Transcriptome analysis of goat ovaries and follicles based on high-throughput sequencing
-
摘要:目的
比较山羊Capra hircus卵巢基质、大卵泡和小卵泡间的mRNA表达图谱,为探究卵泡发育机制提供一定的研究基础。
方法采用高通量测序技术对发情期川中黑山羊的卵巢基质、大卵泡和小卵泡进行转录组测序,利用生物信息学方法检测mRNA表达谱,筛选差异基因,对其进行GO和KEGG通路分析,最后随机抽取5个差异基因进行荧光定量PCR验证。
结果卵巢基质vs大卵泡、卵巢基质vs小卵泡和小卵泡vs大卵泡的差异表达基因分别为524、180和403个。筛选出INHA、TNFRSF19等15个与卵泡发育相关的基因,其主要富集在内质网蛋白质加工、类固醇生物合成、卵母细胞减数分裂等信号通路。通过qRT-PCR验证,定量结果与测序结果基本一致。
结论川中黑山羊卵巢基质、大卵泡和小卵泡的基因表达模式不同,小卵泡与卵巢基质的基因表达模式更相近。
Abstract:ObjectiveTo compare the expression profiles of mRNA among ovarian stroma, large follicles and small follicles of goat (Capra hircus), and lay a foundation for exploring the mechanism of follicular development.
MethodHigh-throughput sequencing technology was used to sequence the transcriptome of ovarian stroma, large follicles and small follicles in Chuanzhong black goats during estrus. The expression profiles of mRNA were detected by bioinformatics, and the differentially expressed genes were screened out. The GO and KEGG pathways of differentially expressed genes were analyzed. Finally, five differentially expressed genes were randomly selected and were verified by fluorescence quantitative PCR.
ResultThe differentially expressed genes of ovarian stroma vs large follicles, ovarian stroma vs small follicles and small follicles vs large follicles were 524, 180 and 403, respectively. Fifteen genes related to follicular development, such as INHA and TNFRSF19, were screened. They were mainly involved in endoplasmic reticulum protein processing, steroid biosynthesis, oocyte meiosis signaling pathway and so on. Quantitative results were basically consistent with sequencing results verified by qRT-PCR.
ConclusionThe gene expression profiles of ovarian stroma, large follicles and small follicles in Chuanzhong black goats are different, and the gene expression patterns of small follicles and ovarian stroma are relative more similar.
-
Keywords:
- goat /
- ovarian stroma /
- follicle /
- transcriptome /
- high-throughput sequencing
-
-
表 1 用于qRT-PCR检测的基因引物
Table 1 Gene primers for qRT-PCR detection
基因
Gene引物序列(5′→3′)
Primer sequence扩增长度/bp
Product lengthCYP19A1 F: CCGAAGTTGTGCCTATTGC
R: GCTGGGACCTGGTATTGAG101 INHBA F: CATGTGGGAAAAGTGGGGGA
R: TCAAAGTGCAGCGTCTTCCT146 KITLG F: CATTTATCTTCAACTGCTCCTA
R: CCACCATCTCGCTTATCC191 SERP1 F: GTCTTCCTGTGCTCGCTCTTC
R: CGATTATGGCTTCCGATTTCA268 GPNMB F: CCTTGTCCTTTGCCTTCAC
R: AAATCCACCAGGGAGTCGT230 β-actin F: TGCTTCTAGGCGGACTGATT
R: TACAATCAAAGTCCTCGGCCAC106 表 2 测序数据质控
Table 2 Quality control of sequencing data
样品1)
Sample有效测序量
No. of clean reads有效测序的占比/%
Ratio of clean readsQ302)/% 样品1)
Sample有效测序量
No. of clean reads有效测序的占比/%
Ratio of clean readsQ302)/% O1 105 953 656 99.68 94.28 LF1 104 768 836 99.62 94.23 O2 102 197 046 99.34 92.71 LF2 100 396 168 99.70 94.85 O3 105 678 158 99.41 92.86 LF3 104 879 676 99.48 94.15 O4 101 844 278 99.44 92.86 LF4 102 209 432 99.37 92.57 O5 107 096 856 99.32 91.31 LF5 100 346 902 99.75 93.86 O6 104 231 700 99.57 92.09 LF6 101 449 700 99.50 92.26 SF1 102 014 414 99.69 94.88 SF4 105 756 846 99.19 91.52 SF2 102 993 890 99.45 94.24 SF5 103 645 956 99.58 93.79 SF3 106 653 668 99.77 94.11 SF6 106 529 902 99.45 92.38 1) O:卵巢基质;LF:大卵泡;SF:小卵泡;2) 碱基识别准确率在99.9%以上的碱基所占百分比
1) O: Ovarian stroma; LF: Large follicle; SF: Small follicle; 2) Percentage of bases with base recognition accuracy above 99.9%表 3 不同卵巢部位间排名前10位的差异表达基因
Table 3 Top ten differentially expressed genes among different parts of ovary
项目1)
Item基因
Genelog2(FC)2) P 项目1)
Item基因
Genelog2(FC)2) P 项目1)
Item基因
Genelog2(FC)2) P O vs LF EVI2A 1.69 3.45×10−6 O vs SF KCTD12 1.57 1.52×10−3 LF vs SF GLI1 2.13 1.22×10−6 IRF2BP2 1.24 5.84×10−7 CFD 1.43 3.02×10−4 SLC25A34 1.57 5.72×10−6 PNRC1 1.16 8.06×10−6 PTCH2 −2.23 2.59×10−3 PRRT2 1.35 2.55×10−5 GPR21 1.06 6.22×10−6 GDF5 −1.84 1.99×10−3 PPM1J 1.34 3.08×10−5 TMEM176B −1.86 1.27×10−5 GLI1 −1.48 3.80×10−4 TNRC6C 1.24 2.21×10−5 RDH11 −1.50 1.84×10−6 EMID1 −1.32 4.01×10−4 EFNB3 1.10 2.00×10−5 MINOS1 −1.37 6.17×10−6 MYCL −1.30 3.35×10−4 EFS 1.07 3.58×10−5 MPDU1 −1.09 1.09×10−5 DPEP3 −1.26 1.47×10−3 ADGRL1 1.04 1.63×10−5 NME1 −1.06 1.01×10−5 DPEP2 −1.23 1.68×10−3 KITLG −1.85 1.34×10−5 ARL2BP −1.05 3.12×10−6 CNRIP1 −1.20 1.81×10−3 TMEM176B −1.49 3.67×10−5 1) O:卵巢基质;LF:大卵泡;SF:小卵泡;2) FC:表达差异倍数
1) O: Ovarian stroma; LF: Large follicle; SF: Small follicle; 2) FC: Expression fold-change表 4 卵巢基质vs大卵泡部分差异表达基因的GO功能分类
Table 4 GO functional classification of partial differentially expressed genes in ovarian stroma vs large follicle
分类
Category条目
Term基因数目
Gene countP 生物学过程 Biological process RNA加工过程 RNA processing 5 2.70×10−2 细胞组分 Cellular component 细胞 Cell 66 1.90×10−2 细胞部分 Cell part 65 2.40×10−2 细胞内部 Intracellular 63 1.70×10−3 细胞内的部分 Intracellular part 55 6.00×10−3 细胞质 Cytoplasm 39 9.80×10−4 细胞内膜结合细胞器 Intracellular membrane-bounded organelle 36 2.50×10−2 膜结合细胞器 Membrane-bounded organelle 36 2.50×10−2 细胞质部分 Cytoplasmic part 28 2.80×10−2 分子功能 Molecular function 催化活性 Catalytic activity 51 8.20×10−4 磷酸核苷结合 Nucleotide phosphate binding 22 4.60×10−2 核苷酸结合 Nucleotide binding 22 4.60×10−2 转移酶活性 Transferase activity 21 1.50×10−2 转移酶活性(转移含磷基团)
Transferase activity (Transferring phosphorus-containing groups)12 2.70×10−2 异构酶活性 Isomerase activity 5 2.00×10−2 表 5 卵巢基质vs小卵泡部分差异表达基因的GO功能分类
Table 5 GO functional classification of partial differentially expressed genes in ovarian stroma vs small follicle
分类
Category条目
Term基因数目
Gene countP 生物学过程 Biological process 初级代谢过程 Primary metabolic process 13 4.70×10−2 细胞对应激的反应 Cellular response to stress 4 4.40×10−2 分子功能 Molecular function 小分子结合 Small molecule binding 12 2.30×10−4 碳水化合物衍生物结合 Carbohydrate derivative binding 11 2.50×10−4 核苷酸结合 Nucleotide binding 11 5.90×10−4 磷酸核苷结合 Nucleoside phosphate binding 11 5.90×10−4 核糖核苷结合 Ribonucleoside binding 10 6.00×10−4 核苷结合 Nucleoside binding 10 6.00×10−4 嘌呤核苷三磷酸结合 Purine ribonucleoside triphosphate binding 10 6.00×10−4 嘌呤核苷结合 Purine nucleoside binding 10 6.00×10−4 嘌呤核糖核苷结合 Purine ribonucleoside binding 10 6.00×10−4 核糖核苷酸结合 Ribonucleotide binding 10 6.70×10−4 表 6 小卵泡vs大卵泡部分差异表达基因的GO功能分类
Table 6 GO functional classification of partial differentially expressed genes in small follicle vs large follicle
分类
Category条目
Term基因数目
Gene countP 生物学过程
Biological process细胞进程 Cellular process 73 3.40×10−2 有机环状化合物代谢过程 Organic cyclic compound metabolic process 31 1.70×10−2 有机氮化合物代谢过程 Organonitrogen compound metabolic process 17 3.80×10−2 有机磷代谢过程 Organophosphate metabolic process 10 1.60×10−2 含核苷的小分子代谢过程 Nucleobase-containing small molecule metabolic process 9 3.50×10−2 嘌呤核糖核苷代谢过程 Purine ribonucleoside metabolic process 8 2.00×10−2 嘌呤核苷代谢过程 Purine nucleoside metabolic process 8 2.00×10−2 核糖核苷代谢过程 Ribonucleoside metabolic process 8 2.00×10−2 糖基化合物代谢过程 Glycosyl compound metabolic process 8 2.90×10−2 核苷代谢过程 Nucleoside metabolic process 8 2.90×10−2 细胞组分
Cellular component细胞内 Intracellular 64 2.70×10−3 细胞质 Cytoplasm 35 2.80×10−2 细胞质部分 Cytoplasmic part 29 2.30×10−2 线粒体 Mitochondrion 14 9.20×10−4 线粒体部分 Mitochondrial part 10 5.20×10−3 细胞器膜 Organelle membrane 10 2.30×10−2 线粒体膜 Mitochondrial membrane 9 5.70×10−3 细胞器包膜 Organelle envelope 9 9.00×10−3 线粒体包膜 Mitochondrial envelope 9 9.00×10−3 囊膜 Envelope 9 9.00×10−3 分子功能
Molecular function磷酸核苷结合 Nucleoside phosphate binding 28 2.90×10−3 核苷酸结合 Nucleotide binding 28 2.90×10−3 嘌呤核苷酸结合 Purine nucleotide binding 25 2.10×10−3 嘌呤核苷结合 Purine nucleoside binding 24 3.30×10−3 嘌呤核苷三磷酸结合 Purine ribonucleoside triphosphate binding 24 3.30×10−3 嘌呤核糖核苷结合 Purine ribonucleoside binding 24 3.30×10−3 核苷结合 Nucleoside binding 24 3.30×10−3 核糖核苷结合 Ribonucleoside binding 24 3.30×10−3 嘌呤核糖核苷酸结合 Purine ribonucleotide binding 24 4.10×10−3 表 7 卵巢基质、大卵泡和小卵泡部分差异表达基因的KEGG代谢通路
Table 7 KEGG metabolic pathway of partial differentially expressed genes in ovarian stroma, large follicle and small follicle
项目1)
Item通路
Pathway数目
CountP O vs LF 代谢途径 Metabolic pathway 298 4.90×10−17 抗生素的生物合成 Antibiotic biosynthesis 79 1.30×10−14 氧化磷酸化 Oxidative phosphorylation 77 1.10×10−22 内质网蛋白质加工 Protein processing in endoplasmic reticulum 70 1.00×10−14 泛素介导的蛋白水解 Ubiquitin mediated proteolysis 34 6.30×10−3 细胞周期 Cell cycle 32 7.30×10−3 甲状腺激素信号通路 Thyroid hormone signaling pathway 29 5.00×10−3 柠檬酸循环 Citrate cycle 17 2.20×10−6 Notch信号通路 Notch signaling pathway 13 4.90×10−2 类固醇生物合成 Steroid biosynthesis 12 1.90×10−4 O vs SF 癌症的途径 Pathway in cancer 28 3.20×10−2 细胞周期 Cell cycle 25 4.50×10−9 抗生素的生物合成 Antibiotic biosynthesis 17 4.00×10−2 RNA转运 RNA transport 16 1.10×10−2 嘌呤代谢 Purine metabolism 15 3.70×10−2 卵母细胞减数分裂 Oocyte meiosis 13 8.30×10−3 嘧啶代谢 Pyrimidine metabolism 11 1.30×10−2 DNA复制 DNA replication 9 2.30×10−4 孕酮介导的卵母细胞成熟 Progesterone-mediated oocyte maturation 9 4.30×10−2 错配修复 Mismatch repair 8 8.90×10−5 SF vs LF 代谢途径 Metabolic pathway 248 5.60×10−4 氧化磷酸化 Oxidative phosphorylation 74 3.80×10−19 内质网蛋白质加工 Protein processing in endoplasmic reticulum 67 6.00×10−12 抗生素的生物合成 Antibiotic biosynthesis 54 7.80×10−4 泛素介导的蛋白水解 Ubiquitin mediated proteolysis 40 2.90×10−4 甲状腺激素信号通路 Thyroid hormone signaling pathway 32 1.40×10−3 AMPK信号通路 AMPK signaling pathway 32 8.70×10−3 蛋白酶体 Proteasome 31 1.10×10−12 Notch信号通路 Notch signaling pathway 15 1.50×10−2 类固醇生物合成 Steroid biosynthesis 9 2.10×10−2 1) O:卵巢基质;LF:大卵泡;SF:小卵泡
1) O: Ovarian stroma; LF: Large follicle; SF: Small follicle -
[1] CUI H X, ZHAO S M, CHENG M L, et al. Cloning and expression levels of genes relating to the ovulation rate of the Yunling black goat[J]. Biol Reprod, 2009, 80(2): 219-226. doi: 10.1095/biolreprod.108.069021
[2] WANG X, ZOU P, HE Y, et al. Effect of luteinizing hormone on goat theca cell apoptosis and steroidogenesis through activation of the PI3K/AKT pathway[J]. Anim Reprod Sci, 2018, 190: 108-118. doi: 10.1016/j.anireprosci.2018.01.014
[3] YANG D, JIANG T, LIN P, et al. Knock-down of apoptosis inducing factor gene protects endoplasmic reticulum stress-mediated goat granulosa cell apoptosis[J]. Theriogenology, 2017, 88: 89-97. doi: 10.1016/j.theriogenology.2016.10.001
[4] ZI XD, LU J Y, ZHOU H, et al. Comparative analysis of ovarian transcriptomes between prolific and non-prolific goat breeds via high-throughput sequencing[J]. Reprod Domest Anim, 2018, 53(2): 344-351. doi: 10.1111/rda.13111
[5] LING YH, REN C H, GUO X F, et al. Identification and characterization of microRNAs in the ovaries of multiple and uniparous goats (Capra hircus) during follicular phase[J]. BMC Genomics, 2014, 15: 339. doi: 10.1186/1471-2164-15-339
[6] TERENINA E, FABRE S, BONNET A, et al. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia[J]. Physiol Genomics, 2017, 49(2): 67-80. doi: 10.1152/physiolgenomics.00069.2016
[7] ZHANG J, LIU Y, YAO W, et al. Initiation of follicular atresia: Gene networks during early atresia in pig ovaries[J]. Reproduction, 2018, 156(1): 23-33. doi: 10.1530/REP-18-0058
[8] 李鹏飞, 孟金柱, 景炅婕, 等. 转录组测序筛选牛卵泡发育相关基因及其表达差异分析[J]. 中国农业科学, 2018, 51(15): 187-195. [9] 李鹏飞, 孟金柱, 谢建山, 等. PDF2和ODF1转录组测序筛选牛卵泡发育相关基因[J]. 畜牧兽医学报, 2018, 49(2): 300-309. [10] HATZIRODOS N, IRVING-RODGERS H F, HUMMITZSCH K, et al. Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes[J]. BMC Genomics, 2014, 15: 24. doi: 10.1186/1471-2164-15-24
[11] 吴阳升, 林嘉鹏, 汪立芹, 等. 绵羊小卵泡与中卵泡转录组差异特征分析[J]. 江苏农业学报, 2016, 32(4): 832-842. doi: 10.3969/j.issn.1000-4440.2016.04.019 [12] 江昱, 王杰, 金鑫燕. 不同四川黑山羊品种mtDNAD-loop区遗传多样性分析[J]. 安徽农业科学, 2010, 38(27): 15052-15054. doi: 10.3969/j.issn.0517-6611.2010.27.089 [13] 杨新月, 周多恩, 李斌, 等. 湖羊和川中黑山羊GDF9、BMPR-IB、GnRHR基因多态性及其与产羔数的关联分析[J]. 黑龙江畜牧兽医, 2018(15): 106-110. [14] 王丽华. DBP降解菌DNB-S1转录组学研究及功能基因的筛选[D]. 哈尔滨: 东北农业大学, 2016. [15] 邓素芳. 基于RNA-Seq的野生蕉(Musa itinerans)果皮颜色差异形成的分析机制研究[D]. 福州: 福建农林大学, 2018. [16] 尹修远, 王建, 李拥军, 等. 同期发情技术在绵羊生产上的应用[J]. 当代畜牧, 2018(30): 18-20. [17] 谭晓山, 王燕, 皇甫江云, 等. 山羊发情控制技术[J]. 贵州畜牧兽医, 2017, 41(6): 27-29. doi: 10.3969/j.issn.1007-1474.2017.06.009 [18] 吕永锋, 任茂源, 郭彬彬, 等. 舍饲陇东绒山羊同期发情及繁殖性状的研究[J]. 中国草食动物科学, 2018, 38(6): 71-72. doi: 10.3969/j.issn.2095-3887.2018.06.022 [19] 王珂, 于轩, 任茂源, 等. 不同受体羊同期发情及胚胎移植效果的研究[J]. 畜牧兽医杂志, 2018, 37(6): 1-3. doi: 10.3969/j.issn.1004-6704.2018.06.001 [20] LI W, LI C, CHEN S, et al. Effect of inhibin A on proliferation of porcine granulosa cells in vitro[J]. Theriogenology, 2018, 114: 136-142. doi: 10.1016/j.theriogenology.2018.03.034
[21] HATZIRODOS N, HUMMITZSCH K, IRVING-RODGERS H F, et al. Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia[J]. BMC Genomics, 2014, 15: 40. doi: 10.1186/1471-2164-15-40
[22] CHOI H, RYU K Y, ROH J. Kruppel-like factor 4 plays a role in the luteal transition in steroidogenesis by downregulating Cyp19A1 expression[J]. Am J Physiol Endocrinol Metab, 2019, 316(6): E1071-E1080. doi: 10.1152/ajpendo.00238.2018
[23] ROSEWELL K L, AL-ALEM L, ZAKERKISH F, et al. Induction of proteinases in the human preovulatory follicle of the menstrual cycle by human chorionic gonadotropin[J]. Fertil Steril, 2015, 103(3): 826-833. doi: 10.1016/j.fertnstert.2014.11.017
[24] OGIWARA K, TAKAHASHI T. Nuclear progestin receptor phosphorylation by Cdk9 is required for the expression of Mmp15, a protease indispensable for ovulation in medaka[J]. Cells, 2019, 8: 215. doi: 10.3390/cells8030215.
[25] MAZZONI G, SALLEH S M, FREUDE K, et al. Identification of potential biomarkers in donor cows for in vitro embryo production by granulosa cell transcriptomics[J]. PLoS One, 2017, 12(4): e0175464. doi: 10.1371/journal.pone.0175464
[26] DIAO H, XIAO S, LI R, et al. Distinct spatiotemporal expression of serine proteases Prss23 and Prss35 in periimplantation mouse uterus and dispensable function of Prss35 in fertility[J]. PLoS One, 2013, 8(2): e56757. doi: 10.1371/journal.pone.0056757
[27] HATZIRODOS N, HUMMITZSCH K, IRVING-RODGERS H F, et al. Transcriptome comparisons identify new cell markers for theca interna and granulosa cells from small and large antral ovarian follicles[J]. PLoS One, 2015, 10(3): e0119800. doi: 10.1371/journal.pone.0119800
[28] KIM K, BLOOM M S, FUJIMOTO V Y, et al. Variability in follicular fluid high density lipoprotein particle components measured in ipsilateral follicles[J]. J Assist Reprod Genet, 2016, 33(3): 423-430. doi: 10.1007/s10815-016-0648-x
[29] SRIRAMAN V, SINHA M, RICHARDS J S. Progesterone receptor-induced gene expression in primary mouse granulosa cell cultures[J]. Biol Reprod, 2010, 82(2): 402-412. doi: 10.1095/biolreprod.109.077610
[30] SAMIR M, GLISTER C, MATTAR D, et al. Follicular expression of pro-inflammatory cytokines tumour necrosis factor-alpha (TNFalpha), interleukin 6(IL6) and their receptors in cattle: TNFalpha, IL6 and macrophages suppress thecal androgen production in vitro[J]. Reproduction, 2017, 154(1): 35-49. doi: 10.1530/REP-17-0053
[31] MIAO X, LUO Q, ZHAO H, et al. Ovarian transcriptomic study reveals the differential regulation of miRNAs and lncRNAs related to fecundity in different sheep[J]. Sci Rep, 2016, 6: 35299. doi: 10.1038/srep35299
[32] ZHENG Z G, XU H, SUO S S, et al. The essential role of H19 contributing to cisplatin resistance by regulating glutathione metabolism in high-grade serous ovarian cancer[J]. Sci Rep, 2016, 6: 26093. doi: 10.1038/srep26093
[33] OJIMA F, SAITO Y, TSUCHIYA Y, et al. Runx3 regulates folliculogenesis and steroidogenesis in granulosa cells of immature mice[J]. Cell Tissue Res, 2019, 375(3): 743-754. doi: 10.1007/s00441-018-2947-2
[34] YAN Q, ZHENG D M, YU J S, et al. Comprehensive analysis of miRNA-mRNA-lncRNA networks in non-smoking and smoking patients with chronic obstructive pulmonary disease[J]. Cell Physiol Biochem, 2018, 50: 1140-1153. doi: 10.1159/000494541
[35] XIE L, YAO Z H, ZHANG Y, et al. Deep RNA sequencing reveals the dynamic regulation of miRNA, lncRNAs, and mRNAs in osteosarcoma tumorigenesis and pulmonary metastasis[J]. Cell Death Dis, 2018, 9: 772. doi: 10.1038/s41419-018-0813-5
[36] 何冬倩. 山羊卵巢颗粒细胞中chi-miR-130b-5p的靶向基因研究[D]. 重庆: 西南大学, 2018. [37] 曹婧. Aurora B及其SUMO修饰对小鼠卵泡发育和颗粒细胞生长的影响及调控机制研究[D]. 武汉: 华中农业大学, 2017. [38] 程国虎. CDC25C基因在成年山羊与幼年_省略_羊卵巢颗粒细胞中的表达及功能验证[D]. 扬州: 扬州大学, 2017. [39] BONNET A, LE CAO K A, SANCRISTOBAL M, et al. In vivo gene expression in granulosa cells during pig terminal follicular development[J]. Reproduction, 2008, 136(2): 211-224. doi: 10.1530/REP-07-0312
[40] NADERI A, LIU J, BENNETT I C. BEX2 regulates mitochondrial apoptosis and G1 cell cycle in breast cancer[J]. Int J Cancer, 2010, 126(7): 1596-1610.
[41] 韩秋悦, 范颜会, 王雅丽, 等. BEX2与INI1/hSNF5蛋白的相互作用及其在细胞周期中的功能鉴定[J]. 遗传, 2012, 34(6): 711-718. [42] KHAN D R, FOURNIER E, DUFORT I, et al. Meta-analysis of gene expression profiles in granulosa cells during folliculogenesis[J]. Reproduction, 2016, 151(6): R103-R110. doi: 10.1530/REP-15-0594
[43] CLAESKENS A. ONGENAE N, NEEFS J M, et al. Hevin is down-regulated in many cancers and is a negative regulator of cell growth and proliferation[J]. Br J Cancer, 2000, 82(6): 1123-1130. doi: 10.1054/bjoc.1999.1051
[44] 陈立兰. 三羧酸循环酶CS和SDHB对卵巢癌生物学行为和mtDNA的作用研究[D]. 上海: 上海交通大学, 2015. [45] MESTWERDT W. Follicular granulosa cells in relationship to steroid biosynthesis in the periovulation phase[J]. Fortschr Med, 1977, 95(6): 361-365.
[46] STOCCO D M, ZHAO A H, TU L N, et al. A brief history of the search for the protein(s) involved in the acute regulation of steroidogenesis[J]. Mol Cell Endocrinol, 2017, 441: 7-16. doi: 10.1016/j.mce.2016.07.036
[47] 毛宁. 香猪类固醇激素合成关键基因差异表达的分子机制研究[D]. 贵阳: 贵州大学, 2018. [48] 苗艳平. 刘若男, 魏彦辉, 等. 绵羊卵巢oar-mir-150靶向调节类固醇激素合成急性调节蛋白基因的表达[J]. 农业生物技术学报, 2018, 26(2): 234-245. [49] 周成杰. Centromere protein F在小鼠卵母细胞减数分裂及早期胚胎发育过程中的功能研究[D]. 呼和浩特: 内蒙古大学, 2017. [50] 文佳. GSK-3β调控小鼠卵母细胞第一次减数分裂与原始卵泡形成机制的研究[D]. 北京: 中国农业大学, 2018. [51] 曹俊国, 陈敏, 李文, 等. 哺乳动物卵泡发育调控分子机制研究进展[J]. 特产研究, 2018, 40(4): 114-118. [52] 袁晓华, 张莉莉, 盛喜霞, 等. PGRMC1介导孕酮抑制卵泡发育的作用及机制研究[J]. 海南医学, 2019, 30(1): 1-5. doi: 10.3969/j.issn.1003-6350.2019.01.001 [53] LODDE V, PELUSO J J. A novel role for progesterone and progesterone receptor membrane component 1 in regulating spindle microtubule stability during rat and human ovarian cell mitosis[J]. Biol Reprod, 2011, 84(4): 715-722. doi: 10.1095/biolreprod.110.088385
[54] JING J, JIANG X, CHEN J, et al. Notch signaling pathway promotes the development of ovine ovarian follicular granulosa cells[J]. Anim Reprod Sci, 2017, 181: 69-78. doi: 10.1016/j.anireprosci.2017.03.017