Phenotypic consequences of M gene rearrangement of rabies virus HEP-Flury in mouse neuroblastoma cells
-
摘要:目的
探究狂犬病病毒HEP-Flury M基因重排对基因转录和蛋白表达的影响,揭示病毒在小鼠神经母细胞瘤(NA)细胞中的表型变化与M基因重排的相关性。
方法通过荧光定量PCR、Western blot以及病毒在NA细胞中的生长和扩散试验,对亲本毒株rHEP-Flury和M基因重排毒株M2、M4在NA细胞中的基因转录、表达、生长和扩散进行比较。
结果狂犬病病毒结构基因的转录和表达主要受病毒基因组RNA合成的影响,但是在一个完整转录过程中单个结构基因的转录比例与其所在位置相关,M基因重排病毒的Leader RNA (LeRNA)和L mRNA的转录比例显著高于亲本毒株rHEP-Flury。M基因重排病毒在NA细胞中的生长和扩散都劣于亲本毒株rHEP-Flury。
结论狂犬病病毒亲本毒株rHEP-Flury具有狂犬病病毒原始的基因组顺序,在NA细胞中的生长和扩散都明显优于M基因重排病毒。结构基因在基因组中的位置主要决定其在一次转录过程中的转录比例,进而影响病毒在NA细胞中的生长和扩散。
Abstract:ObjectiveTo explore the effects of M gene rearrangement of rabies virus HEP-Flury on gene transcription and protein expression, reveal the correlation between phenotypic consequences of virus in mouse neuroblastoma (NA) cells and M gene rearrangement.
MethodThe gene transcription, expression, growth and spread of parent strain rHEP-Flury and M gene rearranged virus stains (M2 and M4) in infected NA cells were compared by fluorescence quantitative PCR, Western blot, growth and spread experiments of virus in NA cells.
ResultThe transcription and expression of rabies virus structural gene were mainly affected by RNA synthesis of virus genome. The gene position mainly affected the ratio of transcription in a complete transcription process. The transcription ratios of leader RNA (LeRNA) and L mRNA of M gene rearranged viruses were significanthy higher than those of rHEP-Flury. The growth and spread of M gene rearranged viruses in NA cells were inferiorer than rHEP-Flury.
ConclusionrHEP-Flury has wild-type gene order of rabies virus. Its growth and spread in NA cells are superiorer to M gene rearranged viruses. The position of structural gene in genome determines its transcription ratio in a complete transcription process and affects the growth and spread of virus in NA cells.
-
Keywords:
- rabies virus /
- HEP-Flury /
- gene rearrangement /
- matrix protein /
- phenotype /
- neuroblastoma cell
-
-
图 1 病毒基因顺序的鉴定
M:DNA marker;泳道1、2、3:无菌双蒸水;泳道4、5、6:亲本毒株rHRP-Flury;泳道7、8、9:M基因重排病毒M2;泳道10、11、12:M基因重排病毒M4
Figure 1. Determination of gene order in virus genome
M: DNA marker; Lane 1, 2, 3: Sterile double distilled water; Lane 4, 5, 6: Parent strain rHEP-Flury; Lane 7, 8, 9: M gene rearranged virus M2; Lane 10, 11, 12: M gene rearranged virus M4
表 1 用于M基因重排病毒基因顺序鉴定的引物
Table 1 Primers used for gene order verification of M gene rearranged virus
引物名称
Primer name引物序列(5′→3′)
Primer sequenceD-F CTTAACAACAAAACCAAAGAAGAAGCAG P-R CATCTCAAGATCGGCCAGACCG N-R TGAAGTTCGGTATAGTACTCC M-R GTCCTCATCCCTACAGTTTTTC -
[1] MRAK R E, YOUNG L. Rabies encephalitis in humans: Pathology, pathogenesis and pathophysiology[J]. J Neuropathol Exp Neurol, 1994, 53(1): 1-10. doi: 10.1097/00005072-199401000-00001
[2] ALBERTINI A A, RUIGROK R W, BLONDEL D. Rabies virus transcription and replication[J]. Adv Virus Res, 2011, 79: 1-22. doi: 10.1016/B978-0-12-387040-7.00001-9
[3] BALL L A, PRINGLE C R, FLANAGAN B, et al. Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus[J]. J Virol, 1999, 73(6): 4705-4712.
[4] WERTZ G W, PEREPELITSA V P, BALL L A. Gene rearrangement attenuates expression and lethality of a nonsegmented negative strand RNA virus[J]. Proc Natl Acad Sci USA, 1998, 95(7): 3501-3506. doi: 10.1073/pnas.95.7.3501
[5] FLANAGAN E B, BALL L A, WERTZ G W. Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positions accelerates and enhances the protective immune response[J]. J Virol, 2000, 74(17): 7895-7902. doi: 10.1128/JVI.74.17.7895-7902.2000
[6] 陈凯云, 文兆海, 翟少华, 等. 基因重排狂犬病病毒疫苗株免疫效果的初步研究[J]. 中国畜牧兽医, 2019, 46(1): 279-286. [7] 文兆海, 毛丽萍, 陈凯云, 等. 基因重排减毒狂犬病病毒的拯救及遗传稳定性的研究[J]. 中国兽医科学, 2018, 48(10): 1235-1241. [8] MEI M, LONG T, ZHANG Q, et al. Phenotypic Consequences in vivo and in vitro of rearranging the P gene of RABV HEP-Flury[J]. Front Microbiol, 2017, 8. doi: 10.3389/fmicb.2017.00120.
[9] MEI M, LONG T, ZHANG Q, et al. Phenotypic consequence of rearranging the N gene of RABV HEP-Flury[J]. Viruses, 2019, 11(5). doi: 10.3390/v11050402.
[10] WIRBLICH C, TAN G S, PAPANERI A, et al. PPEY motif within the rabies virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity[J]. J Virol, 2008, 82(19): 9730-9738. doi: 10.1128/JVI.00889-08
[11] FINKE S, MUELLER-WALDECK R, CONZELMANN K K. Rabies virus matrix protein regulates the balance of virus transcription and replication[J]. J Gen Virol, 2003, 84(6): 1613-1621.
[12] PULMANAUSAHAKUL R, LI J, SCHNELL M J, et al. The glycoprotein and the matrix protein of rabies virus affect pathogenicity by regulating viral replication and facilitating cell-to-cell spread[J]. J Virol, 2008, 82(5): 2330-2338. doi: 10.1128/JVI.02327-07
[13] 王朝, 周明, 傅振芳, 等. 狂犬病病毒逃逸宿主天然免疫反应的研究进展[J]. 生命科学, 2017, 29(3): 237-244. [14] YANG X F, PENG J J, LIANG H R, et al. Gene order rearrangement of the M gene in the rabies virus leads to slower replication[J]. Virusdisease, 2014, 25(3): 365-371. doi: 10.1007/s13337-014-0220-1
[15] UGOLINI G. Rabies virus as a transneuronal tracer of neuronal connections[J]. Adv Virus Res, 2011, 79: 165-202. doi: 10.1016/B978-0-12-387040-7.00010-X
[16] ZHAO L, TORIUMI H, KUANG Y, et al. The roles of chemokines in rabies virus infection: Overexpression may not always be beneficial[J]. J Virol, 2009, 83(22): 11808-11818. doi: 10.1128/JVI.01346-09
[17] FABER M, FABER M L, PAPANERI A, et al. A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity[J]. J Virol, 2005, 79(22): 14141-14148. doi: 10.1128/JVI.79.22.14141-14148.2005
[18] DAVIS B M, RALL G F, SCHNELL M J. Everything you always wanted to know about rabies virus (but were afraid to ask)[J]. Annu Rev Virol, 2015, 2(1): 451-471. doi: 10.1146/annurev-virology-100114-055157
[19] WIRBLICH C, SCHNELL M J. Rabies virus (RV) glycoprotein expression levels are not critical for pathogenicity of RV[J]. J Virol, 2011, 85(2): 697-704. doi: 10.1128/JVI.01309-10
[20] PRINGLE C R. The genetics of vesiculoviruses[J]. Arch Virol, 1982, 72(1/2): 1-34.
[21] OKUMURA A, HARTY R N. Rabies virus assembly and budding[J]. Adv Virus Res, 2011, 79: 23-32. doi: 10.1016/B978-0-12-387040-7.00002-0
[22] FINKE S, CONZELMANN K K. Replication strategies of rabies virus[J]. Virus Res, 2005, 111(2): 120-131. doi: 10.1016/j.virusres.2005.04.004
[23] PATTNAIK A K, WERTZ G W. Replication and amplification of defective interfering particle RNAs of vesicular stomatitis virus in cells expressing viral proteins from vectors containing cloned cDNAs[J]. J Virol, 1990, 64(6): 2948-2957.
[24] KURILLA M G, CABRADILLA C D, HOLLOWAY B P, et al. Nucleotide sequence and host La protein interactions of rabies virus leader RNA[J]. J Virol, 1984, 50(3): 773-778.
[25] ZHANG R, LIU C, CAO Y, et al. Rabies viruses leader RNA interacts with host Hsc70 and inhibits virus replication[J]. Oncotarget, 2017, 8(27): 43822-43837.
[26] PREHAUD C, LAY S, DIETZSCHOLD B, et al. Glycoprotein of nonpathogenic rabies viruses is a key determinant of human cell apoptosis[J]. J Virol, 2003, 77(19): 10537-10547. doi: 10.1128/JVI.77.19.10537-10547.2003
[27] THOULOUZE M I, LAFAGE M, YUSTE V J, et al. High level of Bcl-2 counteracts apoptosis mediated by a live rabies virus vaccine strain and induces long-term infection[J]. Virology, 2003, 314(2): 549-561. doi: 10.1016/S0042-6822(03)00491-4
[28] PENG J, ZHU S, HU L, et al. Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines[J]. Autophagy, 2016, 12(10): 1704-1720. doi: 10.1080/15548627.2016.1196315
[29] LIU X, YANG Y, SUN Z, et al. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent challenge[J]. PLoS One, 2014, 9(2): e87105. doi: 10.1371/journal.pone.0087105
[30] LAY S, PREHAUD C, DIETZSCHOLD B, et al. Glycoprotein of nonpathogenic rabies viruses is a major inducer of apoptosis in human jurkat T cells[J]. Ann N Y Acad Sci, 2003, 1010: 577-581. doi: 10.1196/annals.1299.108
[31] SARMENTO L, TSEGGAI T, DHINGRA V, et al. Rabies virus-induced apoptosis involves caspase-dependent and caspase-independent pathways[J]. Virus Res, 2006, 121(2): 144-151. doi: 10.1016/j.virusres.2006.05.002