the economic benefit of the carbon of C. gauchowensi plantation is about 38 000 CNY per hectare.
Conclusion The carbon storage of C. gauchowensis plantation is higher than that of the average level of non-timber forests in Guangdong, the forest soil carbon storage is higher than the average level in Guangdong, and the total carbon storage of stand is higher than that of forest ecosystem in the Pearl River Delta. C. gauchowensi not only has a good production benefit, but also has a very broad prospect of carbon sequestration.