• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

根系分泌物调控植物适应低磷胁迫的机制

田江, 梁翠月, 陆星, 陈倩倩

田江, 梁翠月, 陆星, 等. 根系分泌物调控植物适应低磷胁迫的机制[J]. 华南农业大学学报, 2019, 40(5): 175-185. DOI: 10.7671/j.issn.1001-411X.201905068
引用本文: 田江, 梁翠月, 陆星, 等. 根系分泌物调控植物适应低磷胁迫的机制[J]. 华南农业大学学报, 2019, 40(5): 175-185. DOI: 10.7671/j.issn.1001-411X.201905068
TIAN Jiang, LIANG Cuiyue, LU Xing, et al. Mechanism of root exudates regulating plant responses to phosphorus deficiency[J]. Journal of South China Agricultural University, 2019, 40(5): 175-185. DOI: 10.7671/j.issn.1001-411X.201905068
Citation: TIAN Jiang, LIANG Cuiyue, LU Xing, et al. Mechanism of root exudates regulating plant responses to phosphorus deficiency[J]. Journal of South China Agricultural University, 2019, 40(5): 175-185. DOI: 10.7671/j.issn.1001-411X.201905068

根系分泌物调控植物适应低磷胁迫的机制

基金项目: 广东省杰出青年基金(2015A030306034);广东省特支计划(2015TQ01N078,2015TX01N042)
详细信息
    作者简介:

    田江(1976—),男,研究员,博士,E-mail: jtian@scau.edu.cn

  • 中图分类号: Q945.78;S184

Mechanism of root exudates regulating plant responses to phosphorus deficiency

  • 摘要:

    磷是植物生长发育的必需营养元素,土壤中有效磷含量低是限制作物高产的主要因素。由于长期不当施肥,土壤中累积大量磷素,其中大部分磷是植物难以直接吸收的难溶性无机磷和有机磷。植物在长期进化过程中形成了一系列适应低磷胁迫的机制,其中根系分泌物参与土壤磷活化利用的机制一直是研究的热点问题。本文总结了近十年来关于低磷胁迫调控根系分泌物(有机酸和紫色酸性磷酸酶)合成和分泌的研究进展,对根系分泌物在根际微生态中的重要作用提出了展望,旨在阐明通过控制作物根系分泌物来提高作物磷效率的途径,为培育磷高效作物品种和优化磷肥的田间管理提供思路和奠定理论基础。

    Abstract:

    Phosphorus (P) is an essential nutrient for plant growth and development. Low phosphate (Pi) availability in soil largely limits crop yield. Due to long-term improper P fertilizer application, a lot of P accumulates to form a huge P pool in soil. However, most P are insoluble inorganic P and organic P, and are difficult to be directly absorbed by plants. Plants have evolved a set of adaptive strategies to low P stress. Among them, the mechanism of root exudates participating in P acquisition and utilization has always been a hot issue. In this review, advances in low P stress regulating synthesis and exudation of root exudates (organic acid and purple acid phosphatases) were summarized. Furthermore, the vital functions of root exudates in rhizosphere ecological system are discussed to elucidate mechanism of P efficiency enhancement in crops through root exudate regulation, which would provide some clues and theoretical bases for development of high P efficiency cultivar and optimization of Pi fertilizer management in fields.

  • 自两系不育系被发现以来,两系法杂交已在水稻生产上得到应用,并显示出广阔的应用前景[1]。两系不育系育性不稳定,育性敏感期受外界环境的严重制约,如果该时期遇到异常天气,可能导致繁种失败。已经推广应用的两系不育系起点温度由于温度漂变,制种风险增加[2-3],使得两系不育系的生产推广受到严重制约。此外,配合力不够理想也是其推广受阻的重要原因之一[4]。配合力包括一般配合力和特殊配合力,一般配合力指一个自交系和品种或其他一系列其他自交系和品种所产生的杂种一代的产量平均值;特殊配合力指在某个特定的杂交组合中2个自交系杂交产生的杂种一代的产量表现。一般配合力是评价亲本优良特性的重要依据,可通过一般配合力了解某亲本在杂交后代中的平均表现,特殊配合力是特定杂交组合中基因通过显性、上位性作用及与环境互作使后代表现相关优良性状的潜在能力。研究亲本的配合力对水稻杂交育种具有重要的指导意义,通过配合力评价种质资源在育种中的作用,可以充分利用水稻杂种优势,促进杂交水稻的发展[5]。若某亲本产量性状的一般配合力高,杂交组合的特殊配合力也较高,表明该亲本具有广泛的适用性,易选育高产优质的杂交组合[6]。遗传力反映亲本性状遗传给子代的能力[7],为了探究性状的遗传力,可以把全部基因型方差占表现型方差的百分比作为广义遗传力(hB2),把加性方差占表现型方差的百分比作为狭义遗传力(hN2),用狭义遗传力度量性状的遗传力更可靠[8]。本研究对大穗型两系不育系‘M20S’主要穗部性状的配合力和遗传力进行研究,从生产实践出发,选用生产上广泛应用的7个优良杂交稻亲本进行不完全双列杂交(Incomplete diallel cross,NCⅡ)设计组配[9],通过一般配合力、特殊配合力及遗传力分析,明确该不育系和恢复系在穗部性状上配合力的强弱,为优质高产杂交稻组合的选配提供参考依据。

    光温敏核不育系:‘望S’、‘深08S’、‘Y58S’以及华南农业大学国家植物航天育种工程技术研究中心新选育的‘M20S’;恢复系:‘航恢1173’、‘航恢91’和‘航恢24’;4个不育系和3个恢复系配制的12个杂交组合,共计19份材料。

    试验在华南农业大学国家植物航天育种工程技术研究中心水稻育种试验田(N23°,E113°)进行。2017年早季以4个光温敏核不育系为母本和3个恢复系为父本,按照NCⅡ设计配制12个杂交组合;2017年晚季种植F1代,7月22日播种,8月7日水稻幼苗长到四叶一心时插秧,完全随机区组设计,3次重复,每个小区按照6×6规格种植,共36株,单本种植,田间管理措施与常规大田生产管理相同。完熟期时,从每个小区中选取3株有代表性的单株,用烘干机于45 ℃条件下干燥处理24 h,干燥后用量程40 cm的直尺测量穗长,用水稻数字化考种机YTS-5D考种并记录总粒数、结实率、千粒质量、单穗质量、一次枝梗数和着粒密度(每10 cm稻穗着生的水稻籽粒总粒数)。

    数据分析采用SPSS 19.0和Microsoft Excel 2007进行,统计分析参照文献[10]的方法进行,配合力和遗传力分析按照文献[11-12]进行。根据固定模型估算试验材料的配合力效应,根据随机模型估算群体配合力方差和遗传参数。

    考察各杂交组合F1代的穗部性状,统计分析各性状的平均值,结果见表1。‘M20S’配制的组合与‘望S’配制的组合相比,一次枝梗数、总粒数、单穗质量和着粒密度呈正向优势;与‘深08S’配制的组合相比,穗长、一次枝梗数、总粒数和着粒密度呈正向优势;与‘Y58S’配制的组合相比,一次枝梗数、总粒数、结实率、单穗质量和着粒密度基本呈正向优势。

    表  1  12个杂交组合F1代穗部性状表型值
    Table  1.  Phenotypic values of panicle traits in F1 generations of 12 hybrid combinations
    杂交组合
    Hybrid combination
    穗长/cm
    Panicle
    length
    一次枝梗数
    Primary branch number
    总粒数
    Total grain number
    结实率/%
    Seed setting rate
    单穗质量/g
    Single panicle weight
    千粒质量/g
    1 000-grain weight
    着粒密度
    Grain
    density
    望 S/航恢 1173
    Wang S/Hanghui 1173
    29.54 16.67 2 009.00 0.76 29.60 18.02 67.90
    望 S/航恢 91
    Wang S/Hanghui 91
    27.50 12.00 1 437.33 0.85 30.31 24.21 52.30
    望 S/航恢 24
    Wang S/Hanghui 24
    29.17 13.33 2 459.33 0.88 48.31 23.44 84.56
    平均值 Mean value 28.74 14.00 1 968.56 0.83 36.08 21.89 68.25
    深 08S/航恢 1173
    Deep 08S/Hanghui 1173
    27.74 14.00 2 352.33 0.81 38.97 18.59 85.01
    深 08S/航恢 91
    Deep 08S/Hanghui 91
    26.94 12.33 2 134.67 0.86 47.33 23.90 79.34
    深 08S/航恢 24
    Deep 08S/Hanghui 24
    26.67 12.67 1 908.00 0.91 37.92 23.71 71.73
    平均值 Mean value 27.12 13.00 2 131.67 0.86 41.41 22.07 78.69
    Y58S/航恢 1173
    Y58S/Hanghui 1173
    29.67 19.00 2 573.00 0.78 38.60 14.38 86.69
    Y58S/航恢 91
    Y58S/Hanghui 91
    28.81 11.00 1 256.67 0.76 21.95 22.56 43.69
    Y58S/航恢 24
    Y58S/Hanghui 24
    26.84 11.33 1 442.00 0.81 27.25 23.01 53.62
    平均值 Mean value 28.44 13.78 1 757.22 0.78 29.27 19.98 61.33
    M20S/航恢 1173
    M20S/Hanghui 1173
    30.36 17.00 2 382.33 0.89 24.62 19.40 78.49
    M20S/航恢 91
    M20S/Hanghui 91
    27.67 18.00 3 810.00 0.78 35.69 11.82 137.57
    M20S/航恢 24
    M20S/Hanghui 24
    25.56 16.00 3 581.00 0.79 54.74 18.98 141.00
    平均值 Mean value 27.86 17.00 3 257.78 0.82 38.35 16.73 119.02
    下载: 导出CSV 
    | 显示表格

    7个穗部性状的配合力方差分析结果如表2所示,7个性状区间差异均不显著,组间差异均达极显著水平,说明不同杂交组合的基因型效应间存在真实的遗传差异。不育系母本中,穗长的一般配合力方差差异显著,一次枝梗数等其他6个性状的一般配合力方差差异极显著;恢复性父本中,总粒数和着粒密度的一般配合力方差差异显著,穗长等其他5个性状的一般配合力方差差异极显著;母本/父本组合中,穗长的特殊配合力方差差异显著,其他6个性状的特殊配合力方差差异极显著。表明杂交组合中7个性状均同时受亲本的一般配合力和杂交组合的特殊配合力的影响,即受基因的加性效应和非加性效应共同影响。

    表  2  穗部性状配合力方差分析1)
    Table  2.  Variance analysis of panicle trait combining ability
    方差来源
    Source of variation
    穗长
    Panicle
    length
    一次枝梗数
    Primary branch number
    总粒数
    Total grain number
    结实率
    Seed setting rate
    单穗质量
    Single panicle weight
    千粒质量
    1 000-grain weight
    着粒密度
    Grain
    density
    区间 Interplot 1.45 3.11 6 140.11 0.00 11.18 0.02 32.96
    组间 Intergroup 6.38** 22.87** 823.60** 0.01** 307.15** 48.99** 2 750.49**
    母本 Female parent 4.61* 27.78** 4 045 022.10** 0.01** 239.36** 55.19** 5 991.79**
    父本 Male parent 16.33** 44.45** 128 764.19* 0.01** 303.20** 67.79** 318.64*
    母本/父本 Female/Male 3.95* 13.22** 1 364 410.82** 0.01** 342.36** 39.61** 1 940.45**
    误差 Error 1.36 1.96 36 785.08 0.00 11.03 0.98 67.00
     1)“*”和“**”分别表示达 0.05 和 0.01 显著水平
     1) “*” and “**” indicated significance at 0.05 and 0.01 levels, respectively
    下载: 导出CSV 
    | 显示表格

    4个不育系和3个恢复系亲本的7个性状的一般配合力分析结果如表3所示。相同性状不同亲本和不同性状相同亲本材料间的一般配合力效应不同,表明不同亲本不同性状的遗传基因效应复杂。

    表  3  穗部性状一般配合力效应值
    Table  3.  The effect value of general combining ability of panicle trait %
    亲本
    Parent
    穗长
    Panicle
    length
    一次枝梗数
    Primary branch number
    总粒数
    Total grain number
    结实率
    Seed setting
    rate
    单穗质量
    Single panicle weight
    千粒质量
    1 000-grain weight
    着粒密度
    Grain
    density
    望 S Wang S 2.49 −3.08 −13.61 0.67 −0.55 8.54 −16.54
    深 08S Deep 08S −3.30 −10.00 −6.46 4.58 14.15 9.41 −3.89
    Y58S 1.44 −4.62 −22.89 −4.99 −19.32 −0.91 −24.92
    M20S −0.63 17.69 42.96 −0.27 5.72 −17.03 45.35
    航恢 1173 Hanghui 1173 4.60 15.38 2.21 −1.75 −9.18 −12.75 −2.71
    航恢 91 Hanghui 91 −1.10 −7.69 −5.23 −1.15 −6.76 2.25 −4.29
    航恢 24 Hanghui 24 −3.50 −7.69 3.02 2.90 15.94 10.50 7.00
    下载: 导出CSV 
    | 显示表格

    ‘M20S’在一次枝梗数、总粒数和着粒密度性状上一般配合力最佳,明显高于其他不育系,单穗质量一般配合力表现为正值,穗长、结实率和千粒质量表现为负值,一般配合力好的性状较多,表明该不育系能通过提高一次枝梗数和着粒密度来提高总粒数,从而提高库容量,与优势互补的恢复系进行配组,易选育出产量潜力高的品种。在3个恢复系中,‘航恢24’在总粒数、结实率、单穗质量、千粒质量和着粒密度性状上一般配合力具佳,优势比较明显,可以与‘M20S’优势互补。

    不同杂交组合的7个性状的特殊配合力分析结果如表4所示,相同性状不同组合间及相同组合不同性状间的特殊配合力效应值存在明显差异,表明基因互作具多样性。从单穗质量上看,‘Y58S’/‘航恢1173’特殊配合力效应值最高,‘深08S’/‘航恢24’最低,特殊配合力效应值的变幅在–25.54~34.89之间。从经济学产量相关性状上看,‘望S’/‘航恢24’、‘深08S’/‘航恢91’、‘Y58S’/‘航恢1173’、和‘M20S’/‘航恢24’的特殊配合力效应较好;‘M20S’配制的3个组合中,‘M20S’/‘航恢24’一次枝梗数、总粒数、单穗质量、千粒质量和着粒密度这5个经济性状的特殊配合力表现为正效应,特别是总粒数、单穗质量和着粒密度这3个性状的特殊配合力效应值较高,该杂交组合在以‘M20S’为母本的3个组合中最符合大穗型育种的要求。

    表  4  穗部性状特殊配合力的效应值
    Table  4.  The effect value of special combining ability of panicle trait %
    杂交组合
    Hybrid combination
    穗长
    Panicle
    length
    一次枝梗数
    Primary branch number
    总粒数
    Total grain number
    结实率
    Seed setting rate
    单穗质量
    Single panicle weight
    千粒质量
    1 000-grain weight
    着粒密度
    Grain
    density
    望 S/航恢 1173
    Wang S/Hanghui 1173
    −1.72 3.08 −0.44 −6.74 −8.67 −6.44 2.47
    望 S/航恢 91
    Wang S/Hanghui 91
    −3.30 −6.15 −18.08 3.98 −9.13 9.24 −15.21
    望 S/航恢 24
    Wang S/Hanghui 24
    5.03 3.08 18.52 2.76 17.80 −2.80 12.74
    深 08S/航恢 1173
    Deep 08S/Hanghui 1173
    −2.38 −8.46 7.47 −4.58 2.45 −4.47 10.39
    深 08S/航恢 91
    Deep 08S/Hanghui 91
    0.47 3.08 5.36 1.28 23.09 6.83 5.16
    深 08S/航恢 24
    Deep 08S/Hanghui 24
    1.91 5.38 −12.83 3.30 −25.54 −2.36 −15.55
    Y58S/航恢 1173
    Y58S/Hanghui 1173
    −0.20 20.77 33.59 0.94 34.89 −15.06 33.74
    Y58S/航恢 91
    Y58S/Hanghui 91
    2.42 −11.54 −16.74 −1.68 −13.40 10.54 −17.41
    Y58S/航恢 24
    Y58S/Hanghui 24
    −2.22 −9.23 −16.85 0.74 −21.49 4.52 −16.33
    M20S/航恢 1173
    M20S/Hanghui 1173
    4.31 −15.38 −40.63 10.38 −23.68 25.97 −46.60
    M20S/航恢 91
    M20S/Hanghui 91
    0.42 14.62 29.46 −3.57 −5.56 −26.61 27.46
    M20S/航恢 24
    M20S/Hanghui 24
    −4.72 0.77 11.17 −6.81 29.24 0.64 19.14
    下载: 导出CSV 
    | 显示表格

    此外,对亲本一般配合力效应和杂交组合特殊配合力效应进行比较,发现亲本一般配合力效应与杂交组合特殊配合力效应似乎是相对独立的,亲本一般配合力高的,杂交组合特殊配合力不一定高,亲本一般配合力低的,杂交组合特殊配合力不一定低。

    估算穗部各性状的一般配合力和特殊配合力基因型方差,可以更深入地了解双亲及其互作对杂种后代性状的影响,估算结果见表5,通过σ122σ12+σ22以及VgVs对比可知,总粒数、结实率、千粒质量、着粒密度和单穗质量的σ1-22>σ12+σ22,且Vs>Vg,表明这些性状以受亲本互作非加性效应的影响为主。穗长和一次枝梗数的σ1-22<σ12+σ22Vs<Vg,表明这2个性状以受亲本基因加性效应影响为主。通过σe2σG2对比可知,所有性状的σG2>σe2,表明亲本各性状受遗传的影响为主,受环境影响占次要地位,F1的各个性状受遗传与环境共同影响。

    表  5  穗部性状配合力的基因型方差及贡献率1)
    Table  5.  Genotypic variance and contribution rate of combining ability of panicle trait
    性状 Trait σ12 σ22 σ1-22 σe2 σ12+σ22
    穗长 Panicle length 0.055 0 1.375 6 0.861 7 1.364 9 1.430 6
    一次枝梗数 Primary branch number 1.213 0 3.469 1 3.754 2 2.477 3 4.682 1
    总粒数 Total grain number 223 384.270 0 −137 294.100 0 442 541.910 0 36 785.081 0 86 090.203 0
    结实率 Seed setting rate 0 −0.000 5 0.002 1 0.002 8 −0.000 4
    单穗质量 Single panicle weight −8.583 3 −4.351 1 110.443 5 11.029 6 −12.934 4
    千粒质量 1 000-grain weight 337.611 7 −180.201 1 624.485 0 0.978 2 157.410 6
    着粒密度 Grain density 1.298 3 3.131 1 12.877 3 0.978 2 4.429 4
    性状 Trait σG2 σP2 Vg/% Vs/%
    穗长 Panicle length 2.292 3 3.657 1 62.41 37.59
    一次枝梗数 Primary branch number 8.436 3 1 091.360 0 55.50 44.50
    总粒数 Total grain number 528 632.120 0 565 417.200 0 16.29 83.71
    结实率 Seed setting rate 0.001 7 0.004 6 −25.73 125.73
    单穗质量 Single panicle weight 97.509 0 108.538 6 −13.26 113.26
    千粒质量 1 000-grain weight 781.895 6 782.873 8 20.13 79.87
    着粒密度 Grain density 17.306 7 18.284 9 25.59 74.41
     1) σ12:P1(一套n1=4的不育系亲本)的一般配合力基因型方差;σ22:P2(一套n2=3的恢复系亲本)的一般配合力基因型方差;σ1-22:P1-2(亲本互作)的特殊配合力基因型方差,又叫显性方差;σe2:环境方差;σ12+σ22:一般配合力加性基因型方差;σG2:总基因型方差;σP2:表现型方差;Vg:一般配合力方差,反映加性效应;Vs:特殊配合力方差,反映非加性效应
     1) σ12: P1 (a set of n1=4 male sterile parents) general gratification genotype variance; σ22: P2 (a set of n2=3 restorative parents) general gratification genotype variance; σ1-22: P1-2 (parent interaction) special combining ability genotype variance (also called dominant variance); σe2: environmental variance; σ12+σ22: General combining ability additive genotype variance: σG2: Total genotype variance; σP2: Phenotypic variance; Vg : General combining force variance; Vs: Special combining force variance, reflecting non-additive effect
    下载: 导出CSV 
    | 显示表格

    7个穗部性状的遗传力如表6所示。广义遗传力从大到小依次为:千粒质量、着粒密度、总粒数、单穗质量、一次枝梗数、穗长和结实率。所有性状的广义遗传力均比较大,除了结实率广义遗传力为37.49%,其余性状的广义遗传力都在60%以上,其中千粒质量和总粒数的广义遗传力达90%以上,说明这些性状很大程度上受遗传效应的影响。狭义遗传力从大到小依次为:一次枝梗数、穗长、着粒密度、千粒质量、总粒数、结实率和单穗质量,这些性状的狭义遗传力都在45%以下,遗传稳定性一般,性状的遗传力较弱,特别是结实率和单穗质量的狭义遗传力均小于0,影响非常显著,后代遗传稳定性差,亲本性状容易与自然环境、栽培方式等因素互作,对组合性状表现有直接影响。

    表  6  各性状遗传力的估算1)
    Table  6.  Estimation of heritability of each trait %
    性状 Trait hB2 hN2
    穗长 Panicle length 62.68 39.12
    一次枝梗数 Primary branch number 77.30 42.90
    总粒数 Total grain number 93.49 15.23
    结实率 Seed setting number 37.49 −9.65
    单穗质量 Single panicle weight 89.84 −11.92
    千粒质量 1 000-grain weight 99.88 20.11
    着粒密度 Grain density 94.65 24.22
     1) hB2:广义遗传力;hN2:狭义遗传力
     1) hB2: Generalized heritability; hN2: Narrow heritability
    下载: 导出CSV 
    | 显示表格

    穗部性状的一般配合力和特殊配合力方差差异均达显著或极显著水平,说明这些性状的遗传是受加性效应和非加性效应共同控制的。这些性状的配合力方差分析结果表明一次枝梗数和穗长的一般配合力方差较大,说明这2个性状受加性效应的影响较大;总粒数、结实率、千粒质量、着粒密度以及单穗质量的特殊配合力方差较大,说明这些性状主要受非加性效应的影响。此外,对亲本一般配合力效应和杂交组合特殊配合力效应进行比较,发现亲本的一般配合力效应与杂交组合的特殊配合力效应似乎是相对独立的,与前人研究情况不完全相同[13-14],亲本一般配合力高的,组合的特殊配合力不一定高,亲本一般配合力低的,组合的特殊配合力不一定低,与前人研究一致[15-17]。由穗部性状广义遗传力分析可知,总粒数、千粒质量、着粒密度和单穗质量表现突出,受遗传效应的作用极大。在优质杂交稻亲本的改良中,一次枝梗数、穗长等狭义遗传力高的性状,可在杂交早代选择,以提高育种效率。

    在亲本选配的过程中,需要综合考虑亲本的一般配合力与杂交组合的特殊配合力才能获得优良组合[18-19],根据研究分析,‘M20S’在总粒数、一次枝梗数、着粒密度性状上一般配合力最突出,单穗质量上一般配合力也是正值,表现良好,该不育系是一个大穗型的不育系,而穗型的大小是通过总粒数来分类的,总粒数的一般配合力达到了42.96%,远远超过其他亲本,说明‘M20S’的大穗性状不但能通过杂交遗传给后代,而且该不育系可以通过提高一次枝梗数来提高总粒数,从而提高经济学产量,是一个优良的亲本。对于杂交组合‘M20S/航恢24’,总粒数、着粒密度和单穗质量的特殊配合力较高,其中单穗质量的特殊配合力较大,为29.24%,其他性状特殊配合力效应较好,表明‘M20S/航恢24’在‘M20S’组配的3个组合中是最符合大穗型育种要求的组合。

  • 图  1   植物紫色酸性磷酸酶进化树分析

    Ac: 洋葱Allium cepa; As: 紫云英Astragalus sinicus; At: 拟南芥Arabidopsis thaliana; Ec: 轮花大戟Euphorbia characias; Gm: 大豆Glycine max; Hv: 大麦Hordeum vulgare; Ib: 甘薯Ipomoea batatas; La: 白花羽扇豆Lupinus albus; Ll: 黄花羽扇豆Lupinus luteus; Mt: 截形苜蓿Medicago truncatula; Nt: 烟草Nicotiana tabacum; Os: 水稻Oryza sativa; Pt: 枳Poncirus trifoliate; Pv: 菜豆Phaseolus vulgaris; St: 马铃薯Solanum tuberosum; Ta: 小麦Triticum aestivum; Zm: 玉米Zea mays

    Figure  1.   Phylogenetic tree analysis of plant purple acid phosphatase

  • [1]

    CHIOU T J, LIN S I. Signaling network in sensing phosphate availability in plants[J]. Annu Rev Plant Biol, 2011, 62: 185-206. doi: 10.1146/annurev-arplant-042110-103849

    [2]

    LIANG C, WANG J, ZHAO J, et al. Control of phosphate homeostasis through gene regulation in crops[J]. Curr Opin Plant Biol, 2014, 21(14): 59-66.

    [3]

    GUTIÉRREZ-ALANÍS D, OJEDA-RIVERA J O, YONG-VILLALOBOS L, et al. Adaptation to phosphate scarcity: Tips from Arabidopsis roots[J]. Trends Plant Sci, 2018, 23(8): 721-730. doi: 10.1016/j.tplants.2018.04.006

    [4]

    HAM B K, CHEN J, YAN Y, et al. Insights into plant phosphate sensing and signaling[J]. Curr Opin Biotechnol, 2018, 49: 1-9. doi: 10.1016/j.copbio.2017.07.005

    [5]

    HESTERBERG D. Macroscale chemical properties and X-ray absorption spectroscopy of soil phosphorus[J]. Develop Soil Sci, 2010, 34: 313-356. doi: 10.1016/S0166-2481(10)34011-6

    [6]

    KOCHIAN L V, HOEKENGA O A, PIÑEROS M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J]. Annu Rev Plant Biol, 2004, 55: 459-493. doi: 10.1146/annurev.arplant.55.031903.141655

    [7]

    VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource[J]. New Phytol, 2003, 157(3): 423-447. doi: 10.1046/j.1469-8137.2003.00695.x

    [8]

    RICHARDSON A E, HOCKING P J, SIMPSON R J, et al. Plant mechanisms to optimise access to soil phosphorus[J]. Crop Pasture Sci, 2009, 60(2): 124-143. doi: 10.1071/CP07125

    [9]

    RAGHOTHAMA K G. Phosphate acquisition[J]. Ann Rev Plant Physiol Mol Bio, 1999, 50(1): 665-693. doi: 10.1146/annurev.arplant.50.1.665

    [10]

    MA J C, HE P, XU X P, et al. Temporal and spatial changes in soil available phosphorus in China (1990—2012)[J]. Field Crop Res, 2016, 192: 13-20. doi: 10.1016/j.fcr.2016.04.006

    [11] 夏文建, 冀建华, 刘佳, 等. 长期不同施肥红壤磷素特征和流失风险研究[J]. 中国生态农业学报, 2018, 26(12): 1876-1886.
    [12]

    VENEKLAAS E J, LAMBERS H, BRAGG J, et al. Opportunities for improving phosphorus-use efficiency in crop plants[J]. New Phytol, 2012, 195(2): 306-320. doi: 10.1111/j.1469-8137.2012.04190.x

    [13]

    TIAN J, WANG C, ZHANG Q, et al. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice[J]. J Integr Plant Biol, 2012, 54(9): 631-639. doi: 10.1111/j.1744-7909.2012.01143.x

    [14]

    LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition: Improving low-phosphate tolerance in crops[J]. Annu Rev Plant Biol, 2014, 65: 95-123. doi: 10.1146/annurev-arplant-050213-035949

    [15]

    SHAHZAD Z, AMTMANN A. Food for thought: How nutrients regulate root system architecture[J]. Curr Opin Plant Biol, 2017, 39: 80-87. doi: 10.1016/j.pbi.2017.06.008

    [16] 严小龙.根系生物学原理与应用[M]. 北京: 科学出版社, 2007.
    [17]

    CANARINI A, KAISER C, MERCHANT A, et al. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli[J]. Front Plant Sci, 2019, 10: 157. doi: 10.3389/fpls.2019.00157

    [18]

    CHEN Z C, LIAO H. Organic acid anions: an effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils[J]. J Genet Genom, 2016, 43(11): 631-638. doi: 10.1016/j.jgg.2016.11.003

    [19]

    TIAN J, LIAO H. The role of intracellular and secreted purple acid phosphatases in plant phosphorus scavenging and recycling[M]//PLAXTON W C, LAMBERS H. Annual plant reviews: Phosphorus metabolism in plants: Volume 48. Oxford, UK: Wiley-Blackwell, 2015: 265-287.

    [20]

    DUFF S M, SARATH G, PLAXTON W C. The role of acid phosphatases in plant phosphorus metabolism[J]. Physiol Plant, 1994, 90(4): 791-800. doi: 10.1111/ppl.1994.90.issue-4

    [21]

    BOZZO G G, RAGHOTHAMA K G, PLAXTON W C. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures[J]. Biochem J, 2004, 377(2): 419-428. doi: 10.1042/bj20030947

    [22]

    MATANGE N, PODOBNIK M, VISWESWARIAH S S. Metallophosphoesterases: Structural fidelity with functional promiscuity[J]. Biochem J, 2015, 467(2): 201-216. doi: 10.1042/BJ20150028

    [23]

    LI D P, ZHU H F, LIU K F, et al. Purple acid phosphatases of Arabidopsis thaliana: Comparative analysis and differential regulation by phosphate deprivation[J]. J Biol Chem, 2002, 277(31): 27772-27781. doi: 10.1074/jbc.M204183200

    [24]

    ZHANG Y, WANG X, LU S, et al. A major root-associated acid phosphatase in Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation[J]. J Exp Bot, 2014, 65(22): 6577-6588. doi: 10.1093/jxb/eru377

    [25]

    LIANG C, TIAN J, LAM H, et al. Biochemical and molecular characterization of PvPAP3: A novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization[J]. Plant Physiol, 2010, 152(2): 854-865. doi: 10.1104/pp.109.147918

    [26]

    LI R, LU W, GUO C, et al. Molecular characterization and functional analysis of OsPHY1, a purple acid phosphatase (PAP) - type phytase gene in rice (Oryza sativa L.)[J]. J Integr Agr, 2012, 11(8): 1217-1226. doi: 10.1016/S2095-3119(12)60118-X

    [27]

    OLCZAK M, MORAWIECKA B, WATOREK W. Plant purple acid phosphatases: Genes, structures and biological function[J]. Acta Biochim Pol, 2003, 50(4): 1245-1256.

    [28]

    TRAN H T, HURLEY B A, PLAXTON W C. Feeding hungry plants: The role of purple acid phosphatases in phosphate nutrition[J]. Plant Sci, 2010, 179(1/2): 14-27.

    [29]

    BECK J L, DE JERSEY J, ZERNER B, et al. Properties of the Fe(II)-Fe(III) derivative of red kidney bean purple phosphatase: Evidence for a binuclear zinc-iron center in the native enzyme[J]. J Am Chem Soc, 1988, 110(10): 3317-3318. doi: 10.1021/ja00218a061

    [30]

    STRÄTER N, KLABUNDE T, TUCKER P, et al. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site[J]. Science, 1995, 268(5216): 1489-1492. doi: 10.1126/science.7770774

    [31]

    SCHENK G, GE Y, CARRINGTON L E, et al. Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean[J]. Arch Biochem Biophys, 1999, 370(2): 183-189. doi: 10.1006/abbi.1999.1407

    [32]

    DURMUS A, EICKEN C, SIFT B H, et al. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas): Metal content and spectroscopic characterization[J]. Eur J Biochem Banner, 1999, 260(3): 709-716. doi: 10.1046/j.1432-1327.1999.00230.x

    [33]

    DURMUS A, EICKEN C, SPENER F, et al. Cloning and comparative protein modeling of two purple acid phosphatase isozymes from sweet potatoes (Ipomoea batatas)[J]. Biochim Biophys Acta, 1999, 1434(1): 202-209. doi: 10.1016/S0167-4838(99)00176-4

    [34]

    MITIC N, SMITH S J, NEVES A, et al. The catalytic mechanisms of binuclear metallohydrolases[J]. Chem Rev, 2006, 106(8): 3338-3363. doi: 10.1021/cr050318f

    [35]

    ANTONYUK S V, OLCZAK M, OLCZAK T, et al. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold[J]. IUCr J, 2014, 1(2): 101-109. doi: 10.1107/S205225251400400X

    [36]

    DEL POZO J C, ALLONA I, RUBIO V, et al. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions[J]. Plant J, 1999, 19: 579-589. doi: 10.1046/j.1365-313X.1999.00562.x

    [37]

    SCHENK G, MITIC N, HANSON G R, et al. Purple acid phosphatase: A journey into the function and mechanism of a colorful enzyme[J]. Coord Chem Rev, 2013, 257(2): 473-482. doi: 10.1016/j.ccr.2012.03.020

    [38]

    LEBANSKY B R, MCKNIGHT T D, GRIFFING L R. Purification and characterization of a secreted purple phosphatase from soybean suspension cultures[J]. Plant Physiol, 1992, 99(2): 391-395. doi: 10.1104/pp.99.2.391

    [39]

    CASHIKAR A G, KUMARESAN R, RAO N M. Biochemical characterization and subcellular localization of the red kidney bean purple acid phosphatase[J]. Plant Physiol, 1997, 114(3): 907-915. doi: 10.1104/pp.114.3.907

    [40]

    SHINANO T, YONETANI R, USHIHARA N, et al. Characteristics of phosphoenolpyruvate phosphatase purified from Allium cepa[J]. Plant Sci, 2001, 161(5): 861-869. doi: 10.1016/S0168-9452(01)00480-0

    [41]

    YONEYAMA T, SHIOZAWA M, NAKAMURA M, et al. Characterization of a novel acid phosphatase from embryonic axes of kidney bean exhibiting vanadate: Dependent chloroperoxidase activity[J]. J Biol Chem, 2004, 279(36): 37477-37484. doi: 10.1074/jbc.M405305200

    [42]

    VELJANOVSKI V, VANDERBELD B, KNOWLES V L, et al. Biochemical and molecular characterization of AtPAP26: A vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings[J]. Plant Physiol, 2006, 142(3): 1282-1293. doi: 10.1104/pp.106.087171

    [43]

    KAIDA R, SERADA S, NORIOKA N, et al. Potential role for purple acid phosphatase in the dephosphorylation of wall proteins in tobacco cells[J]. Plant Physiol, 2010, 153(2): 603-610. doi: 10.1104/pp.110.154138

    [44]

    PINTUS F, SPANO D, CORONGIU S, et al. Purification, primary structure, and properties of Euphorbia characias latex purple acid phosphatase[J]. Biochem (Moscow), 2011, 76(6): 694-701. doi: 10.1134/S0006297911060101

    [45]

    WANG L, LI Z, QIAN W, et al. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation[J]. Plant Physiol, 2011, 157(3): 1283-1299. doi: 10.1104/pp.111.183723

    [46]

    DEL VECCHIO H A, YING S, PARK J, et al. The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation[J]. Plant J, 2014, 80(4): 569-581. doi: 10.1111/tpj.12663

    [47]

    HEGEMAN C E, GRABAU E A. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings[J]. Plant Physiol, 2001, 126(4): 1598-1608. doi: 10.1104/pp.126.4.1598

    [48]

    ZHU H F, QIAN W Q, LU X Z, et al. Expression patterns of purple acid phosphatase genes in Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower[J]. Plant Mol Biol, 2005, 59(4): 581-594. doi: 10.1007/s11103-005-0183-0

    [49]

    LUNG S, LEUNG A, KUANG R, et al. Phytase activity in tobacco (Nicotiana tabacum) root exudates is exhibited by a purple acid phosphatase[J]. Phytochemistry, 2008, 69(2): 365-373. doi: 10.1016/j.phytochem.2007.06.036

    [50]

    ZHANG W, GRUSZEWSKI H A, CHEVONE B I, et al. An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate[J]. Plant Physiol, 2008, 146(2): 431-440. doi: 10.1104/pp.107.109934

    [51]

    KUANG R, CHAN K, YEUNG E, et al. Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity in Arabidopsis[J]. Plant Physiol, 2009, 151(1): 199-209. doi: 10.1104/pp.109.143180

    [52]

    DIONISIO G, MADSEN C K, HOLM P B, et al. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice[J]. Plant Physiol, 2011, 156(3): 1087-1100. doi: 10.1104/pp.110.164756

    [53]

    SHU B, WANG P, XIA R. Characterisation of the phytase gene in trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings[J]. Sci Hortic-Amsterdam, 2015, 194: 222-229. doi: 10.1016/j.scienta.2015.08.028

    [54]

    LIU P, CAI Z, CHEN Z, et al. A root-associated purple acid phosphatase, SgPAP23, mediates extracellular phytate-P utilization in Stylosanthes guianensis[J]. Plant Cell Environ, 2018, 41(12): 2821-2834. doi: 10.1111/pce.v41.12

    [55]

    KONG Y, LI X, WANG B, et al. The soybean purple acid phosphatase GmPAP14 predominantly enhances external phytate utilization in plants[J]. Front Plant Sci, 2018, 9: 292. doi: 10.3389/fpls.2018.00292

    [56]

    KANEKO K, OKA H, IKARASHI N, et al. Characterization of a plastidial N-glycosylated nucleotide pyrophosphatase/phospliodiesterase in rice[J]. Plant Cell Physiol, 2006, 47: 89.

    [57]

    NANJO Y, OKA H, IKARASHI N, et al. Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-golgi to the chloroplast through the secretory pathway[J]. Plant Cell, 2006, 18(10): 2582-2592. doi: 10.1105/tpc.105.039891

    [58]

    OLCZAK M, CIURASZKIEWICZ J, WOJTOWICZ H, et al. Diphosphonucleotide phosphatase/phosphodiesterase (PPD1) from yellow lupin (Lupinus luteus L.) contains an iron-manganese center[J]. FEBS Lett, 2009, 583(19): 3280-3284. doi: 10.1016/j.febslet.2009.09.024

    [59]

    WANG J, SI Z, LI F, et al. A purple acid phosphatase plays a role in nodule formation and nitrogen fixation in Astragalus Sinicus[J]. Plant Mol Biol, 2015, 88(6): 515-529. doi: 10.1007/s11103-015-0323-0

    [60]

    KANEKO K, INOMATA T, MASUI T, et al. Nucleotide pyrophosphatase/phosphodiesterase 1 exerts a negative effect on starch accumulation and growth in rice seedlings under high temperature and CO2 concentration conditions[J]. Plant Cell Physiol, 2014, 55(2): 320-332. doi: 10.1093/pcp/pct139

    [61]

    LIU P D, XUE Y B, CHEN Z J, et al. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes[J]. J Exp Bot, 2016, 67(14): 4141-4154. doi: 10.1093/jxb/erw190

    [62]

    MILLER S S, LIU J, ALLAN D L, et al. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin[J]. Plant Physiol, 2001, 127(2): 594-606. doi: 10.1104/pp.010097

    [63]

    ROBINSON W D, PARK J, TRAN H T, et al. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana[J]. J Exp Bot, 2012b, 63(18): 6531-6542. doi: 10.1093/jxb/ers309

    [64]

    WU W, LIN Y, LIU P, et al. Association of extracellular dNTP utilization with a GmPAP1-like protein identified in cell wall proteomic analysis of soybean roots[J]. J Exp Bot, 2018, 69(3): 603-617. doi: 10.1093/jxb/erx441

    [65]

    LU L, QIU W, GAO W, et al. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus[J]. Plant Cell Environ, 2016, 39(10): 2247-2259. doi: 10.1111/pce.v39.10

    [66]

    SUN L, SONG L, ZHANG Y, et al. Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation[J]. Plant Physiol, 2016, 170(1): 499-514. doi: 10.1104/pp.15.01336

    [67]

    TAO S, ZHANG Y, WANG X, et al. The THO/TREX complex active in miRNA biogenesis negatively regulates root-associated acid phosphatase activity induced by phosphate starvation[J]. Plant Physiol, 2016, 171(4): 2841-2853.

    [68]

    LIANG C, SUN L, YAO Z, et al. Comparative analysis of PvPAP gene family and their functions in response to phosphorus deficiency in common bean[J]. PLoS One, 2012, 7(5): e38106. doi: 10.1371/journal.pone.0038106

    [69]

    WANG X, WANG Y, TIAN J, et al. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean[J]. Plant Physiol, 2009, 151(1): 233-240. doi: 10.1104/pp.109.138891

    [70]

    MA X, WRIGHT E, GE Y, et al. Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant: Derived phytase and acid phosphatase genes[J]. Plant Sci, 2009, 176(4): 479-488. doi: 10.1016/j.plantsci.2009.01.001

    [71]

    MARUYAMA H, YAMAMURA T, KANEKO Y, et al. Effect of exogenous phosphatase and phytase activities on organic phosphate mobilization in soils with different phosphate adsorption capacities[J]. Soil Sci Plant Nutr, 2012, 58(1): 41-51. doi: 10.1080/00380768.2012.656298

    [72]

    RYAN P, DELHAIZE E, JONES D. Function and mechanism of organic anion exudation from plant roots[J]. Annu Rev Plant Physiol and Plant Mol Biol, 2001, 52: 527-560. doi: 10.1146/annurev.arplant.52.1.527

    [73]

    HAICHAR F E Z, SANTAELLA C, HEULIN T, et al. Root exudates mediated interactions below ground[J]. Soil Biol Biochem, 2014, 77: 69-80. doi: 10.1016/j.soilbio.2014.06.017

    [74]

    STRÖM L, OWEN A G, GODBOLD D L, et al. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling[J]. Soil Biol Biochem, 2005, 37(11): 2046-2054. doi: 10.1016/j.soilbio.2005.03.009

    [75] 徐锐, 彭新湘. 草酸在提高大豆磷吸收利用及抗铝性中的作用[J]. 西北植物学报, 2002, 22(2): 291-295. doi: 10.3321/j.issn:1000-4025.2002.02.012
    [76]

    ADELEKE R, NWANGBURUKA C, OBOIRIEN B. Origins, roles and fate of organic acids in soils: A review[J]. South Afr J Bot, 2017, 108: 393-406. doi: 10.1016/j.sajb.2016.09.002

    [77]

    HOFFLAND E, BOOGAARD R V D, NELEMANS J, et al. Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants[J]. New Phytol, 1992, 122: 675-680.

    [78]

    PILBEAM D J, CAKMAK I, MARSCHNER H, et al. Effect of withdrawal of phosphorus on nitrate assimilation and PEP carboxylase activity in tomato[J]. Plant Soil, 1993, 154(1): 111-117. doi: 10.1007/BF00011079

    [79]

    RIVERE-ROLLAND H, CONTARD P.BETSCHE T. Adaptation of pea to elevated atmospheric CO2: Rubiso, phosphoenlopyruvate carboxylase and chloroplast phosphate translocator at different levels of nitrogen and phosphorus nutrition[J]. Plant Cell Environ, 1996, 19(1): 109-117. doi: 10.1111/pce.1996.19.issue-1

    [80]

    KONDRACKA A, RYCHTER A M. The role of Pi recycling processes during photo synthesis in phosphate deficient bean plants[J]. J Exp Bot, 1997, 48(7): 1461-1468. doi: 10.1093/jxb/48.7.1461

    [81]

    NEUMANN G, MASSONNEAU A, LANGLADE N, et al. Physiological aspects of cluster root function and development in phosphorus: Deficient white lupin (Lupinus albus L.)[J]. Ann Bot, 2000, 85(6): 909-919. doi: 10.1006/anbo.2000.1135

    [82]

    UHDE-STONE C, GILBERT G, JOHNSON M F, et al. Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism[J]. Plant Soil, 2003, 248: 99-116. doi: 10.1023/A:1022335519879

    [83]

    PEÑALOZA E, MUÑOZ G, SALVO-GARRIDO H, et al. Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin[J]. J Exp Bot, 2005, 56(409): 145-153.

    [84]

    DECHASSA N, SCHENK M K. Root exudation of organic anions by cabbage, carrot and potato plants as affected by P supply[M]// HORST W J, SCHENK M K, BÜRKERT A, et al. Plant nutrition: Developments in plant and soil sciences: Volume 92. [S.L]: Springer, Dordrecht, 2001: 544-545.

    [85]

    GAUME A, MÄCHLER F, DE LEÓN C, et al. Low-P tolerance by maize (Zea mays L.) genotypes: Significance of root growth, and organic acids and acid phosphatase root exudation[J]. Plant Soil, 2001, 228(2): 253-264. doi: 10.1023/A:1004824019289

    [86]

    LI X F, ZUO F H, LING G Z, et al. Secretion of citrate from roots in response to aluminum and low phosphorus stresses in stylosanthes[J]. Plant Soil, 2009, 325(1/2): 219-229.

    [87]

    YOKOSHO K, YAMAJI N, MA J F. An Al-inducible MATE gene is involved in external detoxification of Al in rice[J]. Plant J, 2011, 68(6): 1061-1069. doi: 10.1111/tpj.2011.68.issue-6

    [88]

    JOHNSON J F, ALLAN D L, VANCE C P, et al. Root carbon dioxide fixation by phosphorus-deficient Lupinus albus: Contribution to organic-acid exudation by proteid roots[J]. Plant Physiol, 1996, 112: 19-30. doi: 10.1104/pp.112.1.19

    [89]

    LIAO H, WAN H, SHAFF J, et al. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance: Exudation of specific organic acids from different regions of the intact root system[J]. Plant Physiol, 2006, 141(2): 674-684. doi: 10.1104/pp.105.076497

    [90]

    AE N, ARIHARA J, OKADA K., et al. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent[J]. Science, 1990, 284: 477-480.

    [91]

    LIGABA A, SHEN H, SHIBATA K, et al. The role of phosphorus in aluminium-induced citrate and malate exudation from rape (Brassica napus)[J]. Physiol Plant, 2004, 120: 575-584. doi: 10.1111/ppl.2004.120.issue-4

    [92]

    YANG L T, JIANG H X, QI Y P, et al. Differential expression of genes involved in alternative glycolytic pathways, phosphorus scavenging and recycling in response to aluminum and phosphorus interactions in citrus roots[J]. Mol Biol Rep, 2012, 39: 6353-6366. doi: 10.1007/s11033-012-1457-7

    [93]

    CHEN Z, CUI Q, LIANG C, et al. Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis[J]. Proteomics, 2011, 11(24): 4648-4659. doi: 10.1002/pmic.v11.24

    [94]

    WANG Z, STRAUB D, YANG H, et al. The regulatory network of cluster-root function and development in phosphate-deficient white lupin (Lupinus albus) identified by transcriptome sequencing[J]. Physiol Plant, 2014, 151: 323-338. doi: 10.1111/ppl.12187

    [95]

    WANG Z A, LI Q, GE X Y, et al. The mitochondrial malate dehydrogenase1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton[J]. Sci Rep-UK, 2015, 5: 10343. doi: 10.1038/srep10343

    [96]

    TESFAYE M, TEMPLE S J, ALLAN D L, et al. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum[J]. Plant Physiol, 2001, 127(4): 1836-1844. doi: 10.1104/pp.010376

    [97]

    LÜ J, GAO X, DONG Z, et al. Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from Penicillium oxalicum[J]. Plant Cell Rep, 2012, 31(1): 49-56. doi: 10.1007/s00299-011-1138-3

    [98]

    LÓPEZ-BUCIO J, DE LA VEGA O M, GUEVARA-GARCÍA A, et al. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate[J]. Nat Biotechnol, 2000, 18(4): 450-453. doi: 10.1038/74531

    [99]

    KOYAMA H, TAKITA E, KAWAMURA A, et al. Overexpression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium[J]. Plant Cell Physiol, 1999, 40: 482-488. doi: 10.1093/oxfordjournals.pcp.a029568

    [100]

    KOYAMA H, KAWAMURA A, KIHARA T, et al. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphoruslimited soil[J]. Plant Cell Physiol, 2000, 41: 1030-1037. doi: 10.1093/pcp/pcd029

    [101]

    WANG Y, XU H, KOU J J, et al. Dual effects of transgenic Brassica napus overexpressing CS gene on tolerances to aluminum toxicity and phosphorus deficiency[J]. Plant Soil, 2013, 362(1/2): 231-246. doi: 10.1007/s11104-012-1289-1

    [102]

    MEYER S, DE ANGELI A, FERNIE A R, et al. Intra - and extracellular excretion of carboxylates[J]. Trends Plant Sci, 2010, 15: 40-47.

    [103]

    DELHAIZE E, GRUBER B D, RYAN P R. The roles of organic anion permeases in aluminium resistance and mineral nutrition[J]. FEBS Lett, 2007, 581: 2255-2262. doi: 10.1016/j.febslet.2007.03.057

    [104]

    MOTODA H, SASAKI T, KANO Y, et al. The membrane topology of ALMT1: An aluminum-activated malate transport protein in wheat (Triticum aestivum)[J]. Plant Signal Behav, 2007, 2(6): 467-472. doi: 10.4161/psb.2.6.4801

    [105]

    FURUICHI T, SASAKI T, TSUCHIYA Y, et al. An extracellular hydrophilic carboxy terminal domain regulates the activity of TaALMT1: The aluminum-activated malate transport protein of wheat[J]. Plant J, 2010, 64: 47-55.

    [106]

    LIGABA A, DREYER I, MARGARYAN A, et al. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1[J]. Plant J, 2013, 76: 766-780. doi: 10.1111/tpj.12332

    [107]

    SASAKI T, YAMAMOTO Y, EZAKI B, et al. A wheat gene encoding an aluminum-activated malate transporter[J]. Plant J, 2004, 37: 645-653. doi: 10.1111/tpj.2004.37.issue-5

    [108]

    PEREIRA J F, ZHOU G F, DELHAIZE E, et al. Engineering greater aluminium resistance in wheat by over-expressing TaALMT1[J]. Ann Bot, 2010, 106(1): 205-214. doi: 10.1093/aob/mcq058

    [109]

    HOEKENGA O A, MARON L G, PIÑEROS M A, et al. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminium tolerance in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006, 103(25): 9738-9743. doi: 10.1073/pnas.0602868103

    [110]

    LIGABA A, KATSUHARA M, RYAN P R, et al. The BnALMT1 and BnALMT2 genes from rape encode aluminium-activated malate transporters that enhance the aluminium resistance of plant cells[J]. Plant Physiol, 2006, 142: 1294-1303. doi: 10.1104/pp.106.085233

    [111]

    LIGABA A, MARON L G, SHAFF J, et al. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux[J]. Plant Cell Environ, 2012, 35(7): 1185-1200. doi: 10.1111/pce.2012.35.issue-7

    [112]

    CHEN Q, WU K H, WANG P, et al. Overexpression of MsALMT1, from the aluminum-sensitive Medicago sativa, enhances malate exudation and aluminum resistance in tobacco[J]. Plant Mol Biol Rep, 2013, 31(3): 769-774. doi: 10.1007/s11105-012-0543-2

    [113]

    CHEN Z C, YOKOSHO K, KASHINO M, et al. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus[J]. Plant J, 2013, 176: 10-23.

    [114]

    LIANG C, PIÑEROS M A, TIAN J, et al. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils[J]. Plant Physiol, 2013, 161(3): 1347-1361. doi: 10.1104/pp.112.208934

    [115]

    DELHAIZE E, TAYLOR P, HOCKING P J, et al. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminum resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil[J]. Plant Biotechnol J, 2009, 7(5): 391-400. doi: 10.1111/pbi.2009.7.issue-5

    [116]

    PENG W, WU W, PENG J, et al. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation[J]. J Integr Plant Biol, 2018, 60(3): 216-231. doi: 10.1111/jipb.v60.3

    [117]

    UPADHYAY N, KAR D, DEEPAK MAHAJAN B, et al. The multitasking abilities of MATE transporters in plants[J/OL]. J Exp Bot, 2019, [2019-05-20]. https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz246/5491795. doi: 10.1093/jxb/erz246.

    [118]

    VALENTINUZZI F, PII Y, VIGANI G, LEHMANN M, et al. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria×ananassa[J]. J Exp Bot, 2015, 66(20): 6483-6495. doi: 10.1093/jxb/erv364

    [119]

    HUANG A C, JIANG T, LIU Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364(6440): 546-554.

    [120]

    ZHANG S, ZHOU J, WANG G, et al. The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean[J]. Appl Microbiol Biot, 2015, 99(23): 10225-10235. doi: 10.1007/s00253-015-6913-6

  • 期刊类型引用(5)

    1. 摆福红,王晓敏,王凯彬,郭猛,程国新,胡新华,付金军,高艳明,李建设. 15个大果番茄自交系果实性状的配合力与遗传力分析. 江苏农业学报. 2023(04): 1043-1051 . 百度学术
    2. 王立如,曲玉杰,耿晓丽,Zareen Sarfraz,贾银华,潘兆娥,杜雄明. 陆地棉亲本间遗传距离与配合力的相关性研究. 中国科学:生命科学. 2022(04): 491-498 . 百度学术
    3. 李会霞,田岗,王玉文,刘鑫,刘红. 谷子杂交种与亲本性状的遗传相关性. 中国农业科学. 2020(02): 239-246 . 百度学术
    4. 彭建,朱益祥,钟许成,周小平,唐小美,刘俊,于江辉. 籼型杂交水稻农艺性状的配合力及遗传力研究(英文). Agricultural Science & Technology. 2020(03): 1-6+12 . 百度学术
    5. 王晓敏,赵宇飞,袁东升,刘珮君,郑福顺,胡新华,付金军,高艳明,李建设. 三十三个番茄自交系数量性状的配合力和遗传力分析. 浙江农业学报. 2019(12): 2025-2035 . 百度学术

    其他类型引用(3)

图(1)
计量
  • 文章访问数:  1843
  • HTML全文浏览量:  3
  • PDF下载量:  3329
  • 被引次数: 8
出版历程
  • 收稿日期:  2019-05-20
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2019-09-09

目录

/

返回文章
返回