Identification of endophytic fungus Chaetomium sp. Eef-10 from Eucalyptus exserta and analysis of its active ingredients
-
摘要:目的
确定内生真菌Eef-10的分类地位,分离和鉴定该真菌中的次生代谢产物并评价其抗细菌和抗肿瘤细胞活性,以期得到具有抗细菌和抗肿瘤活性的天然活性化合物。
方法内生真菌的鉴定采用形态学和分子生物学相结合的方法;次生代谢产物的分离和纯化主要采用减压硅胶柱层析、葡聚糖凝胶LH-20和半制备高效液相色谱等方法;化合物的鉴定主要依据1H NMR和13C NMR等波谱学数据以及相关的参考文献;采用MTT显色法测定了次生代谢产物对5种不同供试细菌的抑制活性;采用CCK8法测定了次生代谢产物对2种不同癌细胞的抑制活性。
结果从内生真菌Eef-10中分离到的3个化合物,分别鉴定为Atraric acid(化合物Ⅰ)、2, 4−二羟基−3, 6−二甲基苯甲酸乙酯(Ethyl 2, 4-dihydroxy-3, 6-dimethylbenzoate)(化合物Ⅱ)和4−甲基−5, 6−二氢−2H−吡喃−2−酮(4-methyl-5, 6-dihydro-2 H-pyran-2-one)(化合物Ⅲ)。化合物Ⅱ对5种革兰阴性细菌表现出强抑制活性,最大半数抑制质量浓度(IC50)为35.87~55.50 μg/mL,化合物Ⅰ的IC50为67.25~130.55 μg/mL,化合物Ⅲ的IC50均大于200 μg/mL。抗肿瘤细胞活性的测定结果表明,化合物Ⅱ对人肝癌细胞株Hep-G2的IC50为1.50 μg/mL,活性强于阳性对照喜树碱(IC50为3.6 μg/mL)。
结论从内生真菌Chaetomium sp. Eef-10中分离得到化合物Ⅰ~Ⅲ,化合物Ⅱ对桉树青枯病菌和Hep-G2细胞具有较好的抑制作用。
-
关键词:
- 内生真菌 /
- Chaetomium sp. Eef-10 /
- 抗细菌活性 /
- 抗肿瘤细胞活性
Abstract:ObjectiveTo determine the classification status of endophytic fungus Eef-10. To isolate and identify secondary metabolites of Eef-10 and evaluate their antibacterial and antitumor activities in order to obtain natural active compounds.
MethodThe endophytic fungus was identified by combining morphology and molecular biology methods. The secondary metabolites were mainly separated and purified by vacuum silica gel column chromatography, sephadex LH-20 column chromatography and semi-preparative HPLC. The compounds were identified mainly based on 1H NMR and 13C NMR spectral data as well as related references. The antibacterial activities against five different test bacteria were determined by the MTT method and the antitumor activities against two cancer cells were determined by the CCK8 method.
ResultThree compounds were isolated from the endophytic fungus Eef-10, namely atraric acid (Compound Ⅰ), ethyl 2, 4-dihydroxy-3, 6-dimethylbenzoate (Compound Ⅱ) and 4-methyl-5, 6-dihydro-2 H-pyran-2-one (Compound Ⅲ). Compound Ⅱ displayed strong inhibitory activities against five test gram-negative bacteria, and the IC50 values were 35.87−55.50 μg/mL. The IC50 values of compound Ⅰ were 67.25−130.55 μg/mL, while compound Ⅲ had IC50 values of more than 200 μg/mL for all five bacteria. The IC50 value of compound Ⅱ for Hep-G2 was 1.50 μg/mL, which was stronger than the positive control camptothecin of 3.6 μg/mL.
ConclusionCompounds Ⅰ−Ⅲ were isolated from the endophytic fungus Chaetomium sp. Eef-10 and compound Ⅱ showed great antibacterial and antitumor activities on R. solanacearum and Hep-G2 tumor cells.
-
-
表 1 内生真菌Eef-10次生代谢产物的抗细菌活性
Table 1 Antibacterial activities of the secondary metabolites isolated from endophytic fungus Eef-10
供试样品
Tested sampleIC50/(μg·mL−1) 大肠埃希菌
Escherichia
coli根癌土壤杆菌
Agrobacterium
tumefaciens黄瓜角斑病菌
Pseudomonas
lachrymans桉树青枯病菌
Ralstonia
solanacearum番茄疮痂病菌
Xanthomonas
vesicatoria化合物Ⅰ Compound Ⅰ 130.55 ± 3.57 105.39 ± 4.52 67.25 ± 1.23 113.11 ± 3.58 93.59 ± 0.43 化合物Ⅱ Compound Ⅱ 48.52 ± 0.33 55.50 ± 1.61 38.91 ± 0.54 35.87 ± 0.18 40.80 ± 0.70 化合物Ⅲ Compound Ⅲ > 200 > 200 > 200 > 200 > 200 硫酸链霉素 Streptomycin sulfate 18.51 ± 0.46 5.10 ± 0.03 30.54 ± 0.89 33.07 ± 2.46 13.81 ± 1.62 表 2 内生真菌Eef-10次生代谢产物的抗肿瘤细胞活性
Table 2 Antitumor activities of the secondary metabolites isolated from endophytic fungus Eef-10
供试细胞Tested cell IC50/(μg·mL−1) 化合物Ⅰ
Compound Ⅰ化合物Ⅱ
Compound Ⅱ化合物Ⅲ
Compound Ⅲ喜树碱
CamptothecinHep-G2 > 50 1.50 > 50 3.6 HeLa > 50 > 50 > 50 6.3 -
[1] 杨镇, 曹君. 植物内生菌及其次级代谢产物的研究进展[J]. 微生物学杂志, 2016, 36(4): 1-6. doi: 10.3969/j.issn.1005-7021.2016.04.001 [2] 黄敬瑜, 张楚军, 姚瑜龙, 等. 植物内生菌生物抗菌活性物质研究进展[J]. 生物工程学报, 2017(2): 178-186. [3] 王举涛, 马宗慧, 王国凯, 等. 亳芍内生真菌Alternaria alternate次生代谢产物的研究[J]. 中草药, 2019, 50(5): 1061-1065. doi: 10.7501/j.issn.0253-2670.2019.05.006 [4] 马养民, 乔珂, 李梦云, 等. 夹竹桃内生真菌R22的次生代谢产物研究[J]. 陕西科技大学学报, 2016, 34(6): 125-129. doi: 10.3969/j.issn.1000-5811.2016.06.024 [5] 王富乾, 蒋捷, 马浩然, 等. 一株毛壳属内生真菌次生代谢产物研究[J]. 中草药, 2017, 48(7): 1298-1301. [6] LI S, ZHANG X, WANG X H, et al. Novel natural compounds from endophytic fungi with anticancer activity[J]. Eur J Med Chem, 2018, 156: 316-343. doi: 10.1016/j.ejmech.2018.07.015
[7] YU J, WU Y, HE Z, et al. Diversity and antifungal activity of endophytic fungi associated with Camellia oleifera[J]. Mycobiology, 2018, 46(2): 85-91. doi: 10.1080/12298093.2018.1454008
[8] WANG D, WANG H, LI J, et al. Investigating the role of endophytic fungi in Gentiana scabrabge. by cross-growth period inoculation[J]. Indian J Microbiol, 2018, 58(3): 319-325. doi: 10.1007/s12088-018-0725-1
[9] SHAN T, TIAN J, WANG X, et al. Bioactive spirobisnaphthalenes from the endophytic fungus Berkleasmium sp.[J]. J Nat Prod, 2014, 77(10): 2151-2160. doi: 10.1021/np400988a
[10] 谢安强, 洪伟, 吴承祯, 等. 桉树内生菌对尾巨桉幼苗抗寒性的影响[J]. 福建农林大学学报(自然科学版), 2011, 40(2): 138-144. [11] 谢安强, 洪伟, 吴承祯, 等. 10株桉树内生真菌对尾巨桉(E. urophylla×E. grandis)光合作用的影响[J]. 福建林学院学报, 2011, 31(1): 31-37. doi: 10.3969/j.issn.1001-389X.2011.01.006 [12] 谢安强, 洪伟, 吴承祯, 等. 内生真菌对低磷胁迫下尾巨桉生理及土壤特性的影响[J]. 西南林业大学学报, 2013, 33(3): 1-7. doi: 10.3969/j.issn.2095-1914.2013.03.001 [13] KHARWAR R N, GOND S K, KUMAR A, et al. A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity[J]. World J Microbiol Biotechnol, 2010, 26(11): 1941-1948. doi: 10.1007/s11274-010-0374-y
[14] 格希格图, 胡鸢雷, 慈忠玲, 等. 桉树根部内生菌与青枯病相关关系研究[J]. 林业实用技术, 2009(8): 42-43. [15] MOHALI S, SLIPPERS B, WINGFIELD M J. Two new Fusicoccum species from Acacia and Eucalyptus in Venezuela, based on morphology and DNA sequence data[J]. Mycol Res, 2006, 110(4): 405-413. doi: 10.1016/j.mycres.2006.01.006
[16] 冯皓. 桉树内生真菌及其次生代谢产物生物活性研究[D]. 广州: 华南农业大学, 2016. [17] SEKHAR V C. Morphology and selection of potential region for DNA barcoding to identify Chaetomium species[D]. New Delhi: Indian Agricultural Research Institute, 2015.
[18] 单体江, 秦楷, 谢银燕, 等. 木麻黄内生真菌次生代谢产物及生物活性[J]. 华南农业大学学报, 2019, 40(3): 67-74. doi: 10.7671/j.issn.1001-411X.201807040 [19] 刘志强, 王平, 单体江, 等. 稻曲球脂溶性成分及其抗细菌和抗氧化活性[J]. 天然产物研究与开发, 2012, 24(12): 1777-1781. doi: 10.3969/j.issn.1001-6880.2012.12.019 [20] OUYANG J K, MAO Z L, GUO H, et al. Mollicellins O–R, four new depsidones isolated from the endophytic fungus Chaetomium sp. Eef-10[J]. Molecules, 2018, 23(12): 3218-3229. doi: 10.3390/molecules23123218
[21] 谭悠久. 毛壳菌科(Chaetomiaceae)分类及分子系统发育研究[D]. 杨凌: 西北农林科技大学, 2005. [22] AYSEGUL G, ESRA K A, IPEK S, et al. Biological activities of Pseudevernia furfuracea (L.) Zopf extracts and isolation of the active compounds[J]. J Ethnopharmacol, 2012, 144(3): 726-734. doi: 10.1016/j.jep.2012.10.021
[23] SCHLEICH S, PAPAIOANNOU M, BANIAHMAD A, et al. Activity-guided isolation of an antiandrogenic compound of Pygeum africanum[J]. Planta Med, 2006, 72(6): 547-551. doi: 10.1055/s-2006-941472
[24] YING Y M, ZHANG L W, SHAN W G, et al. Secondary metabolites of Peyronellaea sp. XW-12, an endophytic fungus of Huperzia serrata[J]. Chem Nat Comp, 2014, 50(4): 723-725. doi: 10.1007/s10600-014-1063-0
[25] PAPAIOANNOU M, SCHLEICH S, PRADE I, et al. The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth[J]. J Cell Mol Med, 2009, 13(8b): 14.
[26] ROELL D, BANIAHMAD A. The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth[J]. Mol Cell Endocrinol, 2011, 332(1/2): 1-8. doi: 10.1016/j.mce.2010.09.013
[27] CHOUDHARY M L, ALI M, WAHAB A, et al. Parmotrema cooperi中的新型抗醣化物质和酶抑制剂(英文)[J]. 中国科学: 化学, 2012, 42(1): 97-98. [28] SEO C, HANYIM J, LEE H K, et al. PTP1B inhibitory secondary metabolites from the Antarctic lichen Lecidella carpathica[J]. Mycology, 2011, 2(1): 18-23. doi: 10.1080/21501203.2011.554906
[29] ALICIA B, GRACIELA B M, NORMA K, et al. Eremophilanolides and other constituents from the Argentine liverwort Frullania brasiliensis[J]. Phytochemistry, 2002, 59(2): 205-213. doi: 10.1016/S0031-9422(01)00452-6
[30] GORMANN R, KALOGA M, LI X C, et al. Furanonaphthoquinones, atraric acid and a benzofuran from the stem barks of Newbouldia laevis[J]. Phytochemistry, 2003, 64(2): 583-587. doi: 10.1016/S0031-9422(03)00277-2
[31] PAPAIOANNOU M, ANNU A S, HONG W, et al. Computational and functional analysis of the androgen receptor antagonist atraric acid and its derivatives[J]. Anti-Cancer Agents Med Chem, 2013, 13(5): 801-810. doi: 10.2174/1871520611313050014