• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

赤子爱胜蚓对赤红壤铝形态的影响

张孟豪, 吴家龙, 张池, 崔莹莹, 戴军

张孟豪, 吴家龙, 张池, 等. 赤子爱胜蚓对赤红壤铝形态的影响[J]. 华南农业大学学报, 2020, 41(2): 48-54. DOI: 10.7671/j.issn.1001-411X.201905011
引用本文: 张孟豪, 吴家龙, 张池, 等. 赤子爱胜蚓对赤红壤铝形态的影响[J]. 华南农业大学学报, 2020, 41(2): 48-54. DOI: 10.7671/j.issn.1001-411X.201905011
ZHANG Menghao, WU Jialong, ZHANG Chi, et al. Influence of Eisenia fetida on aluminum fractions in latosolic red soil[J]. Journal of South China Agricultural University, 2020, 41(2): 48-54. DOI: 10.7671/j.issn.1001-411X.201905011
Citation: ZHANG Menghao, WU Jialong, ZHANG Chi, et al. Influence of Eisenia fetida on aluminum fractions in latosolic red soil[J]. Journal of South China Agricultural University, 2020, 41(2): 48-54. DOI: 10.7671/j.issn.1001-411X.201905011

赤子爱胜蚓对赤红壤铝形态的影响

基金项目: 国家自然科学基金(41601227,41201305);国家重点研发计划重点专项(2016YFD0201301,2016YFD0201200,2016YFD0800300)
详细信息
    作者简介:

    张孟豪(1994—),男,硕士研究生,E-mail: 15737316382@163.com

    通讯作者:

    张 池(1980—),女,副研究员,博士,E-mail: zhangchi121@163.com

    戴 军(1958—),男,教授,博士,E-mail: jundai@scau.edu.cn

  • 中图分类号: S154.2

Influence of Eisenia fetida on aluminum fractions in latosolic red soil

  • 摘要:
    目的 

    研究蚯蚓添加对华南地区赤红壤酸化特征和铝(Al)形态的影响,为华南赤红壤的酸化改良提供理论依据。

    方法 

    通过室内盆栽试验,用赤红壤培养赤子爱胜蚓Eisenia fetida 40 d后测定蚓粪和土壤pH、有机质、全氮和阳离子交换量(CEC);通过连续浸提法测定土壤各铝形态含量,包括交换态铝(AlEx)、弱有机结合态铝(AlOrw)、有机结合态铝(AlOr)、无定形态铝(AlAmo)、氧化铁结合态铝(AlOxi)、非晶态铝硅酸盐和三水铝石(AlAag);采用主成分分析法研究不同处理土壤中铝的形态分布。试验以未添加蚯蚓的土壤为对照。

    结果 

    与对照相比,蚓粪的pH提高了1.27,全氮、CEC、AlOr以及交换性K、Na、Ca含量分别提高了62.16%、38.22%、355.70%、151.38%、65.38%和51.90%;蚓粪和土壤AlEx含量分别降低了50.95%和53.14%。蚓粪的pH、CEC、AlOr含量和交换性K、Na、Ca含量显著高于未吞食土壤。

    结论 

    蚯蚓可提升土壤pH和土壤AlOr的含量,促进交换性Ca、Mg的释放,降低土壤AlEx含量。

    Abstract:
    Objective 

    To investigate the impacts of earthworms on soil acidification characteristics and aluminum (Al) fractions of latosolic red soil in South China, and provide a theoretical basis for acidification improvement of latosolic red soil in South China.

    Method 

    The earthworms (Eisenia fetida) were incubated with latosolic red soil under laboratory conditions. After 40 days of incubation, Al fractions in earthworm cast and soil, namely exchangeable (AlEx), weakly organically bound (AlOrw), organically bound (AlOr), amorphous (AlAmo), Al occluded in crystalline iron oxides (AlOxi), and amorphous aluminosilicate and gibbsite (AlAag) fractions, were determined using sequential extraction methods. Earthworm cast and soil pH, organic carbon, total nitrogen, and cation exchange capacity (CEC) were determined. The principal component analyses were applied to study the distribution of different Al fractions in different treated soils. And the soil without earthworm was set as a control.

    Result 

    Compared to the control soil, pH of earthworm casts increased by 1.27, the total nitrogen, CEC, AlOr and exchangeable K, Na, and Ca contents increased by 62.16%, 38.22%, 355.70%, 151.38%, 65.38% and 51.90%, respectively, and AlEx contents in earthworm casts and soil decreased by 50.95% and 53.14% respectively. The pH, CEC, AlOr and exchangeable K, Na, Ca contents in casts were significantly higher than those in non-ingested soil.

    Conclusion 

    Earthworms can significantly increase soil pH and AlOr, promote the release of exchangeable Ca2+ and Mg2+, and reduce soil AlEx content.

  • 图  1   不同处理土壤的理化性质

    CK:对照土壤,不加蚯蚓;ESC:土壤+蚯蚓,收集蚓粪;ESN:土壤+蚯蚓,收集未吞食土壤;柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’ s法)

    Figure  1.   Soil physicochemical properties in different treatments

    CK: Control soil, no earthworm; ESC: Soil+earthworm, collecting cast; ESN: Soil+earthworm, collecting non-ingested soil; Different lowercase letters on bars indicated significant differences (P<0.05, Duncan’ s test)

    图  2   不同处理土壤的交换性盐基离子含量

    CK:对照土壤,不加蚯蚓;ESC:土壤+蚯蚓,收集蚓粪;ESN:土壤+蚯蚓,收集未吞食土壤;柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’ s法)

    Figure  2.   Soil exchangeable base cation contents in different treatments

    CK: Control soil, no earthworm; ESC: Soil+earthworm, collecting cast; ESN: Soil+earthworm, collecting non-ingested soil; Different lowercase letters on bars indicated significant differences (P<0.05, Duncan’ s test)

    图  3   各处理土壤铝形态、理化指标和交换性盐基离子的主成分分析

    SOC:土壤有机碳;TN:全氮;C/N:碳氮质量比;CEC:阳离子交换量;KEx:交换性K+;NaEx:交换性Na+;CaEx:交换性Ca2+;MgEx:交换性Mg2+;AlEx:交换态铝;AlOrw:弱有机结合态铝;AlOr:有机结合态铝;AlAmo:无定形态铝;AlOxi:氧化铁结合态铝;AlAag:非晶态铝硅酸盐和三水铝石;AlMin:矿物态铝;CK:对照土壤,不加蚯蚓;ESC:土壤+蚯蚓,收集蚓粪;ESN:土壤+蚯蚓,收集未吞食土壤

    Figure  3.   Principal component analyses of aluminum fractions, physicochemical indexes and exchangeable base cation contents in soils of different treatment

    SOC: Soil organic carbon; TN: Total nitrogen; C/N: Carbon nitrogen mass ratio; CEC: Cation exchange capacity; KEx: Exchangeable potassium; NaEx: Exchangeable sodium; CaEx: Exchangeable calcium; MgEx: Exchangeable magnesium; AlEx: Exchangeable aluminum; AlOrw: Weakly organically bound aluminum; AlOr: Organically bound aluminum; AlAmo: Amorphous aluminum; AlOxi: Iron oxide bound aluminum; AlAag: Amorphous aluminosilicate and gibbsite; AlMin: Mineral aluminum; CK: Control soil, no earthworm; ESC: Soil+earthworm, collecting cast; ESN: Soil+earthworm, collecting non-ingested soil

    表  1   不同处理的土壤铝形态1)

    Table  1   Soil aluminum fractions in different treatments

    处理
    Treatment
    w/(mg·kg−1) w/(g·kg−1)
    AlEx AlOrw AlOr AlAmo AlOxi AlAag AlMin
    CK 210.0±2.0a 251±17a 228±15b 0.12±0.03b 0.72±0.02b 14.0±1.0a 51.6±1.0a
    ESC 103.0±7.0b 281±13a 1 039±56a 0.15±0.05a 0.81±0.01a 12.2±0.4a 52.3±0.4a
    ESN 98.4±4.6b 271±12a 292±7b 0.11±0.10b 0.69±0.02b 13.8±1.0a 51.9±1.0a
     1) CK:对照土壤,不加蚯蚓;ESC:土壤+蚯蚓,收集蚓粪;ESN:土壤+蚯蚓,收集未吞食土壤;AlEx:交换态铝,AlOrw:弱有机结合态铝,AlOr:有机结合态铝,AlAmo:无定形态铝,AlOxi:氧化铁结合态铝,AlAag:非晶态铝硅酸盐和三水铝石,AlMin:矿物态铝;同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’ s法)
     1) CK: Control soil, no earthworm; ESC: Soil+earthworm, collecting cast; ESN: Soil+earthworm, collecting non-ingested soil; AlEx: Exchangeable aluminum; AlOrw: Weakly organically bound aluminum; AlOr: Organically bound aluminum; AlAmo: Amorphous aluminum; AlOxi: Iron oxide bound aluminum; AlAag: Amorphous alumin-osilicate and gibbsite; AlMin: Mineral aluminum; Different lowercase letters in the same column indicated significant differences (P<0.05,Duncan’ s test)
    下载: 导出CSV
  • [1]

    GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. doi: 10.1126/science.1182570

    [2]

    QIAO X, XIAO W, JAFFE D, et al. Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province, China[J]. Sci Total Environ, 2015, 511: 28-36. doi: 10.1016/j.scitotenv.2014.12.028

    [3]

    ZHAO Y, DUAN L, XING J, et al. Soil acidification in China: Is controlling SO2 emissions enough?[J]. Environ Scie Technol, 2009, 43(21): 8021-8026. doi: 10.1021/es901430n

    [4] 沈仁芳. 铝在土壤−植物中的行为及植物的适应机制[M]. 北京: 科学出版社, 2008: 1-22.
    [5]

    ZHANG J E, YU J Y, OUYANG Y. Responses of earthworm to aluminum toxicity in latosol[J]. Environ Sci Pollut Res, 2013, 20(2): 1135-1141. doi: 10.1007/s11356-012-0969-y

    [6]

    KUBOVÁ J, MATÚŠ P, BUJDOŠ M, et al. Influence of acid mining activity on release of aluminium to the environment[J]. Anal Chim Acta, 2005, 547(1): 119-125. doi: 10.1016/j.aca.2004.12.014

    [7]

    JANEZ Š, RADMILA M. Aluminium speciation in environmental samples: A review[J]. Anal Bioanal Chem, 2006, 386(4): 999-1012. doi: 10.1007/s00216-006-0422-5

    [8] 徐仁扣. 酸化红壤的修复原理与技术[M]. 北京: 科学出版社, 2012: 1-4.
    [9] 陈怀满. 土壤中化学物质的行为与环境质量[M]. 北京: 科学出版社, 2002: 194-204.
    [10]

    BAQUY M A, LI J Y, JIANG J, et al. Critical pH and exchangeable Al of four acidic soils derived from different parent materials for maize crops[J]. J Soil Sed, 2018, 18(4): 1490-1499.

    [11]

    LARSSEN T, VOGT R D, SEIP H M, et al. Mechanisms for aluminum release in Chinese acid forest soils[J]. Geoderma, 1999, 91(1/2): 65-86.

    [12]

    HAGVALL K, PERSSON P, KARLSSON T. Speciation of aluminum in soils and stream waters: The importance of organic matter[J]. Chem Geol, 2015, 417: 32-43. doi: 10.1016/j.chemgeo.2015.09.012

    [13]

    EVANS A, JACOBS M B. Aluminum activity in alpine tundra soil, Rocky Mountain National Park, Colorado, U.S.A[J]. Soil Sci, 2016, 181(8): 359-367. doi: 10.1097/SS.0000000000000172

    [14]

    BLOUIN M, HODSON M E, DELGADO E A, et al. A review of earthworm impact on soil function and ecosystem services[J]. Eur J Soil Sci, 2013, 64(2): 161-182. doi: 10.1111/ejss.12025

    [15]

    LAVELLE P, SPAIN A V. Soil ecology[M]. London: Kluwer Academic Publisher, 2001: 285-291.

    [16]

    RICHARDSON J B, BLOSSEY B, DOBSON A M. Earthworm impacts on trace metal (Al, Fe, Mo, Cu, Zn, Pb) exchangeability and uptake by young Acer saccharum and Polystichum acrostichoides[J]. Biogeochemistry, 2018, 138: 103-119. doi: 10.1007/s10533-018-0434-1

    [17]

    ZHANG C, MORA P, DAI J, et al. Earthworm and organic amendment effects on microbial activities and metal availability in a contaminated soil from China[J]. Appl Soil Ecol, 2016, 104: 54-66. doi: 10.1016/j.apsoil.2016.03.006

    [18]

    TICA D, UDOVIC M, LESTAN D. Long-term efficiency of soil stabilization with apatite and Slovakite: The impact of two earthworm species (Lumbricus terrestris and Dendrobaena veneta) on lead bioaccessibility and soil functioning[J]. Chemosphere, 2013, 91(1): 1-6. doi: 10.1016/j.chemosphere.2012.11.011

    [19]

    SIZMUR T, PALUMBOROE B, HODSON M E. Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost[J]. Environ Pollut, 2011, 159(7): 1852-1860. doi: 10.1016/j.envpol.2011.03.024

    [20]

    ZHANG C, LANGLEST R, VELASQUEZ E, et al. Cast production and NIR spectral signatures of Aporrectodea caliginosa fed soil with different amounts of half-decomposed Populus nigra litter[J]. Biol Fertil Soil, 2009, 45(8): 839-844. doi: 10.1007/s00374-009-0395-6

    [21]

    NAHMANI J, HODSON M E, BLACK S. Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils[J]. Environ Pollut, 2007, 149(1): 44-58. doi: 10.1016/j.envpol.2006.12.018

    [22]

    SHI Z, TANG Z, WANG C. A brief review and evaluation of earthworm biomarkers in soil pollution assessment[J]. Environ Sci Pollut Res, 2017, 24(15): 13284-13294. doi: 10.1007/s11356-017-8784-0

    [23] 吕焕哲, 王凯荣, 谢小立, 等. 有机物料对酸性红壤铝毒的缓解效应[J]. 植物营养与肥料学报, 2007(4): 637-641. doi: 10.3321/j.issn:1008-505X.2007.04.016
    [24]

    ZHANG B G, LI G T, SHEN T S, et al. Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida[J]. Soil Biol Biochem, 2000, 32(14): 2055-2062. doi: 10.1016/S0038-0717(00)00111-5

    [25]

    MORO H, KUNITO T, SAITO T, et al. Soil microorganisms are less susceptible than crop plants to potassium deficiency[J]. Arch Agron Soil Sci, 2014, 60(12): 1807-1813. doi: 10.1080/03650340.2014.918960

    [26] 邵宗臣, 何群, 王维君. 红壤中铝的形态[J]. 土壤学报, 1998, 35(1): 38-48. doi: 10.3321/j.issn:0564-3929.1998.01.006
    [27]

    UDOVIC M, LESTAN D. The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation[J]. Environ Pollut, 2007, 148(2): 663-668. doi: 10.1016/j.envpol.2006.11.010

    [28]

    THIOULOUSE J, CHESSEL D, SYLVAIN DOLÉDEC, et al. ADE-4: A multivariate analysis and graphical display software[J]. Statist Comput, 1997, 7(1): 75-83. doi: 10.1023/A:1018513530268

    [29]

    WEN B, LIU Y, HU X Y, et al. Effect of earthworms (Eisenia fetida) on the fractionation and bioavailability of rare earth elements in nine Chinese soils[J]. Chemosphere, 2006, 63(7): 1179-1186. doi: 10.1016/j.chemosphere.2005.09.002

    [30]

    YU X, CHENG J, WONG M H. Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass[J]. Soil Biol Biochem, 2005, 37(2): 195-201. doi: 10.1016/j.soilbio.2004.07.029

    [31] 张池, 周波, 吴家龙, 等. 蚯蚓在我国南方土壤修复中的应用[J]. 生物多样性, 2018, 26(10): 65-76.
    [32] 陈欢, 王斌, 李根, 等. 不同生活型蚯蚓蚓粪化学组成及其性状的研究[J]. 土壤, 2013, 45(2): 313-318. doi: 10.3969/j.issn.0253-9829.2013.02.020
    [33] 王斌, 李根, 陈欢, 等. 蚯蚓作用下土壤化学组成和性状的动态变化[J]. 水土保持学报, 2013, 27(3): 273-277.
    [34]

    GARCÍA-MONTERO L G, GRANDE-ORTÍZ M A, MENTA C, et al. Impact of earthworm casts on soil pH and calcium carbonate in black truffle burns[J]. Agroforest System, 2013, 87(4): 815-826. doi: 10.1007/s10457-013-9598-9

    [35]

    KARACA A. Biology of earthworms[M]. London: Chapman & Hall, 2011: 51-67.

    [36]

    LEE K E. Earthworms: Their ecology and relationships with soils and land use[M]. Sydney: Academic Press, 1985.

    [37]

    BAILEY S W, HORSLEY S B, LONG R P. Thirty years of change in forest soils of the allegheny plateau, Pennsylvania[J]. Soil Sci Soc Am J, 2005, 69(3): 681-690. doi: 10.2136/sssaj2004.0057

    [38]

    KUNITO T, ISOMURA I, SUMI H, et al. Aluminum and acidity suppress microbial activity and biomass in acidic forest soils[J]. Soil Biol Biochem, 2016, 97: 23-30. doi: 10.1016/j.soilbio.2016.02.019

    [39]

    PARKER D R, ZELAZNY L W, KINRAIDE T B. On the phytotoxicity of polynuclear hydroxy-aluminum complexes[J]. Soil Sci Soc Am J, 1989, 53(3): 789-796. doi: 10.2136/sssaj1989.03615995005300030027x

    [40] 殷佳丽. 茶园土壤团聚体氟、铝形态分布及其与土壤化学性质的关系[D]. 成都: 四川农业大学, 2016.
    [41] 秦樊鑫, 魏朝富, 黄先飞, 等. 黔西北茶园土壤活性铝的形态分布及影响因素[J]. 环境科学研究, 2015, 28(6): 943-950.
    [42]

    LI J, XU R, TIWARI D, et al. Mechanism of aluminum release from variable charge soils induced by low-molecular-weight organic acids: Kinetic study[J]. Geochim Et Cosmochim Acta, 2006, 70(11): 2755-2764. doi: 10.1016/j.gca.2006.03.017

    [43]

    WANG A Q, LIN K, MA C X, et al. A brief study on pH, exchangeable Ca2+ and Mg2+ in farmlands under tobacco-rice rotation in Xuancheng City of South Anhui[J]. Agric Sci, 2018, 9: 480-488.

    [44]

    HUANG J, ZHANG W, LIU M, et al. Different impacts of native and exotic earthworms on rhizodeposit carbon sequestration in a subtropical soil[J]. Soil Biol Biochem, 2015, 90: 152-160. doi: 10.1016/j.soilbio.2015.08.011

    [45]

    BRIONES I, JESUS M, OSTLE N J, et al. Stable isotopes reveal that the calciferous gland of earthworms is a CO2-fixing organ[J]. Soil Biol Biochem, 2008, 40(2): 554-557. doi: 10.1016/j.soilbio.2007.09.012

图(3)  /  表(1)
计量
  • 文章访问数:  1966
  • HTML全文浏览量:  6
  • PDF下载量:  2164
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-06
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2020-03-09

目录

    /

    返回文章
    返回