• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

荔枝主栽品种树体营养累积特点及与土壤养分关系

姚丽贤, 周昌敏, 何兆桓, 李国良, 杨苞梅, 白翠华

姚丽贤, 周昌敏, 何兆桓, 等. 荔枝主栽品种树体营养累积特点及与土壤养分关系[J]. 华南农业大学学报, 2020, 41(2): 40-47. DOI: 10.7671/j.issn.1001-411X.201904032
引用本文: 姚丽贤, 周昌敏, 何兆桓, 等. 荔枝主栽品种树体营养累积特点及与土壤养分关系[J]. 华南农业大学学报, 2020, 41(2): 40-47. DOI: 10.7671/j.issn.1001-411X.201904032
YAO Lixian, ZHOU Changmin, HE Zhaohuan, et al. Nutrient accumulation characteristics of main litchi cultivars and their relationships with soil nutrients[J]. Journal of South China Agricultural University, 2020, 41(2): 40-47. DOI: 10.7671/j.issn.1001-411X.201904032
Citation: YAO Lixian, ZHOU Changmin, HE Zhaohuan, et al. Nutrient accumulation characteristics of main litchi cultivars and their relationships with soil nutrients[J]. Journal of South China Agricultural University, 2020, 41(2): 40-47. DOI: 10.7671/j.issn.1001-411X.201904032

荔枝主栽品种树体营养累积特点及与土壤养分关系

基金项目: 国家现代农业产业技术体系建设专项(CARS32-08)
详细信息
    作者简介:

    姚丽贤(1971—),女,研究员,博士,E-mail: lyaolx@scau.edu.cn

  • 中图分类号: S667; S603

Nutrient accumulation characteristics of main litchi cultivars and their relationships with soil nutrients

  • 摘要:
    目的 

    明确荔枝Litchi chinensis Sonn.主栽品种成年挂果树养分需求参数及树体营养与立地土壤性质关系,为荔枝养分管理提供基础数据。

    方法 

    在华南主产区挖取树龄约15年的‘妃子笑’等10个主栽品种各1株,调查树体生物学性状,并采集叶片、果实、树干和根系样本,研究树体不同部位养分累积特点及树体营养与土壤养分关系。

    结果 

    荔枝单株地上部生物量为158.2~344.9 kg;单株果实生物量为38.4~101.8 kg,占地上部生物量的18.0%~38.1%。荔枝叶片N含量最高,树干则以Ca或N含量最高,外果皮、内果皮、果肉和种子一般以N或K含量最高,根系则Ca含量最高,Mo在多个品种的多个部位中均未检出。以生产50 kg果实计,地上部N、P、K、Ca和Mg累积量分别为811.9 、86.4 、586.0、792.5和112.8 g,随50 kg果实收获带走的养分量为N 114.5 g、P 14.4 g、K 105.1 g、Ca 21.6 g和Mg 12.5 g,带走养分量占地上部树体各养分总量的 15.8%、18.9%、20.2%、3.4%和12.6%。叶片K、Ca、Mg含量与土壤有效K、Ca、Mg含量呈显著正相关(P<0.05),其他元素含量与土壤养分相关性不显著。

    结论 

    为维持荔枝立地土壤肥力、保障树体正常生长发育,荔枝收获果实及修剪带走的养分量是荔枝翌年养分施用量的下限。土壤有效K、Ca和Mg含量可预测荔枝叶片K、Ca、Mg含量。今后将加强对荔枝Ca、Si和Mo营养的研究。

    Abstract:
    Objective 

    To understand the parameters of nutrient requirement for fruit-bearing plants of the main cultivars of litchi (Litchi chinensis Sonn.) and the relation between litchi plant nutrient and soil fertility, and supply the basic data for nutrient management of litchi.

    Method 

    Ten plants from ten litchi main cultivars including ‘Feizixiao’, etc, with medium to high fruit yield and approximately 15 years of age, were excavated at fruit harvest in the main production areas of South China. The biological characteristics of these plants were examined. Moreover, leaf, fruit, trunk and root samples of ten cultivars were collected to investigate the nutrient accumulation and distribution in various parts of litchi plants. The relations between tissue nutrient contents in litchi plants and soil nutrients were calculated.

    Result 

    The aboveground biomass of these trees ranged from 158.2 to 344.9 kg. Fruit yield per tree varied from 38.4 to 101.8 kg and accounted for 18.0%−38.1% of total biomass of the aboveground part. Litchi leaf contained the highest nitrogen (N) content, while trunk had the maximum calcium (Ca) or N content. N or potassium (K) was detected with the upmost content in epicarp, endocarp, pulp and seed, whereas Ca commonly dominated in root. Molybdenum (Mo) was undetectable in various parts in some cultivars. Based on the yield of 50 kg fruit, N, P, K, Ca and magnesium (Mg) accumulation of litchi aboveground part was 811.9, 86.4, 586.0, 792.5 and 112.8 g respectively. And 114.5 g N, 14.4 g P, 105.1 g K, 21.6 g Ca and 12.5 g Mg were taken away with 50 kg fruit harvest, which amounted for 15.8%, 18.9%, 20.2%, 3.4% and 12.6% of total N, P, K, Ca and Mg nutrients accumulated in the aboveground part of litchi, respectively. Foliar K, Ca and Mg contents had a significantly positive correlation with soil available K, Ca and Mg contents respectively (P<0.05), whereas the other forliar nutrients were not closely related to soil nutrients.

    Conclusion 

    The nutrient removal by fruit harvest and pruning is the lowest nutrient addition amount to maintain soil fertility and healthy plant growth for the next year. Soil available K, Ca and Mg contents can be used to predict K, Ca and Mg contents in litchi leaves. Application of Ca, Si and Mo in litchi is recommended to be further investigated.

  • 世界上最早报道柑橘黄龙病(Citurs Huanglongbing, HLB)的地区为我国广东潮汕地区[1-2],该病现已广泛分布于亚洲、美洲和非洲的多个国家,对全球多个柑橘产区造成严重威胁[3]。该病由候选的韧皮部杆菌“Candidatus Liberibacter spp.”引起,我国发现的黄龙病病原菌为该菌的亚洲种“Ca. L. asiaticus”(CLas)[4]。黄龙病可为害包括橙类、橘类、柚类和香橼等柑橘属植物的所有栽培品种。鉴于尚未发现可行的黄龙病治疗手段,目前防控该病害的措施主要为植物检疫、培养无病苗木、及时挖除病株和控制媒介昆虫亚洲柑橘木虱Diaphorina citri[2-3]

    柑橘黄龙病可对柑橘的营养生长和果实品质造成严重影响,发病植株表现出复杂多样的症状,包括生长逐渐衰退、产量减少、病果畸形、果皮变软、果小味酸、经济寿命短、植株抗病性下降甚至死亡[5];不同生长季节的叶片表现出的病害症状存在差异,病害显症时表现为斑驳黄化、均匀黄化、缺素状黄化等症状[2]。随着发病程度加剧,病树容易早期落果,虽有部分果实仍可供采摘收获,但果实品质也发生了变化[6]。目前研究发现,多个柑橘品种感染黄龙病后,可溶性固形物及维生素C含量降低,外观和着色变差,可食用部分减少[7-10]。此外,黄龙病还可降低一些柑橘品种果实的甜味度、综合风味和果肉饱满度,并增加酸度、异味度,使得口感明显变差[7, 10]

    抗病柑橘品种选育一直都是黄龙病研究的重要领域。不同柑橘品种的抗性反应存在差异,多项研究表明柚类植物具有一定的黄龙病抗性或耐性,很少感染黄龙病[11-12],但也有研究表明黄龙病可使柚类植物出现新叶发黄、老叶斑驳、果小味苦、产量减少等症状[13-15];Folimonova等[16]发现不同柑橘品种对黄龙病的反应存在差异,其中3种柚类植物同样可感染黄龙病,其感病性较其他敏感品种低,症状表现多样且易变。目前关于柑橘黄龙病对柚类植物生长和果实品质影响的评价指标仍然不够丰富,难以做到客观判断,需系统性研究柑橘黄龙病对柚类植物的影响。

    本研究以沙田柚Citrus maxima和砂糖橘Citrus reticulata为材料,在分析病菌浓度与植株感染黄龙病后的叶片症状的关系基础上,分析黄龙病病菌浓度对沙田柚树势、产量、果实内外品质和感官品质的影响。研究结果将为评价黄龙病对沙田柚生长以及果实品质的影响提供科学依据,同时也为解析柚类植物的黄龙病耐性机理提供一定的理论支撑。

    称取0.1 g采自防虫网室或田间的柚树成熟叶片中脉并剪碎,采用植物DNA提取试剂盒(OMEGA)提取DNA,用去离子水将DNA调整到同一浓度,使用Li等[17]报道的CLas 16S rDNA的特异性引物和探针进行实时荧光定量PCR(qPCR)检测,统计各样品的扩增循环数(Cycle threshold,Ct),确定其带菌情况。

    鉴于柑橘植原体“Candidatus Phytoplasmaasteri”和柑橘衰退病病毒Citrus tristeza virus可能导致相似的黄化症状[12,18],会干扰沙田柚的黄龙病症状观察,本研究所使用和调查的植物材料(嫁接病原芽条、无病苗圃样品和田间调查样品)均通过qPCR确保不含有上述2种病原微生物。各阳性、阴性样品和后续嫁接试验所用黄龙病接穗均来源于华南农业大学柑橘黄龙病研究室网室(23.09°N,113.21°E)。

    所用沙田柚和砂糖橘盆栽苗来源于华南农业大学园艺学院苗圃场(23.16°N,113.36°E),均为2年生无病苗,隔离种植于防虫网室中。选择对应的柑橘品种,通过qPCR检测后,分别将黄龙病菌浓度较一致(Ct=25±0.5)的接穗嫁接到健康沙田柚和砂糖橘上,每个品种嫁接10株(10个重复),嫁接苗隔离种植于防虫网室中,每隔30 d记载各植株嫁接后1年内的症状表现,并对其带菌情况进行检测。

    选取广东省梅州市梅县石扇镇较高树龄(15年)和较低树龄(6年)沙田柚果园各1个进行调查。果园栽培管理条件较一致,均为平地种植,调查时间为果实成熟期。为了确定果园黄龙病发病情况,每个果园根据5点取样法(东西南北中)采集75个带有柚果的枝条上的叶片,进行编号和检测。分别从2个果园中选取健康(Ct>35)、低黄龙病菌浓度(28<Ct<32)和高黄龙病菌浓度(Ct<26)植株各10株(共60株),记录这些植株的树势、产量,鉴定田间叶片和果实症状。植株树势指标包括株高(cm)、树冠直径(cm)和树冠表面积(m2)。产量测定包括单株柚果总产量(kg)、总结果数和落果数,最后计算经济果产量(kg)。

    每个果园分别选取健康、低菌浓度和高菌浓度枝条上的果实各10个,使用电子天平称量单果质量(g)和果皮质量(g),量尺测定每个柚果的纵径(cm)和横径(cm),游标卡尺测定果皮厚度(cm);计算果形指数和果皮率(%);评估果实着色指数(%);将种子剥离后,对种子计数(粒),称量种子质量(g),计算种子率(%)。

    $${\text{果形指数}} = {\text{纵径}}/{\text{横径}}{\text{,}}$$
    $${\text{果皮率}} = {\text{果皮质量}}/{\text{果实质量}}\times100{\text{%}}{\text{,}}$$
    $$ {\text{果实着色指数}} = {\text{成熟果实黄色面积}}/{\text{果实总面积}}\times100{\text{%}}{\text{,}} $$
    $${\text{种子率}} = {\text{种子质量}}/{\text{果实质量}}\times100{\text{%}}{\text{。}}$$

    用手动榨汁机分别对已测完外在品质的果实榨取汁液,4层纱布过滤后,称量果汁质量(g),

    $${\text{出汁率}} = {\text{果汁质量}} / {\text{单果质量}}\times100{\text{%}}{\text{,}} $$
    $$\begin{array}{c}{\text{可食率}} =\left( {\text{果实质量}}- {\text{果皮质量}}-{\text{种子质量}} \right)/\\{\text{果实质量}}\times100{\text{%}}{\text{。}} \end{array}$$

    用改良后的2,6−二氯酚靛酚钠滴定法测定汁液的维生素C含量[7, 19],用PAL-BX/ACID糖酸折射仪(日本ATAGO Co.,Ltd)测定可溶性固形物含量(%)和可滴定酸(以柠檬酸质量浓度计,g/L)。

    采用改良后的Obenland法进行果实风味感官品质评价[20],由10名经过专业培训的人员对2个果园健康、低菌浓度和高菌浓度植株果实进行感官品质打分,健康、低菌和高菌浓度植株果实各取10个。打分标准包括甜味度(浓甜9分,中甜5分,无甜味1分)、酸味度(浓酸9分,中度酸5分,无酸味1分)、果肉饱满度(饱满9分,一般5分,干瘪1分)、异味度(较重9分,一般5分,无异味1分)和综合风味(极好9分,一般5分,极差1分)。

    基于数据重复数量和预测的数据分布模式,两样本间的显著性差异比较采用非参数分析Wilcoxon Mann–Whitney检验(P<0.05),多组数据结合Tukey’s studentized range test多重比较和非参数分析Kruskal–Wallis秩和检验(P<0.05)进行验证。统计分析通过SAS 9.0软件完成,图形由Origin v.9.0制作。

    健康沙田柚植株嫁接带黄龙病接穗150 d后,没有发病(图1),经PCR检测没有发现黄龙病菌的存在(图2),植株正常生长,叶片青绿;嫁接180 d后有20%可检测到低浓度黄龙病菌(Ct=31.44),植株仍无明显症状(图1);嫁接病毒330和360 d后,所有柚苗均可检测到黄龙病菌,但病菌浓度保持在较低水平(Ct>28)(图2),老叶轻微斑驳黄化,新叶轻微均匀黄化,且抽梢正常。

    图  1  沙田柚和砂糖橘盆栽苗嫁接黄龙病接穗后的发病率
    Figure  1.  Incidences of citrus Huanglongbing in Citrus maxima and Citrus reticulata after grafting HLB-infected scions
    图  2  沙田柚和砂糖橘盆栽苗嫁接黄龙病接穗后的阳性植株带菌量
    Ct指黄龙病菌16SrDNA的实时荧光扩增循环数;同折线不同字母表示差异显著(P<0.05,Tukey’s studentized range检验),相同时间“*”和“**”分别表示不同植物差异显著(P<0.05)和极显著(P<0.01)(Wilcoxon Mann–Whitney检验)
    Figure  2.  Concentration of HLB pathogens in disease positive Citrus maxima and Citrus reticulata after grafting HLB-infected scions
    Ct refers to qPCR cycle threshold for 16S rDNA of HLB pathogen; Different letters in the same line indicate significant difference (Tukey’s studentized range test, P<0.05); “*” and “**” at the same time indicate the difference between two plant species reaches 0.05 and 0.01 significance levels, respectively (Wilcoxon Mann-Whitney test)

    砂糖橘嫁接病毒90 d后,有30%的植株可检测到低浓度黄龙病菌(Ct=29.49)(图2),这些植株新长出的叶片开始出现轻微黄化;嫁接150 d后,所有接种植株均可检测到病原菌(图1),且病菌浓度显著提高(Ct=26.56)(图2),整株叶片明显黄化,新叶细小;嫁接病毒180~210 d,病菌浓度进一步升高,老叶出现轻微斑驳黄化症状,有落叶现象,此时仍能正常抽发新叶;嫁接病毒240 d以后,菌浓度达到最高且保持在比较稳定的水平(Ct<25),老叶典型斑驳黄化,落叶明显,新叶转绿不正常,出现缺素型花叶。

    通过对比2个柑橘品种的显症进程和病菌浓度变化,沙田柚的发病速度较慢,程度较轻(图1),当2种柑橘都能检测到黄龙病菌时(接种后180~360 d),带病沙田柚的带菌量显著低于砂糖橘(图2)。此外,相同条件下种植的健康未接种病原的沙田柚和砂糖橘苗在调查期间均检测不到黄龙病菌,叶片始终保持青绿状态。

    2个沙田柚果园中,病菌浓度较低(28<Ct<32)的病树,6年生和15年生果园叶片均没有明显的黄龙病典型黄化症状或只表现轻微的均匀黄化,果实外观或纵切面(果实大小、着色情况和厚度等)均与健康的果实相似(图3a3b),低浓度病树分别占6年生和15年生果园的13.33%(10/75)和16%(12/75);植株病菌浓度较高时(Ct<26),2个果园叶片均表现出典型的黄龙病斑驳黄化症状,叶片基部症状最明显,果实变小变轻,果皮着色不均匀,严重的情况下果实畸形、果皮增厚(图3c),高浓度病树分别占6年生和15年生果园的14.67%和13.33%。

    图  3  健康和感染柑橘黄龙病沙田柚的叶片和果实图示
    a、b、c分别表示健康树(Ct>35)、低菌浓度病树(28<Ct<32)和高菌浓度病树(Ct<26)样品
    Figure  3.  Leaves and fruits from healthy and HLB-infected Citrus maxima
    a, b and c indicate the samples collected from healthy trees (Ct>35), trees with low pathogen concentration (28<Ct<32), and trees with high pathogen concentration (Ct<26)

    黄龙病菌浓度对沙田柚的树势和产量的影响情况见表1。黄龙病菌浓度对相同树龄沙田柚的树势各指标(株高、树冠直径和表面积)并没有显著影响;树势主要受树龄因素调控:15年生沙田柚植株株高、树冠直径和表面积显著高于6年生植株。

    表  1  柑橘黄龙病菌浓度对沙田柚树势和产量的影响1)
    Table  1.  Effects of different concentrations of HLB pathogen on tree vigor and yield of Citrus maxima
    测定指标
    Measured index
    健康树(Ct>35)
    Healthy trees
    低菌浓度病树(28<Ct<32)
    Trees with low pathogen concentration
    高菌浓度病树(Ct<26)
    Trees with high pathogen concentration
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    株高/cm
    Plant height
    263.90±9.91b 440.60±14.58a 253.00±15.13b 436.00±11.98a 249.90±11.65b 432.50±13.52a
    树冠直径/cm
    Crown diameter
    309.60±11.34b 503.70±11.24a 307.80±7.63b 511.00±9.10a 278.50±16.90b 498.75±11.82a
    树冠表面积/m2
    Crown superficial area
    26.09±1.70b 70.35±3.30a 24.78±1.48b 70.52±2.84a 22.34±2.12b 68.39±3.15a
    单株总产量/kg
    Total yield per plant
    43.11±2.11b 136.22±9.79a 42.79±1.73b 125.17±6.28a 25.44±3.52b 44.14±7.87b
    总结果数/个
    Total fruit number
    31.90±1.43bc 93.50±4.48a 28.80±2.69c 90.40±4.86a 22.80±2.86c 52.30±7.71b
    落果数量/个
    Number of drop fruit
    1.30±0.37b 2.70±0.99b 1.40±0.51b 1.60±0.81b 12.80±2.12b 40.60±7.13a
    经济果总产量/kg
    Total yield of economic fruit
    39.22±1.76b 129.73±7.97a 41.18±2.11b 121.30±5.71a 16.00±1.26cd 10.95±1.78d
     1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
     1)Different letters in the same row indicate significant difference(P<0.05, HSD test)
    下载: 导出CSV 
    | 显示表格

    沙田柚产量指标(单株柚果总产量、单株总结果数、落果数和经济果总产量)同时受到树龄和黄龙病菌浓度的影响,15年生柚树的单株柚果总产量和总结果数显著高于6年生柚树。与健康植株相比,携带低浓度(28<Ct<32)黄龙病菌对相同树龄沙田柚产量各指标没有显著影响。相比同树龄健康树和低菌浓度病树,15年生高菌浓度(Ct<26)病树的产量显著降低,落果数最多,经济果总产量最低,仅为对应健康植株的8.44%;6年生柚树可能由于总产量相对较低,高菌浓度病树单株总产量和结果数没有显著性变化,但因较高的落果数量,亦造成经济果总产量显著减少,为对应健康植株的40.80%。

    表2表明,与健康果实相比,染病后低病菌浓度(28<Ct<32)病树的果实外在品质均无显著性差异;高病菌浓度(Ct<26)病树单果质量、果实纵径、横径、着色指数、果皮质量和种子数量显著降低,果皮率显著提高,果形指数、果皮厚度和种子数无显著性差异。此外,关于相同染病情况2个不同树龄的柚果,除了6年生高菌浓度柚果着色指数(65.50%)显著高于15年生(44.00%)高菌浓度柚果,其他各指标间均无显著性差异。

    表  2  柑橘黄龙病菌浓度对沙田柚果实外在品质的影响1)
    Table  2.  Effects of different concentrations of HLB pathogen on external qualities of Citrus maxima
    测定指标
    Measured index
    健康树(Ct>35)
    Healthy trees
    低菌浓度病树(28<Ct<32)
    Trees with low pathogen concentration
    高菌浓度病树(Ct<26)
    Trees with high pathogen concentration
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    单果质量/g
    Fruit mass
    1 446.00±46.31a 1 455.60±49.14a 1 390.80±13.07a 1 409.20±13.77a 802.10±44.69b 906.60±32.11b
    果实纵径/cm
    Fruit vertical diameter
    18.58±0.42a 19.13±0.42a 18.44±0.25ab 19.17±0.27a 15.77±0.29c 16.79±0.33bc
    果实横径/cm
    Fruit transverse diameter
    15.14±0.27a 15.58±0.27a 14.87±0.28a 15.04±0.10a 12.96±0.24b 12.40±0.17b
    果形指数
    Fruit shape index
    1.27±0.03a 1.23±0.03a 1.24±0.02a 1.27±0.02a 1.33±0.02a 1.34±0.04a
    果皮厚度/cm
    Pericarp thickness
    1.93±0.05a 2.10±0.09a 1.98±0.04a 2.14±0.10a 2.01±0.07a 2.06±0.10a
    果皮质量/g
    Pericarp mass
    461.00±11.10ab 504.90±13.17a 453.00±16.38ab 491.20±8.77a 398.00±7.12bc 3 365.00±19.68c
    果皮率/%
    Rate of pericarp
    31.25±1.22b 36.02±0.90ab 31.28±1.17b 33.73±2.16b 43.00±2.38a 43.66±1.83a
    着色指数/%
    Color index
    90.50±1.38a 86.00±2.87ab 89.00±1.87ab 91.00±1.87a 65.50±5.70b 444.00±8.49c
    种子数/粒
    Seed number
    33.70±0.88a 39.30±1.74a 34.40±1.96a 36.00±1.61a 35.30±1.17a 35.10±1.97a
    种子率/%
    Seed rate
    0.97±0.05ab 1.23±0.07a 1.08±0.11ab 1.09±0.04ab 0.79±0.07b 0.78±0.12b
     1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
     1) Different letters in the same row indicate significant difference(P<0.05, HSD test)
    下载: 导出CSV 
    | 显示表格

    表3所示,树龄对沙田柚果实各内在品质均无显著性影响。与健康树果实相比,低菌浓度(28<Ct<32)病树果实各内在品质指标无显著性变化,而高菌浓度(Ct<26)病树果实的可食率、出汁率、可溶性固形物含量和维生素C含量均显著降低,可滴定酸含量显著升高。

    表  3  柑橘黄龙病菌浓度对沙田柚果实内在品质的影响1)
    Table  3.  Effects of different concentrations of HLB pathogen on internal qualities of Citrus maxima
    测定指标
    Measured index
    健康树(Ct>35)
    Healthy trees
    低菌浓度病树(28<Ct<32)
    Trees with low pathogen concentration
    高菌浓度病树(Ct<26)
    Trees with high pathogen concentration
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    可食率/%
    Percentage of edible fruit
    66.95±1.04a 63.94±0.80ab 66.32±1.30a 64.05±0.63ab 47.13±4.68c 55.57±2.27bc
    出汁率/%
    Juice extraction rate
    39.40±1.29a 39.82±1.04a 38.31±1.16ab 39.06±0.98ab 26.43±1.39c 31.99±2.32bc
    可溶性固形物/%
    Soluble solid content
    11.86±0.34ab 12.78±0.31a 11.62±0.27ab 11.86±0.21a 9.17±0.61c 10.23±0.32bc
    ρ(可滴定酸)/(g·L−1)
    Titratable acid content
    7.16±0.37c 8.08±0.50bc 7.46±0.38c 7.66±0.66bc 11.47±0.49ab 11.67±1.40a
    w(维生素C)/(mg·kg−1)
    Vitamin C content
    70.63±3.41ab 68.10±4.62ab 74.29±4.16a 71.22±2.47ab 58.42±2.95c 56.33±2.56c
     1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
     1) Different letters in the same row indicate significant difference (P<0.05, HSD test)
    下载: 导出CSV 
    | 显示表格

    表4所示,在带病情况一致的条件下,不同树龄沙田柚果实风味的人为感官品质评价的各项指标均没有显著性差异。相同树龄条件下,低菌浓度病树(28<Ct<32)与健康树果实感官品质各项指标无显著性差异;高菌浓度(Ct<26)病树的柚果甜味度、饱满度和综合风味均显著降低,而酸味度和异味度均显著提高。

    表  4  柑橘黄龙病菌浓度对沙田柚果实风味感官品质的影响1)
    Table  4.  Effects of different concentrations of HLB pathogen on sensory qualities of Citrus maxima
    测定指标
    Measured index
    健康树(Ct>35)
    Healthy trees
    低菌浓度病树(28<Ct<32)
    Trees with low pathogen concentration
    高菌浓度病树(Ct<26)
    Trees with high pathogen concentration
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    甜味度
    Sweetness
    7.06±0.20a 6.79±0.20a 6.75±0.19a 6.65±0.22a 2.53±0.36b 3.18±0.57b
    酸味度
    Acidity
    2.89±0.17c 3.01±0.18c 3.09±0.14bc 3.07±0.18c 4.31±0.30a 4.01±0.31ab
    饱满度
    Plumpness
    7.01±0.30a 6.81±0.20a 6.28±0.23a 6.91±0.26a 4.16±0.14b 4.96±0.22b
    异味度
    Odor degree
    2.20±0.14b 2.38±0.13b 2.43±0.14b 2.91±0.19b 5.39±0.26a 4.61±0.39a
    综合风味Overall flavor 6.74±0.16a 6.52±0.23a 6.51±0.19a 6.12±0.17a 2.85±0.21b 3.76±0.44b
     1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
     1) Different letters in the same row indicate significant difference (P<0.05, HSD test)
    下载: 导出CSV 
    | 显示表格

    关于柚类品种耐黄龙病的相关研究很多,刘新华等[11]根据田间症状调查发现,同区域内沙田柚的田间发病率(2.6%)远低于柑橙类(21.5%);后续通过嫁接和分子试验证明,相比感病的椪柑Citrus reticulata Blanco cv. Ponkan,琯溪蜜柚Citrus maxima的症状表现和病菌侵染速度明显更慢[12]。在本研究中,相比同等种植条件下的砂糖橘,嫁接1年内的沙田柚叶片无明显黄龙病症状,抽梢正常,病原菌仍保持在较低水平,且低菌浓度对果实产量、果实内外观品质和风味人为感官品质均无明显影响,这可能与沙田柚自身特有的黄龙病抗性相关。植物叶片黄化主要是由于细胞叶绿体内淀粉颗粒异常膨大,挤压破坏类囊体基粒和片层造成[21-23],说明黄龙病引起的黄化症状可能与淀粉积累相关。戴泽翰等[24]通过显微观察发现发病沙田柚的维管形成层比感病品种具有更旺盛的分化能力,可形成更多的次生韧皮部细胞,且光合细胞合成和容纳淀粉的能力更强。更发达的韧皮部可缓解淀粉的局部累积,这可能就是柚类植物较耐黄龙病的原因之一。

    本研究发现沙田柚同样具有较高的黄龙病菌感染率,在嫁接病穗330 d后全部植株均染病,且高浓度黄龙病菌可影响沙田柚叶片症状、果实产量、内外品质和感官品质,使叶片斑驳黄化、果实变小变轻、严重时果实畸形、果轴歪斜,这些表现与前期关于沙田柚的田间调查结果相一致[25-26];产量、品质、出汁率、可溶性固形物和维生素C含量显著下降,酸含量升高,该现象同样发生在砂糖橘、纽荷尔脐橙Citrus sinensis Osbeck cv. Newhall、哈姆林甜橙Citrus sinensis Osbeck cv. Hamlin、瓦伦西亚橙Citrus sinensis Osbeck cv. Valencia、瓯柑Citrus reticulata Blanco cv. Suavissima等其他柑橘品种中[6, 8, 10, 27-28]。其中,可溶性固形物含量在沙田柚果实感官和品质鉴定中起关键作用,直接影响甜度和苦味,间接影响果汁含量[29]。本研究发现果实出汁率及感官和品质确实与可溶性固形物含量存在相关性,随着可溶性固形物含量的降低,果实出汁率、甜味度、饱满度及综合风味明显下降,酸味度和异味度加强,食用感官明显变差。此外,不同柑橘品种对黄龙病的反应存在差异,可能与不同品种的果实品质和栽培环境存在差异有关,因此需明确黄龙病对柚类植物树势、产量、果实内外品质、感官品质的系统性影响,从而深入研究柚类植物的耐性机制。

    因柚类植物存在一定的黄龙病耐病性,种植者往往对其发病情况关注较少,也忽略了对传病媒介柑橘木虱的防治。虽然症状不明显的病树仍有一定的经济价值,但这些带病植株有病原菌的侵染和分布,可作为田间黄龙病菌的来源,通过人为嫁接或虫媒自然传播感染其他健康植株,并且随着发病程度的进一步加剧,柚类植物的经济价值会受到严重影响,甚至颗粒无收,造成无法挽回的损失。因此,在柚园管理的过程中,应及时发现病株,对其进行铲除或隔离,并注意防控柑橘木虱,以免病害扩散蔓延。

    致谢:感谢嘉应学院生命科学学院师生在部分植物材料收集上给予的支持与帮助!

  • 表  1   供试荔枝基本信息和立地土壤基本性质1)

    Table  1   The information of sampled litchi and orchard soil properties

    品种
    Cultivar
    产地
    Origin
    树龄/年
    Tree age
    投影直径/m
    Projected diameter
    土壤质地
    Soil texture
    pH w(有机质)/%
    Organic matter content
    w(有效养分)2)/(mg·kg−1)
    Available nutrient content
    N P K Ca Mg S Si Fe Mn Cu Zn B Mo
    妃子笑
    Feizixiao
    广东惠东
    Huidong of Guangdong
    15 5.4 黏壤土
    Clay loam
    4.55 0.74 41.7 2.2 44.0 114.9 8.6 26.9 10.7 44.1 1.7 0.2 0.6 0.1 0.11
    桂味
    Guiwei
    广东化州
    Huazhou of Guangdong
    15 6.0 砂质黏土
    Sandy clay
    4.20 0.94 53.2 46.1 41.5 120.6 10.1 43.7 11.6 110.2 2.4 1.0 0. 6 0.4 0.14
    大丁香
    Dadingxiang
    海南海口1
    Haikou of Hainan 1
    14 5.2 砂壤土
    Sandy loam
    5.58 7.04 291.7 32.8 422.5 1 751.1 351.0 23.2 289.4 2.7 22.0 0.6 14.7 0.1 0.11
    紫娘喜
    Ziniangxi
    海南海口2
    Haikou of Hainan 2
    17 6.3 壤质黏土
    Loamy clay
    6.30 7.16 322.3 37.7 226.5 2 783.9 307.6 31.2 229.6 6.1 99.1 1.5 20.5 0.1 0.37
    黑叶
    Heiye
    广东高州1
    Gaozhou of Guangdong1
    15 6.6 砂壤土
    Sandy loam
    4.60 1.06 50.5 24.0 16.7 132.4 6.4 67.1 9.7 47.3 17.0 0.82 0.5 0.12 0.02
    兰竹
    Lanzhu
    福建漳州
    Zhangzhou of Fujian
    15 5.8 砂壤土
    Sandy loam
    5.08 1.48 67.4 24.2 61.5 513.7 48.3 24.3 22.9 51.7 31.2 4.47 6.3 0.41 0.80
    白糖罂
    Baitangying
    广东高州2
    Gaozhou of Guangdong 2
    22 5.3 砂质黏土
    Sandy clay loam
    4.48 1.81 85.0 46.4 36.0 258.9 21.2 53.7 22.3 9.3 3.0 0.9 2.1 0.3 0.06
    白蜡
    Baila
    广东高州3
    Gaozhou of Guangdong 3
    16 6.0 砂壤土
    Sandy loam
    5.10 0.86 33.6 2.2 21.5 139.4 18.2 47.8 24.7 17.7 21.9 0.6 1.0 0.1 0.04
    淮枝
    Huaizhi
    广西北流
    Beiliu of Guangxi
    17 5.6 黏土
    Clay
    4.65 1.11 76.1 2.6 91.0 731.3 83.3 35.1 48.2 31.0 7.6 1.1 2.5 0.4 0.03
    双肩玉荷包
    Shuangjianyuhebao
    广东阳东
    Yangdong of Guangdong
    15 6.0 砂质黏土
    Sandy clay
    4.63 1.01 53.4 2.1 34.5 120.4 17.1 54.4 27.3 36.9 4.3 0.3 0.3 0.3 0.06
     1) 表中的 pH、有机质和养分含量均为土壤值;2) N:碱解N,K:速效K
     1) The pH, organic matter and nutrient contents were the values in soil; 2) N: Alkali-hydrolyzable N, K: Available K
    下载: 导出CSV

    表  2   荔枝主栽品种各部位生物量及百分比1)

    Table  2   The biomass and percentage of various upper parts of main litchi cultivars

    品种
    Cultivar
    果实 Fruit 叶片 Leaf 树干 Trunk 总生物量/kg
    Total biomass
    生物量/kg
    Biomass
    百分比/%
    Percentage
    生物量/kg
    Biomass
    百分比/%
    Percentage
    生物量/kg
    Biomass
    百分比/%
    Percentage
    妃子笑 Feizixao 61.5 25.4 19.7 8.1 161 66.5 242.2
    桂味 Guiwei 52.5 31.8 24.6 14.9 88.2 53.4 165.3
    大丁香 Dadingxiang 38.4 24.3 26.8 16.9 93.0 58.8 158.2
    紫娘喜 Ziniangxi 53.8 21.0 34.0 13.3 167.8 65.6 255.6
    黑叶 Heiye 77.3 22.4 46.4 13.5 221.2 64.1 344.9
    兰竹 Lanzhu 101.8 38.1 30.8 11.5 134.5 50.4 267.1
    白糖罂 Baitangying 46.8 18.0 24.1 9.3 188.8 72.7 259.7
    白蜡 Baila 66.3 21.2 31.4 10.1 214.2 68.7 311.9
    淮枝 Huaizhi 68.5 22.4 41.0 13.4 196.5 64.2 306.0
    双肩玉荷包 Shuangjianyuhebao 80.6 26.4 27.2 8.9 198.0 64.7 305.8
     1) 生物量为鲜质量,百分比为各部位的生物量占地上部总生物量的百分比
     1) The biomass was fresh weight, and the percentage was the biomass ratio of various part to total aboveground part
    下载: 导出CSV

    表  3   荔枝主栽品种不同部位(干质量)养分含量状况

    Table  3   The contents of nutrients in various parts (dry weight) of main litchi cultivars w  

    养分 Nutrient 叶片 Leaf 树干 Trunk 根 Root 外果皮 Epicard 内果皮 Endocarp 果肉 Pulp 种子 Seed
    N/(g·kg−1) 17.4±1.4 5.7±1.9 3.7±0.6 11.5±2.4 13.0±2.6 10.7±2.0 11.1±1.2
    P/(g·kg−1) 1.0±0.3 0.7±0.3 0.3±0.1 0.9±0.2 1.9±0.6 1.5±0.2 1.4±0.2
    K/(g·kg−1) 11.5±9.2 4.3±1.6 1.9±1.4 9.3±2.9 13.9±5.7 10.7±2.9 7.3±2.7
    Ca/(g·kg−1) 9.5±2.7 7.7±3.0 3.9±1.2 6.2±1.6 5.5±2.3 0.6±0.9 1.3±1.0
    Mg/(g·kg−1) 2.5±0.9 0.8±0.3 0.5±0.2 2.0±0.6 2.2±0.5 0.8±0.1 1.3±0.3
    S/(g·kg−1) 1.5±0.4 0.5±0.1 0.5±0.2 0.7±0.2 0.9±0.3 0.7±0.2 0.9±0.3
    Si/(g·kg−1) 4.0±2.1 0.7±0.5 1.1±0.7 0.8±0.6 1.1±1.0 1.0±1.0 0.8±0.8
    Cu/(mg·kg−1) 7.4±2.3 6.8±6.9 2.9±1.5 19.3±28.1 11.2±7.5 9.0±2.8 10.5±2.9
    Zn/(mg·kg−1) 29.9±9.4 10.3±5.6 6.8±7.4 20.2±5.3 23.4±5.4 15.7±4.5 24.4±7.1
    Fe/(mg·kg−1) 160.3±33.7 102.5±70.8 217.0±150.0 41.3±15.1 49.3±19.0 39.5±38.2 35.8±14.1
    Mn/(mg·kg−1) 187.8±154.9 26.5±18.1 14.5±7.8 70.6±43.2 74.5±48.9 7.6±3.6 19.2±7.8
    B/(mg·kg−1) 17.5±3.9 7.8±2.7 7.6±3.0 15.9±4.7 22.1±3.6 7.3±3.1 14.2±9.4
    Mo/(mg·kg−1) 0.66±1.14 0.09±0.18 0.22±0.39 0.11±0.12 0.09±0.10 0.03±0.04 0.12±0.09
    下载: 导出CSV

    表  4   生产50 kg果实荔枝地上部树体需要累积的养分量

    Table  4   The accumulations of nutrients in aboveground parts of litchi plants to yield 50 kg fruit m  

    养分
    Nutrient
    果实 Fruit 叶片 Leaf 树干 Trunk 合计 Total
    范围
    Range
    平均
    Mean
    范围
    Range
    平均
    Mean
    范围
    Range
    平均
    Mean
    范围
    Range
    平均
    Mean
    N/g 95.4~135.1 114.5±12.8 124.9~428.3 237.2±106.9 126.6~825.1 460.2±225.0 403.0~1156.4 811.9±298.3
    P/g 12.4~17.2 14.4±1.6 6.1~41.5 14.6±10.0 14.6~89.1 57.4±27.4 38.5~145.9 86.4±34.5
    K/g 68.4~169.8 105.1±31.5 48.3~829.8 176.2±232.2 117.0~619.3 304.7±146.2 233.7~1140.7 586.0±259.2
    Ca/g 12.7~42.0 21.6±8.2 54.3~322.3 135.1±86.5 170.0~1124.4 635.8±354.8 257.2~1318.2 792.5±421.3
    Mg/g 9.3~14.1 12.5±1.6 10.1~79.1 35.7±23.0 24.3~147.9 64.6±37.1 48.1~218.8 112.8±54.7
    S/g 4.5~11.3 7.7±2.3 9.9~22.2 18.7±3.7 22.1~57.5 39.6±11.4 37.2~82.0 66.0±14.7
    Si/g 0.5~28.0 10.4±10.1 11.2~158.6 61.4±51.6 4.9~121.6 45.8±32.7 36.1~281.4 117.6±76.0
    Cu/g 0.05~0.48 0.16±0.13 0.06~1.32 0.34±0.51 0.10~1.76 0.48±0.54 0.26~3.37 0.98±0.99
    Zn/g 0.13~0.94 0.27±0.24 0.21~0.89 0.40±0.22 0.19~1.58 0.77±0.37 0.74~2.27 1.44±0.44
    Fe/g 0.23~1.76 0.55±0.50 0.84~5.04 2.33±1.30 1.41~29.25 8.70±7.75 3.08~31.04 11.58±7.41
    Mn/g 0.08~1.10 0.33±0.29 0.60~5.76 2.22±1.75 0.47~5.21 2.24±1.84 1.24~10.51 4.79±3.18
    B/g 0.07~0.37 0.14±0.08 0.12~0.38 0.23±0.08 0.29~1.54 0.65±0.41 0.54~1.85 1.02±0.42
    Mo/mg 0.0~1.61 0.63±0.58 0.0~35.55 8.36±13.39 0.0~60.34 15.42±25.14 0.0~81.96 24.41±37.50
    下载: 导出CSV

    表  5   荔枝树体地上部不同部位养分分配比例

    Table  5   Nutrient distribution in various aboveground parts of main litchi cultivars % 

    养分
    Nutrient
    果实 Fruit 叶片 Leaf 树干 Root
    范围
    Range
    平均
    Mean
    范围
    Range
    平均
    Mean
    范围
    Range
    平均
    Mean
    N 10.1~23.9 15.8±5.3 18.5~44.7 30.0±9.0 31.4~71.3 54.1±11.7
    P 1.3~39.7 18.9±11.0 10.7~28.4 16.9±6.3 33.8~74.1 63.4±13.2
    K 8.1~34.1 20.2±7.7 14.4~72.7 25.6±17.4 19.1~72.0 54.3±15.8
    Ca 1.4~5.8 3.4±1.7 8.9~28.1 18.0±6.9 66.1~88.3 78.7±7.4
    Mg 1.1~20.8 12.6±6.3 17.1~51.4 30.4±10.3 40.6~67.7 56.3±10.1
    S 0.4~17.0 11.1±5.0 22.4~36.1 28.7±4.0 51.9~70.1 59.4±5.6
    Si 0.6~37.4 10.3±12.5 22.0~94.4 48.2±21.3 5.1~75.6 42.1±20.6
    Cu 0.9~26.7 8.6±8.8 4.8~46.7 25.3±14.8 45.4~94.2 68.5±17.5
    Zn 3.2~20.8 8.2±5.5 13.9~63.4 47.1±16.0 15.9~81.8 45.0±17.9
    Fe 6.4~75.7 23.8±21.5 6.2~66.5 27.3±16.8 15.4~85.8 48.0±19.4
    Mn 9.1~69.9 20.3±17.7 16.0~43.4 27.1±8.8 14.1~71.1 53.5±16.5
    B 5.5~44.1 15.1±11.3 11.3~36.8 24.2±8.5 35.0~83.2 60.5±15.4
    Mo 0~64.5 23.8±24.5 0~72.6 45.0±24.2 0~80.1 21.0±31.6
    下载: 导出CSV

    表  6   荔枝立地土壤有效养分含量与荔枝不同部位养分含量的Pearson相关系数1)

    Table  6   Pearson coefficients of soil available nutrients and nutrients in various parts of litchi plants

    土壤有效养分
    Soil available nutrient
    叶片
    Leaf
    树干
    Trunk

    Root
    外果皮
    Epicarp
    内果皮
    Endocarp
    果肉
    Pulp
    种子
    Seed
    N 0.525 0.394 0.428 −0.035 −0.093 0.114 −0.073
    P 0.143 0.580 0.491 0.162 0.450 −0.634* −0.602*
    K 0.636* 0.071 −0.162 0.086 0.308 −0.106 −0.046
    Ca 0.627* 0.733* 0.380 −0.206 −0.224 −0.329 −0.246
    Mg 0.669* 0.566 0.562 0.049 −0.259 −0.288 0.351
    S 0.137 −0.452 −0.245 −0.077 −0.142 −0.032 −0.011
    Si 0.416 0.129 −0.328 0.067 −0.003 −0.033 0.223
    Fe −0.111 −0.250 −0.368 0.605* 0.800** 0.126 0.732*
    Mn −0.480 0.391 0.535 −0.390 −0.327 −0.345 −0.328
    Cu 0.242 0.107 0.689* 0.064 −0.017 −0.634* −0.505
    Zn −0.180 0.269 0.044 −0.366 −0.173 0.540 0.213
    B −0.131 0.040 0.249 0.173 0.261 −0.024 0.204
    Mo −0.274 −0.281 −0.151 −0.294 0.025 −0.305 0.399
     1) “*”和“**”分别表示0.05和0.01水平的显著相关
     1) “*” and “**” refer to significant correlations at 0.05 and 0.01 levels, respectively
    下载: 导出CSV
  • [1] 庄丽娟, 邱泽慧. 印度荔枝产业发展特征与趋势分析[J]. 中国热带农业, 2019(1): 22-25. doi: 10.3969/j.issn.1673-0658.2019.01.006
    [2] 雷刘功, 袁惠民. 中国农业年鉴[M]. 北京: 中国农业出版社, 2016.
    [3]

    GROFF G W. Some ecological factors involved in successful lychee culture[J]. Proc Fla State Hortic Soc, 1943, 56: 134-155.

    [4]

    CHAPMAN K R. Tropical fruit cultivar collecting in S. E. Asia and China[R]. Queensland: Queensland Department of Primary Industries, 1984.

    [5]

    MENZEL C M, HAYDON G F, SIMPSON D R. Mineral nutrient reserves in bearing litchi trees (Litchi chinensis Sonn.)[J]. J Hortic Sci, 1992, 67(2): 149-160. doi: 10.1080/00221589.1992.11516232

    [6] 陈菁, 樊小林, 孙光明. 荔枝树体生物量的构成特点[J]. 果树学报, 2008, 25(6): 860-863.
    [7] 陈菁, 樊小林, 孙光明. 荔枝树体钾素分布及累积特点[J]. 华南农业大学学报, 2010, 31(2): 9-11. doi: 10.3969/j.issn.1001-411X.2010.02.003
    [8] 杨苞梅, 姚丽贤, 李国良, 等. 荔枝叶片养分含量动态及不同比例钾、氮肥施用效应[J]. 植物营养与肥料学报, 2014, 20(5): 1212-1220. doi: 10.11674/zwyf.2014.0518
    [9] 樊小林, 黄彩龙, JUHANI U, 等. 荔枝年生长周期内N、P、K营养动态规律与施肥管理体系[J]. 果树学报, 2004, 21(6): 548-551.
    [10] 邱燕萍, 李志强, 欧良喜, 等. 妃子笑荔枝不同花期果实发育特点及叶、果营养差异研究[J]. 广东农业科学, 2005, 32(1): 46-47. doi: 10.3969/j.issn.1004-874X.2005.01.016
    [11] 姚丽贤, 周昌敏, 何兆桓, 等. 荔枝年度枝梢和花果发育养分需求特性[J]. 植物营养与肥料学报, 2017, 23(4): 1128-1134. doi: 10.11674/zwyf.16303
    [12] 姚丽贤. 我国荔枝养分管理技术应用与需求调研报告[J]. 荔枝科技通讯, 2009(3): 41-54.
    [13] 陈厚彬, 齐文娥, 张荣, 等. 我国荔枝安全生产和产业经济调研报告[J]. 荔枝科技通讯, 2009(3): 57-76.
    [14] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [15] 中国林业科学研究院林业研究所森林土壤研究室. 森林植物与森林枯枝落叶层全硅、铁、铝、钙、镁、钾、钠、磷、硫、锰、铜、锌的测定: LY/T 1270—1999[S]. 北京: 中国标准出版社, 1999.
    [16] 罗东林, 王伟, 朱陆伟, 等. 华南荔枝叶片营养诊断指标的建立[J]. 植物营养与肥料学报, 2019, 25(5): 859-870. doi: 10.11674/zwyf.18201
    [17]

    MENZEL C M, SIMPSON D R. Lychee nutrition: A review[J]. Sci Hortic, 1987, 31(3/4): 195-224.

    [18] 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998.
    [19] 姚丽贤, 周昌敏, 何兆桓, 等. 荔枝龙眼果实异常症状观察及矿质营养分析[J]. 中国南方果树, 2017, 46(4): 49-54.
    [20]

    MA J F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses[J]. Soil Sci Plant Nut, 2004, 50(1): 11-18. doi: 10.1080/00380768.2004.10408447

    [21] 陈玉婷, 林威鹏, 范雪莹, 等. 硅接到番茄青枯病抗性的土壤定量蛋白质组学研究[J]. 土壤学报, 2015, 52(1): 162-173. doi: 10.11766/trxb201405200240
    [22]

    MENDEL R R, BITTNER F. Cell biology of molybdenum[J]. Biochim Biophys Acta, 2006, 1763(7): 621-635. doi: 10.1016/j.bbamcr.2006.03.013

    [23]

    JONGRUAYSUP S, DELL B, BELL R W. Distribution and redistribution of molybdenum in black gram (Vigna mungo L. Hepper) in relation to molybdenum supply[J]. Ann Bot, 1994, 73: 161-167. doi: 10.1006/anbo.1994.1019

    [24] 谢开云, 何峰, 李向林, 等. 我国紫花苜蓿主产田土壤养分和植物养分调查分析[J]. 草业学报, 2016, 25(3): 202-214. doi: 10.11686/cyxb2015206
    [25] 詹其厚, 陈杰. 基于长期定位试验的变性土养分持续供给能力和作物响应研究[J]. 土壤学报, 2006, 43(1): 124-132. doi: 10.3321/j.issn:0564-3929.2006.01.018
    [26] 孙钊, 高祥照. 果树测土配方施肥技术现状与建议[J]. 中国农业信息, 2009(11): 16-18. doi: 10.3969/j.issn.1672-0423.2009.11.006
    [27] 李国良, 姚丽贤, 张政勤, 等. 广东荔枝园土壤养分肥力时空变化研究[J]. 土壤通报, 2011, 42(5): 1081-1086.
    [28] 李国良, 张政勤, 姚丽贤, 等. 广西壮族自治区与福建省荔枝园土壤养分肥力现状研究[J]. 土壤通报, 2012, 43(4): 867-871.
    [29] 马检, 樊卫国. 不同配比的硝态氮和铵态氮对枇杷实生苗氮素吸收动力学及生长的影响[J]. 中国农业科学, 2016, 49(6): 1152-1162. doi: 10.3864/j.issn.0578-1752.2016.06.011
    [30] 唐艺璇, 郑洁敏, 楼莉萍, 等. 3种挺水植物吸收水体NH4+、NO3-、H2PO4-的动力学特征比较[J]. 中国生态农业学报, 2011, 19(3): 614-618.
  • 期刊类型引用(8)

    1. 包韵滋,陈林源,邱铠滢,倪燕妹,丁汉卿,王丽平,刘子琪,詹若挺,陈立凯. 广藿香种植生态因子分析与生态种植模式研究进展. 广州中医药大学学报. 2024(11): 3084-3090 . 百度学术
    2. 王晓宇. 浅析林下经济植物广藿香种质资源保护与栽培技术. 热带农业工程. 2023(03): 121-124 . 百度学术
    3. 宋朝霞,曹理,李国辉. 有效微生物菌群在农业领域的研究与应用现状. 安徽农业科学. 2022(01): 21-23+54 . 百度学术
    4. 佘晓环,李明,洪彪. 广藿香连作及轮作对其品质及土壤微生态的影响. 时珍国医国药. 2022(07): 1719-1722 . 百度学术
    5. 顾艳,梅瑜,徐世强,孙铭阳,周芳,李静宇,王继华. 广藿香种质资源及栽培技术研究进展. 热带作物学报. 2022(08): 1595-1603 . 百度学术
    6. 焦玲,武雪萍,李晓秀,李生平,李嘉欣. 负压灌溉下土壤水氮分布对黄瓜氮素吸收和干物质的影响. 中国土壤与肥料. 2022(11): 75-84 . 百度学术
    7. 祝蕾,严辉,刘培,张振宇,张森,郭盛,江曙,段金廒. 药用植物根际微生物对其品质形成的影响及其作用机制的研究进展. 中草药. 2021(13): 4064-4073 . 百度学术
    8. 范拴喜,崔佳茜,李丹,付林涛,赫晓云,闻杰. 不同改良措施对设施蔬菜土壤肥力和番茄品质的影响. 农业工程学报. 2021(16): 58-64 . 百度学术

    其他类型引用(8)

表(6)
计量
  • 文章访问数:  2340
  • HTML全文浏览量:  2
  • PDF下载量:  2611
  • 被引次数: 16
出版历程
  • 收稿日期:  2019-04-15
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2020-03-09

目录

/

返回文章
返回