Current research on genomic analysis of “Candidatus Liberibacter spp.”
-
摘要:
柑橘黄龙病(Citrus Huanglongbing, HLB)是柑橘生产上最具毁灭性的病害,严重威胁着世界柑橘产业的发展。该病害由难培养细菌——候选韧皮部杆菌(Candidatus Liberibacter spp.)所引起,通过带病苗木和媒介昆虫进行传播蔓延。近年来,随着DNA测序技术和生物信息学的发展,基因组学被广泛应用于柑橘黄龙病的研究,并为克服黄龙病菌难培养所造成的研究瓶颈提供了新的方法和思路。柑橘黄龙病菌基因组学的研究,不仅有助于探究黄龙病菌与寄主植物的互作关系,而且可为抗病栽培和病害早期检测提供重要的理论基础。本文结合当前柑橘黄龙病的研究概况、病原全基因组的测序策略及基因组的特征描述,重点综述基因组学在黄龙病致病机理、病原遗传多样性与分子检测等方面的研究进展。
Abstract:Citrus Huanglongbing (HLB), the highly destructive disease which has been threatening citrus production worldwide, is caused by the yet unculturable bacteria, “Candidatus Liberibacter spp.”. HLB can be spread with insect vector and contaminated seedlings. In recent years, with the rapid development of DNA sequencing technology and bioinformatics, genomic analysis had become widely used for HLB research, and had provided the new strategies to overcome the research bottleneck caused by difficulties in bacterial culture. The genomic analysis of “Candidatus Liberibacter spp.” not only helps to explore the interaction between “Candidatus Liberibacter spp.” and host plant, but also provides an important theoretical basis for resistance cultivation and early detection of HLB. This review summarizes the research progress in citrus HLB and describes the current sequencing strategy and genomic characterization of “Candidatus Liberibacter spp.”, with an emphasis on the research progress in genomic analysis of pathogenic mechanism, genetic diversity and molecular detection of “Candidatus Liberibacter spp.”.
-
-
表 1 柑橘黄龙病菌基因组的基本信息1)
Table 1 Basic information of sequenced Candidatus Liberibacter genomes
编号2)
No.年份
Year菌株
Strain寄主
Host来源地区
Original region基因组大小/Mb
Genome size基因组完整性 genome GC含量/%
GC content预测基因数3)
Number of predicted genes测序深度
Coverage1 2009 psy62[18] 柑橘木虱 美国佛罗里达州 1.23 完整 36.5 1 186 16 x 2 2013 Gxpsy[19] 柑橘木虱 中国广西 1.27 完整 36.5 1 141 50~80 x 3 2014 A4[20] 柑橘 中国广东 1.21 完整 36.4 1 122 138 x 4 2014 HHCA[21] 柠檬 美国加州 1.15 不完整 36.5 1 131 6 x 5 2014 Ishi-1[22] 未确定 日本 1.19 完整 36.3 1 078 300 x 6 2015 FL17[23] 未确定 美国佛罗里达州 1.23 不完整 36.5 1 116 50 x 7 2015 YCPsy[24] 柑橘木虱 中国广东 1.23 不完整 36.5 1 125 1 120 x 8 2015 SGCA5[25] 橘树 美国加州 1.20 不完整 36.4 1 114 12 x 9 2017 TX2351[26] 柑橘木虱 美国德克萨斯州 1.25 不完整 36.5 1 184 7 x 10 2017 JXGC[27] 未确定 中国江西 1.23 完整 36.4 1 120 95 x 11 2018 AHCA1[28] 柑橘木虱 美国加州 1.23 完整 36.6 1 112 69 x 12 2018 SGCA1[28] 橘树 美国加州 0.23 不完整 36.3 506 1 x 13 2018 TX1712[29] 橙 美国德克萨斯州 1.20 不完整 36.4 NF 10 x 14 2018 SGpsy[28] 柑橘木虱 美国加州 0.77 不完整 36.3 NF 2 x 15 2018 YNJS7C[30] 未确定 中国云南 1.26 不完整 36.6 1 158 15 x 16 2013 PW_SP[31] 长春花 巴西圣保罗 1.18 不完整 31.1 1 006 18.6 x 17 2014 São Paulo[32] 长春花 巴西圣保罗 1.20 完整 31.1 1 028 > 100 x 18 2015 PTSAPSY[33] 南非木虱 南非比勒陀利亚 1.19 完整 34.5 1 103 60~80 x 1) 信息收集时间为2019−04−11;2) 1~15为亚洲种,16、17为美洲种,18为非洲种;3) NF表示NCBI基因组数据库未提供
1) Information was collected at 11th, April 2019; 2) 1−15:“Candidatus Liberibacter asiaticus”, 16, 17:“Candidatus Liberibacter americanus”, 18:“Candidatus Liberibacter africanus”, 3) NF represents none information found in NCBI genome database -
[1] 林孔湘. 柑桔黄梢(黄龙)病研究: 病情调查[J]. 植物病理学报, 1956, 2(1): 13-42. [2] BOVÉ J M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus[J]. J Plant Pathol, 2006, 88(1): 7-37.
[3] BOVÉ J M. Heat-tolerant Asian HLB meets heat-sensitive African HLB in the Arabian Peninsula! Why?[J]. J Citrus Pathol, 2014, 1(1): 1-78.
[4] JAGOUEIX S, BOVÉ J M, GARNIER M. The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the Proteobacteria[J]. Int J Syst Bacteriol, 1994, 44(3): 379-386. doi: 10.1099/00207713-44-3-379
[5] CHEN J C, 邓晓玲, CIVEROLO E L, 等. 柑橘黄龙病的鉴定和柯赫氏定理(英文)[J]. 植物病理学报, 2011, 41(2): 113-117. CHEN J C, DENG X L, CIVEROLO E L, et al. 柑桔黄龙病的鉴定和柯赫氏定理(英文)[J]. 植物病理学报, 2011, 41(2): 113-117.
[6] LI W, HARTUNG J S, LEVY L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus Huanglongbing[J]. J Microbiol Meth, 2006, 66(1): 104-115. doi: 10.1016/j.mimet.2005.10.018
[7] REINKING O A. Diseases of economic plants in southern China[J]. Philipp Agric, 1919, 8: 109-135.
[8] 陈其儤. 潮汕黄龙病研究报告[J]. 新农季刊, 1943, 3(3/4): 142-177. [9] LEE J A, HALBERT S E, DAWSON W O, et al. Asymptomatic spread of Huanglongbing and implications for disease control[J]. Proc Nati Acad Sci, 2015, 112(24): 7605-7610. doi: 10.1073/pnas.1508253112
[10] 许美容, 陈燕玲, 邓晓玲. 柑橘黄龙病症状与“Candidatus Liberibacter asiaticus”PCR检测结果的相关性分析[J]. 植物病理学报, 2016, 46(1): 367-373. [11] GARNIER M. Tranmission of the organism associated with citrus greening disease from sweet orange to periwinkle by dodder[J]. Phytopathology, 1983, 73(10): 1358-1363. doi: 10.1094/Phyto-73-1358
[12] 唐伟文, 范怀忠. 柑桔黄龙病原侵染长春花和回接成功[J]. 华南农业大学学报, 1987, 8(4): 15-19. [13] 柯冲, 林先沾, 陈辉, 等. 柑桔黄龙病与类立克次体及线状病毒的研究初报[J]. 科学通报, 1979, 24(10): 463-466. [14] BOVÉ J M, BONNER P, GARNIER M, et al. Penicillin and tetracycline treatments of greening disease-affected citrus plants in the glasshouse, and the bacterial nature of the prokaryote associated with greening[C]//University of California. Proceedings of 8th conference IOCV. Riverside: University of California, 1980: 91-102.
[15] GARNIER M, DANEL N, BOVÉ J M. The greening organism is a Gram negative bacterium[C]//University of California. Proceedings of 9th conference IOCV. Riverside: University of California, 1984: 115-124.
[16] 邓晓玲, 唐伟文. 应用PCR技术检测柑桔黄龙病病原的研究[J]. 华南农业大学学报, 1996, 17(3): 119-120. [17] 田亚南, 柯穗, 柯冲. 应用多聚酶链式反应(PCR)技术检测和定量分析柑橘黄龙病病原[J]. 植物病理学报, 1996, 26(3): 243-250. [18] DUAN Y, ZHOU L, HALL D G, et al. Complete genome sequence of citrus Huanglongbing bacterium, 'Candidatus Liberibacter asiaticus' obtained through metagenomics[J]. Mol Plant Microbe In, 2009, 22(8): 1011-1020. doi: 10.1094/MPMI-22-8-1011
[19] LIN H, HAN C S, LIU B, et al. Complete genome sequence of a Chinese strain of “Candidatus Liberibacter asiaticus”[J]. Genome Announc, 2013, 1(2): e113-e184.
[20] ZHENG Z, DENG X, CHEN J. Whole-genome sequence of "Candidatus Liberibacter asiaticus" from Guangdong, China[J]. Genome Announc, 2014, 2(2): e214-e273.
[21] ZHENG Z, DENG X, CHEN J. Draft genome sequence of “Candidatus Liberibacter asiaticus” from California[J]. Genome Anounc, 2014, 2(5): e914-e999.
[22] KATOH H, MIYATA S, INOUE H, et al. Unique features of a Japanese ‘Candidatus Liberibacter asiaticus’ strain revealed by whole genome sequencing[J]. PLoS One, 2014, 9(9): e106109. doi: 10.1371/journal.pone.0106109
[23] ZHENG Z, SUN X, DENG X, et al. Whole-genome sequence of “Candidatus Liberibacter asiaticus” from a Huanglongbing-affected citrus tree in central Florida[J]. Genome Announc, 2015, 3: e00169-15.
[24] WU F, ZHENG Z, DENG X, et al. Draft genome sequence of “Candidatus Liberibacter asiaticus” from Diaphorina citri in Guangdong, China[J]. Genome Announc, 2015, 3(6): e1315-e1316.
[25] WU F, KUMAGAI L, LIANG G, et al. Draft genome sequence of “Candidatus Liberibacter asiaticus” from a citrus tree in San Gabriel, California[J]. Genome Announc, 2015, 3(6): e1508-e1515.
[26] KUNTA M, ZHENG Z, WU F, et al. Draft whole-genome sequence of “Candidatus Liberibacter asiaticus” strain TX2351 isolated from Asian citrus psyllids in Texas, USA[J]. Genome Announc, 2017, 5(15): e00170-17.
[27] ZHENG Z, BAO M, WU F, et al. A type 3 prophage of ‘Candidatus Liberibacter asiaticus’ carrying a restriction-modification system[J]. Phytopathology, 2018, 108(4): 454-461. doi: 10.1094/PHYTO-08-17-0282-R
[28] DAI Z, WU F, ZHENG Z, et al. Prophage diversity of ‘Candidatus Liberibacter asiaticus’ strains in California[J]. Phytopathology, 2019: PHYTO-06-18-0185-R.
[29] CAI W, YAN Z, RASCOE J, et al. Draft whole-genome sequence of “Candidatus Liberibacter asiaticus” Strain TX1712 from citrus in Texas[J]. Genome Announc, 2018, 6(25): e00554-18.
[30] CHEN Y, LI T, ZHENG Z, et al. Draft whole-genome sequence of a “Candidatus Liberibacter asiaticus” strain from Yunnan, China[J]. Microbiol Resour Announc, 2019, 8(3): e01413-18.
[31] LIN H, COLETTA-FILHO H D, HAN C S, et al. Draft genome sequence of “Candidatus Liberibacter americanus” bacterium associated with citrus Huanglongbing in Brazil[J]. Genome Announc, 2013, 1(3): e213-e275.
[32] WULFF N A, ZHANG S, SETUBAL J C, et al. The complete genome sequence of ‘Candidatus Liberibacter americanus’, associated with citrus Huanglongbing[J]. Mol Plant Microbe In, 2014, 27(2): 163-176. doi: 10.1094/MPMI-09-13-0292-R
[33] LIN H, PIETERSEN G, HAN C, et al. Complete genome sequence of “Candidatus Liberibacter africanus”, a bacterium associated with citrus Huanglongbing[J]. Genome Announc, 2015, 3(4): e715-e733.
[34] HALL D G, ALBRECHT U, BOWMAN K D. Transmission rates of ‘Ca. Liberibacter asiaticus’ by Asian citrus psyllid are enhanced by the presence and developmental stage of citrus flush[J]. J Econ Entomol, 2016, 109(2): 558-563. doi: 10.1093/jee/tow009
[35] WU F, HUANG J, XU M, et al. Host and environmental factors influencing ‘Candidatus Liberibacter asiaticus’ acquisition in Diaphorina citri[J]. Pest Manag Sci, 2018, 74(12): 2738-2746. doi: 10.1002/ps.2018.74.issue-12
[36] ZHANG S, FLORESCRUZ Z, ZHOU L, et al. “Ca. Liberibacter asiaticus” carries an excision plasmid prophage and a chromosomally integrated prophage that becomes lytic in plant infections[J]. Mol Plant Microbe In, 2011, 24(4): 735-737.
[37] YIGHT E, HERNANDEZ D I, TRUJILLO J T, et al. Genome and metagenome sequencing: Using the human methyl-binding domain to partition genomic DNA derived from plant tissues[J]. Appl Plant Sci, 2014, 2(11): 1400064. doi: 10.3732/apps.1400064
[38] CHEN J, DENG X, SUN X, et al. Guangdong and Florida populations of “Candidatus Liberibacter asiaticus” distinguished by a genomic locus with short tandem repeats[J]. Phytopathology, 2010, 100(6): 567-572. doi: 10.1094/PHYTO-100-6-0567
[39] ZERBINO D R, BIRNEY E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs[J]. Genome Res, 2008, 18: 821-829. doi: 10.1101/gr.074492.107
[40] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nat methods, 2012, 9(4): 357. doi: 10.1038/nmeth.1923
[41] LI H, DURBIN R. Fast and accurate long-read alignment with burrows-wheeler transform[J]. Bioinformatics, 2010, 26: 589-595. doi: 10.1093/bioinformatics/btp698
[42] HARTUNG J S, SHAO J, KUYKENDALL L D. Comparison of the “Ca. Liberibacter asiaticus” genome adapted for an intracellular lifestyle with other members of the Rhizobiales[J]. PLoS One, 2011, 6: e23289. doi: 10.1371/journal.pone.0023289
[43] WANG N, TRIVEDI P. Citrus Huanglongbing: A newly relevant disease presents unprecedented challenges[J]. Phytopathology, 2013, 103(7): 652-665. doi: 10.1094/PHYTO-12-12-0331-RVW
[44] ADAMS L, BOOPATHY R. Isolation and characterization of enteric bacteria from the hindgut of Formosan termite[J]. Bioresource Technol, 2005, 96(14): 1592-1598. doi: 10.1016/j.biortech.2004.12.020
[45] WILLIAMSON D L, WHITCOMB R F, TULLY J G, et al. Revised group classification of the genus Spiroplasma[J]. Int J Syst Evol Micr, 1998, 481: 1033-1039.
[46] DONGEN J T V, SCHURR U, PFISTER M, et al. Phloem metabolism and function have to cope with low internal oxygen[J]. Plant Physiol, 2003, 131(4): 1529-1543. doi: 10.1104/pp.102.017202
[47] VILLECHANOUX S, GARNIER M, LAIGRET F, et al. The genome of the non-cultured, bacterial-like organism associated with citrus greening disease contains the nusG-rplKAJL-rpoBC gene cluster and the gene for a bacteriophage type DNA polymerase[J]. Curr Microbiol, 1993, 26(3): 161-166. doi: 10.1007/BF01577372
[48] ZHOU L, POWELL C A, HOFFMAN M T, et al. Diversity and plasticity of the intracellular plant pathogen and insect symbiont “Candidatus Liberibacter asiaticus” as revealed by hypervariable prophage genes with intragenic tandem repeats[J]. Appl Environ Microb, 2011, 77(18): 6663-6673. doi: 10.1128/AEM.05111-11
[49] ZHENG Z, BAO M, WU F, et al. Predominance of single prophage carrying a CRISPR/Cas system in “Candidatus Liberibacter asiaticus” strains in southern China[J]. PLoS One, 2016, 11(1): e0146422. doi: 10.1371/journal.pone.0146422
[50] YAN Q, SREEDHARAN A, WEI S, et al. Global gene expression changes in Candidatus Liberibacter asiaticus during the transmission in distinct hosts between plant and insect[J]. Mol Plant Pathol, 2013, 14(4): 391-404. doi: 10.1111/mpp.2013.14.issue-4
[51] DODDS P N, RATHJEN J P. Plant immunity: Towards an integrated view of plant–pathogen interactions[J]. Nat Rev Genet, 2010, 11(8): 539.
[52] PRASAD S, XU J, ZHANG Y, et al. SEC-translocon dependent extracytoplasmic proteins of Candidatus Liberibacter asiaticus[J]. Front Microbiol, 2016, 7: 1989.
[53] CLARK K, FRANCO J Y, SCHWIZER S, et al. An effector from the Huanglongbing-associated pathogen targets citrus proteases[J]. Nat Commun, 2018, 9: 1718. doi: 10.1038/s41467-018-04140-9
[54] PITINO M, ARMSTRONG C M, CANO L M, et al. Transient expression of Candidatus Liberibacter asiaticus effector induces cell death in Nicotiana benthamiana[J]. Front Plant Sci, 2016(7): 982.
[55] ZOU H, GOWDA S, ZHOU L, et al. The destructive citrus pathogen, 'Candidatus Liberibacter asiaticus' encodes a functional flagellin characteristic of a pathogen-associated molecular pattern[J]. PLoS One, 2012, 7(9): e46447. doi: 10.1371/journal.pone.0046447
[56] HARTUNG J S, PAUL C, ACHOR D, et al. Colonization of dodder, Cuscuta indecora, by ‘Candidatus Liberibacter asiaticus’ and ‘Ca. L. americanus’[J]. Phytopathology, 2010, 100(8): 756-762. doi: 10.1094/PHYTO-100-8-0756
[57] 钱艳杰, 刘敏, 欧阳立力, 等. 利用Gateway技术筛选Candidatus Liberibacter asiaticus致病相关基因研究[J]. 植物病理学报, 2017, 47(6): 816-823. [58] ZHONG Y, CHENG C, JIANG N, et al. Comparative transcriptome and iTRAQ proteome analyses of citrus root responses to Candidatus Liberibacter asiaticus infection[J]. PLoS One, 2015, 10(6): e126973.
[59] FLEITES L A, JAIN M, ZHANG S, et al. “Candidatus Liberibacter asiaticus” prophage late genes may limit host range and culturability[J]. Appl Environ Microb, 2014, 80(19): 6023-6030. doi: 10.1128/AEM.01958-14
[60] JAIN M, FLEITES L A, GABRIEL D W. Prophage-encoded peroxidase in “Candidatus Liberibacter asiaticus” is a secreted effector that suppresses plant defenses[J]. Mol Plant Microbe In, 2015, 28(12): 1330-1337. doi: 10.1094/MPMI-07-15-0145-R
[61] GAO S, GARNIER M, BOVC J M. Production of monoclonal antibodies recognizing most asian strains of the greening BLO by in vitro immunization with an antigenic protein purified from the BLO[C]//University of California. Proceedings of 12th conference IOCV. Riverside: University of California, 1993: 244-249.
[62] GARNIER M, MARTINGROS G, BOVÉ J M. Monoclonal antibodies against the bacterial-like organism associated with citrus greening disease[J]. Microbiologie, 1987, 138(6): 639-650.
[63] 廖晓兰, 朱水芳, 赵文军, 等. 柑橘黄龙病病原16S rDNA克隆、测序及实时荧光PCR检测方法的建立[J]. 农业生物技术学报, 2004, 12(1): 80-85. doi: 10.3969/j.issn.1674-7968.2004.01.017 [64] 冯震, 周根, 邓晓玲. 沙田柚黄龙病病原16S rDNA片段的克隆与序列分析[J]. 广西农业生物科学, 2006, 25(2): 107-110. [65] GARNIER M, JAGOUEIX S, CRONJE P R, et al. Genomic characterization of a Liberibacter present in an ornamental rutaceous tree, Calodendrum capense, in the Western Cape Province of South Africa: Proposal of “Candidatus Liberibacter africanus subsp. capensis”[J]. Int J Syst Evol Micr, 2000, 50(6): 2119-2125. doi: 10.1099/00207713-50-6-2119
[66] BASTIANEL C, GARNIERSEMANCIK M, RENAUDIN J, et al. Diversity of “Candidatus Liberibacter asiaticus” based on the omp gene sequence[J]. Appl Environ Microb, 2005, 71(11): 6473-6478. doi: 10.1128/AEM.71.11.6473-6478.2005
[67] DODDAPANENI H, LIAO H, LIN H, et al. Comparative phylogenomics and multi-gene cluster analyses of the citrus Huanglongbing (HLB)-associated bacterium Candidatus Liberibacter[J]. BMC Res Notes, 2008, 1(1): 72. doi: 10.1186/1756-0500-1-72
[68] SUBANDIYAH S, NIKOH N, TSUYUMU S, et al. Complex endosymbiotic microbiota of the citrus psyllid Diaphorina citri (Homoptera: Psylloidea)[J]. Zoologicalence, 2009, 17: 983-989.
[69] TOMIMURA K, FURUYA N, MIYATA S, et al. Distribution of two distinct genotypes of citrus greening organism in the Ryukyu Islands of Japan[J]. Jpn Agr Res Q, 2010, 44(2): 151-158. doi: 10.6090/jarq.44.151
[70] FURUYA N, MATSUKURA K, TOMIMURA K, et al. Sequence homogeneity of the ψserA-trmU-tufB-secE-nusG-rplKAJL-rpoB gene cluster and the flanking regions of ‘Candidatus Liberibacter asiaticus’ isolates around Okinawa main island in Japan[J]. J General Plant Pathol, 2010, 76(2): 122-131. doi: 10.1007/s10327-010-0223-8
[71] HU W Z, WANG X F, ZHOU Y, et al. Diversity of the omp gene in “Candidatus Liberibacter asiaticus” in China[J]. J Plant Pathol, 2011, 93(1): 211-214.
[72] MIYATA S I, KATO H, DAVIS R, et al. Asian-common strains of “Candidatus Liberibacter asiaticus” are distributed in Northeast India, Papua New Guinea and Timor-Leste[J]. J Gen Plant Pathol, 2011, 77(1): 43-47. doi: 10.1007/s10327-010-0284-8
[73] MA W, LIANG M, GUAN L, et al. Population structures of “Candidatus Liberibacter asiaticus” in Southern China[J]. Phytopathology, 2014, 104(2): 158-62. doi: 10.1094/PHYTO-04-13-0110-R
[74] GHOSH D K, BHOSE S, MOTGHARE M, et al. Genetic diversity of the Indian populations of “Candidatus Liberibacter asiaticus” based on the tandem repeat variability in a genomic locus[J]. Phytopathology, 2015, 105(8): 1043-1049. doi: 10.1094/PHYTO-09-14-0253-R
[75] MATOS L A, HILF M E, CHEN J, et al. Validation of variable number of tandem repeat-based approach for examination of “Candidatus Liberibacter asiaticus” diversity and its applications for the analysis of the pathogen populations in the areas of recent introduction[J]. PLoS One, 2013, 8(11): 1551-1557.
[76] DENG X, LOPES S, WANG X, et al. Characterization of “Candidatus Liberibacter asiaticus” populations by double-locus analyses[J]. Curr Microbiol, 2014, 69(4): 554-560. doi: 10.1007/s00284-014-0621-9
[77] KATOH H, SUBANDIYAH S, TOMIMURA K, et al. Differentiation of “Candidatus Liberibacter asiaticus” isolates by variable-number tandem-repeat analysis[J]. Appl Environ Microb, 2011, 77(5): 1910-1917. doi: 10.1128/AEM.01571-10
[78] KATOH H, DAVIS R, SMITH M W, et al. Differentiation of Indian, East Timorese, Papuan and Floridian “Candidatus Liberibacter asiaticus” isolates on the basis of simple sequence repeat and single nucleotide polymorphism profiles at 25 loci[J]. Ann Appl Biol, 2012, 160(3): 291-297. doi: 10.1111/aab.2012.160.issue-3
[79] 许美容, 郑正, 李昕昱, 等. 基于短串联重复和PAGE的柑橘黄龙病菌‘Candidatus Liberibacter asiaticus’种间遗传多样性分析[J]. 植物病理学报, 2014, 44(6): 609-619. [80] WANG X, ZHOU C, DENG X, et al. Molecular characterization of a mosaic locus in the genome of “Candidatus Liberibacter asiaticus”[J]. BMC Microbiol, 2012, 12(1): 18. doi: 10.1186/1471-2180-12-18
[81] BOYD E F, BRUSSOW H. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved[J]. Trends in Microbiol, 2002, 10(11): 521-529. doi: 10.1016/S0966-842X(02)02459-9
[82] PUTTAMUK T, ZHOU L, THAVEECHAI N, et al. Genetic diversity of “Candidatus Liberibacter asiaticus” based on two hypervariable effector genes in Thailand[J]. PLoS One, 2014, 9(12): e112968-e112968. doi: 10.1371/journal.pone.0112968
[83] LIU R, ZHANG P, PU X, et al. Analysis of a prophage gene frequency revealed population variation of “Candidatus Liberibacter asiaticus” from two citrus-growing provinces in China[J]. Plant Dis, 2011, 95(4): 431-435. doi: 10.1094/PDIS-04-10-0300
[84] 李嘉慧, 郑正, 邓晓玲. 基于原噬菌体类型的我国柑橘黄龙病菌种群遗传结构分析[J]. 植物病理学报, 2019, 49(3): 334-342. [85] ZHENG Z, WU F, KUMAGAI L, et al. Two ‘Candidatus Liberibacter asiaticus’ strains recently found in California harbor different prophages[J]. Phytopathology, 2017, 107(6): 662-668. doi: 10.1094/PHYTO-10-16-0385-R
[86] JAGOUEIX S, BOVÉ J M, GARNIER M. PCR detection of the two ‘Candidatus’Liberibacter species associated with greening disease of citrus[J]. Mol Cell Probes, 1996, 10(1): 43-50. doi: 10.1006/mcpr.1996.0006
[87] 丁芳, 易干军, 王国平. 应用PCR及Nested-PCR技术检测柑桔黄龙病病原研究[J]. 园艺学报, 2004, 31(6): 803-806. doi: 10.3321/j.issn:0513-353X.2004.06.022 [88] 胡浩, 殷幼平, 王中康, 等. 柑橘黄龙病的常规PCR及荧光定量PCR检测[J]. 中国农业科学, 2006, 39(12): 2491-2497. doi: 10.3321/j.issn:0578-1752.2006.12.013 [89] KOGENARU S, YAN Q, RIERA N, et al. Repertoire of novel sequence signatures for the detection of “Candidatus Liberibacter asiaticus” by quantitative real-time PCR[J]. BMC Microbiol, 2014, 14: 39. doi: 10.1186/1471-2180-14-39
[90] MORGAN J K, ZHOU L, LI W, et al. Improved real-time PCR detection of “Candidatus Liberibacter asiaticus” from citrus and psyllid hosts by targeting the intragenic tandem-repeats of its prophage genes[J]. Mol Cell Probes, 2012, 26(2): 90-98. doi: 10.1016/j.mcp.2011.12.001
[91] ZHENG Z, XU M, BAO M, et al. Unusual five copies and dual forms of nrdB in “Candidatus Liberibacter asiaticus”: Biological implications and PCR detection application[J]. Sci Rep, 2016, 6(1): 1-9. doi: 10.1038/s41598-016-0001-8
[92] SECHLER A, SCHUENZEL E L, COOKE P, et al. Cultivation of ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. africanus’, and ‘Ca. L. americanus’ associated with Huanglongbing[J]. Phytopathology, 2009, 99(5): 480-486. doi: 10.1094/PHYTO-99-5-0480