• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

磁性纳米颗粒负载质粒DNA的研究

彭子艾, 李丹丹, 夏澳运, 王加峰, 黄翠红, 王慧, 郭涛, 陈志强

彭子艾, 李丹丹, 夏澳运, 等. 磁性纳米颗粒负载质粒DNA的研究[J]. 华南农业大学学报, 2020, 41(1): 78-82. DOI: 10.7671/j.issn.1001-411X.20190518
引用本文: 彭子艾, 李丹丹, 夏澳运, 等. 磁性纳米颗粒负载质粒DNA的研究[J]. 华南农业大学学报, 2020, 41(1): 78-82. DOI: 10.7671/j.issn.1001-411X.20190518
PENG Ziai, LI Dandan, XIA Aoyun, et al. Study on magnetic nanoparticle loading plasmid DNA[J]. Journal of South China Agricultural University, 2020, 41(1): 78-82. DOI: 10.7671/j.issn.1001-411X.20190518
Citation: PENG Ziai, LI Dandan, XIA Aoyun, et al. Study on magnetic nanoparticle loading plasmid DNA[J]. Journal of South China Agricultural University, 2020, 41(1): 78-82. DOI: 10.7671/j.issn.1001-411X.20190518

磁性纳米颗粒负载质粒DNA的研究

基金项目: 广东省重点领域研发计划(2018020206002);国家重点研发计划(2016YFD0102102);国家水稻产业技术体系建设专项(CARS-01-17)
详细信息
    作者简介:

    彭子艾(1995—),女,硕士研究生,E-mail: 453276098@qq.com

    通讯作者:

    郭 涛(1978—),男,教授,博士,E-mail: guoguot@scau.edu.cn

    陈志强(1956—),男,教授,E-mail: chenlin@scau.edu.cn

  • 中图分类号: S511;S502

Study on magnetic nanoparticle loading plasmid DNA

  • 摘要:
    目的 

    研究磁性纳米颗粒(MNP)负载质粒 DNA形成的纳米载体−基因复合物的生物物理学特性、负载形态与负载机理,为基于磁性纳米载体定向编辑技术的应用奠定基础。

    方法 

    以MNP作为基因载体,与质粒 DNA pRGEB32制备纳米载体−基因复合物MNP−pRGEB32,分析MNP负载、保护pRGEB32的能力,并对其粒度分布、Zeta电位、结合形态进行研究。

    结果 

    MNP通过静电作用压缩、吸附、聚集pRGEB32,形成纳米载体−基因复合物。MNP能有效负载并保护pRGEB32。

    结论 

    MNP可作为一种理想的基因转移载体。

    Abstract:
    Objective 

    To study biophysical property, loading morphology and loading mechanism of nanocarrier-gene complex prepared by magnetic nanoparticle (MNP) loading plasmind DNA, and lay a foundation for application of oriented editing technology based on magnetic nano carrier.

    Method 

    MNP was used as gene carrier to prepare nanocarrier-gene complex MNP-pRGEB32 with plasmid DNA pRGEB32. The abilities of MNP loading and protecting pRGEB32 were analyzed. The particle size distribution, Zeta potential and loading morphology of MNP-pRGEB32 were investigated.

    Result 

    MNP compressed, adsorbed and aggregated pRGEB32 through electrostatic interaction to form nanocarrier-gene complex. MNP could effectively load and protect pRGEB32.

    Conclusion 

    MNP can be used as an ideal gene transfer carrier.

  • 图  1   MNP−pRGEB32复合物电泳分析

    M:DNA marker; 1:纯质粒pRGEB32; 2~8:MNP−pRGEB32复合物,质量比分别为1∶1、1∶4、1∶8、1∶16、1∶24、1∶40、1∶50

    Figure  1.   Electrophoreses analyses of MNP-pRGEB32 complexes

    M: DNA marker; 1: Pure plasmid pRGEB32; 2-8: MNP-pRGEB32 complexes at mass ratios of 1∶1, 1∶4, 1∶8, 1∶16, 1∶24, 1∶40 and 1∶50 respectively

    图  2   MNP−pRGEB32复合物用DNase I酶切处理的电泳分析

    M:DNA marker; 1:纯质粒pRGEB32; 2~8:MNP−pRGEB32复合物,质量比分别为1∶1、1∶4、1∶8、1∶16、1∶24、1∶40、1∶50

    Figure  2.   Electrophoresis analyses of MNP-pRGEB32 complexes digested with DNase I

    M: DNA marker; 1: Pure plasmid pRGEB32; 2-8: MNP-pRGEB32 complexes at mass ratios of 1∶1, 1∶4, 1∶8, 1∶16, 1∶24, 1∶40 and 1∶50 respectively

    图  3   MNP−pRGEB32复合物用Hind III和Bsa I双酶切处理的电泳分析

    M: DNA marker; 1:纯质粒pRGEB32; 2~8: MNP−pRGEB32复合物,质量比分别为1∶1、1∶4、1∶8、1∶16、1∶24、1∶40、1∶50

    Figure  3.   Electrophoresis analyses of MNP-pRGEB32 complexes digested with Hind III and Bsa I

    M: DNA marker; 1: Pure plasmid pRGEB32; 2-8: MNP-pRGEB32 complexes at mass ratios of 1∶1, 1∶4, 1∶8, 1∶16, 1∶24, 1∶40 and 1∶50 respectively

    图  4   MNP和MNP−pRGEB32复合物的粒径及Zeta电位分析

    Figure  4.   Size distribution and Zeta potential of MNP and MNP-pRGEB32 complex

    图  5   MNP和MNP−pRGEB32复合物的透射电镜图像

    Figure  5.   Transmission electron microscope images of MNP and MNP-pRGEB32 complex

    图  6   MNP−pRGEB32复合物的原子力显微镜图像

    Figure  6.   Atomic force microscope images of MNP and MNP-pRGEB32 complex

  • [1] 韩旭, 丁冠宇, 董青, 等. 基于脂质体的纳米基因载体的研究进展[J]. 应用化学, 2018, 35(7): 735-744. doi: 10.11944/j.issn.1000-0518.2018.07.180031
    [2] 卢艳敏. 磁性纳米颗粒作为载体在基因转染中的研究进展[J]. 生物技术通讯, 2013, 24(5): 736-740. doi: 10.3969/j.issn.1009-0002.2013.05.032
    [3] 古晓晓, 杜宝吉, 李云辉, 等. 基于纳米材料的基因载体[J]. 化学进展, 2015, 27(8): 1093-1101.
    [4]

    KHALAJ-KONDORI M, SADEGHIZADEH M, BEHMANESH M, et al. Chemical coupling as a potent strategy for preparation of targeted bacteriophage-derived gene nanocarriers into eukaryotic cells[J]. J Gene Med, 2011, 13(11): 622-631. doi: 10.1002/jgm.1617

    [5] 郭大伟, 朱玲英, 顾宁. 磁性纳米颗粒作为基因递送载体的研究进展[J]. 中国材料进展, 2013, 32(10): 605-610.
    [6]

    MacDONALD C, FRIEDMAN G, ALAMIA J, et al. Time-varied magnetic field enhances transport of magnetic nanoparticles in viscous gel[J]. Nanomedicine, 2010, 5(1): 65-76. doi: 10.2217/nnm.09.97

    [7] 孙茂蕾, 徐晓薇, 顾中一, 等. 纳米载体逃逸溶酶体机制及其调控的研究进展[J]. 吉林大学学报(医学版), 2017, 43(4): 845-848.
    [8]

    NAMGUNG R, SINGHA K, YU M K, et al. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells[J]. Biomaterials, 2010, 31(14): 4204-4213. doi: 10.1016/j.biomaterials.2010.01.123

    [9]

    NEL A E, MADLER L, VELEGOL D, et al. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nat Mater, 2009, 8(7): 543-557. doi: 10.1038/nmat2442

    [10]

    AKINC A, QUERBES W, DE S, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms[J]. Mol Ther, 2010, 18(7): 1357-1364. doi: 10.1038/mt.2010.85

    [11]

    WEISSLEDER R, KELLY K, SUN E Y, et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules[J]. Nat Biotechnol, 2005, 23(11): 1418-1423. doi: 10.1038/nbt1159

    [12]

    PETROS R A, DeSIMONE J M. Strategies in the design of nanoparticles for therapeutic applications[J]. Nat Rev Drug Discov, 2010, 9(8): 615-627. doi: 10.1038/nrd2591

    [13]

    MINDELL J A. Lysosomal acidification mechanisms[J]. Annu Rev Physiol, 2012, 74: 69-86. doi: 10.1146/annurev-physiol-012110-142317

    [14]

    GUO S, HUANG L. Nanoparticles escaping res and endosome: Challenges for siRNA delivery for cancer therapy[J]. J Nanomater, 2011. doi: 10.1155/2011/742895.

    [15]

    WANG Y, ZHAO X, DU W, et al. Production of transgenic mice through sperm-mediated gene transfer using magnetic nano-carriers[J]. J Biomed Nanotechnol, 2017, 13(12): 1673-1681. doi: 10.1166/jbn.2017.2456

    [16]

    ZHAO X, Meng Z, WANG Y, et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers[J]. Nat Plants, 2017, 3(12): 956-964. doi: 10.1038/s41477-017-0063-z

    [17]

    CUNNINGHAM F J, GOH N S, DEMIRER G S, et al. Nanoparticle-mediated delivery towards advancing plant genetic engineering[J]. Trends Biotechnol, 2018, 36(9): 882-897. doi: 10.1016/j.tibtech.2018.03.009

    [18]

    XIE K, MINKENBERG B, YANG Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J]. Proc Natl Acad Sci USA, 2015, 112(11): 3570-3575. doi: 10.1073/pnas.1420294112

    [19]

    KWAK S Y, LEW T T S, SWEENEY C J, et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers[J]. Nat Nanotechnol, 2019, 14(5): 447-455. doi: 10.1038/s41565-019-0375-4

    [20] 白华荣, 范换换, 张晓兵, 等. 核酸适体-纳米材料复合物用于癌症的诊断与靶向治疗研究进展[J]. 物理化学学报, 2018, 34(4): 348-360. doi: 10.3866/PKU.WHXB201708311
    [21] 冯婷婷, 郭建花. 纳米材料在生物医学中的应用[J]. 当代化工研究, 2018(2): 159-162. doi: 10.3969/j.issn.1672-8114.2018.02.098
    [22] 宋瑜, 李颖, 崔海信, 等. 两种阳离子纳米基因载体及植物基因介导效果的研究[J]. 生物技术通报, 2009(6): 75-80.
    [23] 李瑶, 崔海信, 刘琪, 等. 磁性纳米颗粒作为基因载体的研究发展概况[J]. 功能材料, 2010, 41(S1): 14-19.
    [24]

    RHAESE S, Von BRIESEN H, RUBSAMEN-WAIGMANN H, et al. Human serum albumin-polyethylenimine nanoparticles for gene delivery[J]. J Control Release, 2003, 92(1/2): 199-208.

    [25]

    HE X X, WANG K M, TAN W H, et al. Bioconjugated nanoparticles for DNA protection from cleavage[J]. J Am Chem Soc, 2003, 125(24): 7168-7169. doi: 10.1021/ja034450d

    [26]

    VIJAYANATHAN V, THOMAS T, ANTONY T, et al. Formation of DNA nanoparticles in the presence of novel polyamine analogues: A laser light scattering and atomic force microscopic study[J]. Nucleic Acids Res, 2004, 32(1): 127-134. doi: 10.1093/nar/gkg936

    [27]

    CHAPMAN K M, MEDRANO G A, JAICHANDER P, et al. Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells[J]. Cell Rep, 2015, 10(11): 1828-1835. doi: 10.1016/j.celrep.2015.02.040

  • 期刊类型引用(4)

    1. 宋亚峰,邢冉冉,梁晓珂,龚娜,甄子璇,张九凯,陈颖. 基于DNA存储的食品防伪溯源:技术、挑战与展望. 食品科学. 2025(04): 306-314 . 百度学术
    2. 刘秀盈,刘静静,崔鑫铭,于梦圆,史渊源,王建勋. 细胞免疫治疗载体技术的现状与展望. 中国生物工程杂志. 2024(Z1): 142-152 . 百度学术
    3. 郭涛,沈任佳,王加峰. 水稻基因遗传转化方法研究进展. 华南农业大学学报. 2023(06): 843-853 . 本站查看
    4. 高永光,贾静娴,王丽红,张红霞,陈伟. 罗丹明B修饰的树枝状分子作为核酸递送载体的研究. 化学通报. 2021(08): 829-834+819 . 百度学术

    其他类型引用(1)

图(6)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-05-09
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2020-01-09

目录

    /

    返回文章
    返回