• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

氮、磷添加对不同种植密度樟树幼苗碳储量及其分配的影响

余明, 蔡金桓, 薛立

余明, 蔡金桓, 薛立. 氮、磷添加对不同种植密度樟树幼苗碳储量及其分配的影响[J]. 华南农业大学学报, 2020, 41(1): 116-123. DOI: 10.7671/j.issn.1001-411X.201904025
引用本文: 余明, 蔡金桓, 薛立. 氮、磷添加对不同种植密度樟树幼苗碳储量及其分配的影响[J]. 华南农业大学学报, 2020, 41(1): 116-123. DOI: 10.7671/j.issn.1001-411X.201904025
YU Ming, CAI Jinhuan, XUE Li. Effects of nitrogen and phosphorus additions on carbon storage and allocation of Cinnamomum camphora seedlings under different planting densities[J]. Journal of South China Agricultural University, 2020, 41(1): 116-123. DOI: 10.7671/j.issn.1001-411X.201904025
Citation: YU Ming, CAI Jinhuan, XUE Li. Effects of nitrogen and phosphorus additions on carbon storage and allocation of Cinnamomum camphora seedlings under different planting densities[J]. Journal of South China Agricultural University, 2020, 41(1): 116-123. DOI: 10.7671/j.issn.1001-411X.201904025

氮、磷添加对不同种植密度樟树幼苗碳储量及其分配的影响

基金项目: 中央财政林业科技推广示范项目(2015-GDTK-07)
详细信息
    作者简介:

    余明(1995—),女,硕士研究生,E-mail: 805352412@qq.com

    通讯作者:

    薛 立(1958—),男,教授,博士,E-mail: forxue@scau.edu.cn

  • 中图分类号: S718.52

Effects of nitrogen and phosphorus additions on carbon storage and allocation of Cinnamomum camphora seedlings under different planting densities

  • 摘要:
    目的 

    对氮(N)、磷(P)添加条件下4种种植密度的樟树Cinnamomum camphora幼苗各器官碳(C)含量、储量和分配比例进行研究,以期为氮沉降和磷添加背景下森林碳储量分配格局的变化提供参考。

    方法 

    以1年生樟树幼苗为试验材料,选择氯化铵(NH4Cl)作为氮肥模拟氮沉降,以二水合磷酸二氢钠(NaH2PO4·2H2O)作为磷添加,设置4个水平:不加N和P(对照,CK),加N,加P,加N和P(N+P)。N、P及N+P每年的添加量分别为NH4Cl 40 g·m−2、NaH2PO4·2H2O 20 g·m−2和NH4Cl 40 g·m−2+ NaH2PO4·2H2O 20 g·m−2;种植密度设置4个水平,即10、20、40和80株·m−2

    结果 

    各氮、磷添加和密度处理下幼苗的根、茎和枝的C含量基本上差异不显著,而添加N和N+P能够促使樟树幼苗叶的C含量上升。随着种植密度的增大,樟树幼苗叶片C含量表现出下降的趋势;N、P添加处理基本上能够促进幼苗单株C储量和单位面积C储量的增加;随着种植密度的增大,单株幼苗C储量呈现下降的趋势。

    结论 

    樟树幼苗叶的单株C储量和单位面积C储量分配比例随着种植密度的增大逐渐减小。高密度种植有利于茎的分配比例增加。N+P添加处理对幼苗C储量的促进效果大于单一N或P添加处理。

    Abstract:
    Objective 

    To study carbon (C) content, storage and allocation in seedling organs of Cinnamomum camphora cultivated in four different densities under nitrogen (N) and phosphorus (P) additions, and provide information for forest C storage and allocation under the background of N deposition and P addition.

    Method 

    The 1-year-old C. camphora seedlings were used as test materials. NH4Cl and NaH2PO4·2H2O were selected to simulate atmospheric N deposition and P addition, respectively. N and P additions were performed with four different levels (control, N, P, and N+P). The N and P addition amounts per year in N, P, and N+P treatments were 40 g·m−2 NH4Cl, 20 g·m−2 NaH2PO4·2H2O and 40 g·m−2 NH4Cl + 20 g·m−2 NaH2PO4·2H2O, respectively. Seedlings were planted in four different densities (10, 20, 40 and 80 seedlings·m−2).

    Result 

    C contents in roots, stems and branches of seedlings in all treatments had no significant difference. N and N+P treatments increased C content of leaves. With the increase of planting density, C content of leaves tended to decrease. The N and P additions increased C storage per seedling and C storage in unit area. C storage per seedling decreased with the increase of planting density.

    Conclusion 

    C storage of leaves per seedling and C storage in unit area decreases with the increase of planting density. C storage percentage of stems increases in high cultivation density treatment. The effect of N+P treatment on C storage per seedling and C storage in unit area is greater than that of single N or P addition.

  • 表  1   幼苗处理前各器官单株生物量和碳含量(平均值±标准误差)

    Table  1   Biomass and carbon content per seedling before treatment (mean ± SE)

    器官
    Organ
    单株生物量/g
    Biomass per seedling
    w(C)/(g·kg−1)
    根 Root 2.18±1.12 469.57±0.34
    茎 Stem 1.11±0.25 487.02±1.92
    枝 Branch 0.11±0.08 460.53±1.49
    叶 Leaf 0.88±0.31 515.13±2.56
    下载: 导出CSV

    表  2   不同种植密度及氮、磷添加处理幼苗各器官的碳含量1)(平均值±标准误差)

    Table  2   Carbon contents of organs per seedling under different planting densities and nitrogen and phosphorus additions (mean±SE)

    种植密度/(株·m−2)
    Planting density
    N、P添加
    N and P additions
    w(C)/(g·kg−1)
    根 Root 茎 Stem 枝 Branch 叶 Leaf
    10 CK 452.75±10.52Aa 492.11±21.67Aa 478.82±7.42Aa 477.81±3.18Bc
    N 447.34±4.82Ba 494.13±2.16Aa 477.82±3.31Ba 499.36±4.91Ab
    P 446.27±3.87Aa 500.56±1.57Aa 481.53±4.88ABa 501.17±1.56Ab
    N+P 462.95±2.60Aa 489.97±1.04Ba 481.98±5.13Aa 512.34±3.61Aa
    20 CK 460.81±5.39Aa 500.11±1.83Aa 481.11±3.66Aa 494.30±2.87Aab
    N 457.91±8.47ABa 503.78±7.88Aa 480.64±3.53ABa 502.38±4.51Aa
    P 466.52±3.48Aa 496.91±2.59Aa 474.63±4.16Ba 484.32±4.44ABb
    N+P 460.04±4.44Aa 500.79±1.46Aa 482.60±5.00Aa 503.61±4.71Aa
    40 CK 459.78±1.86Aab 497.80±2.11Aa 474.88±5.83Aab 474.64±5.10Bab
    N 469.60±5.10Aab 499.21±8.71Aa 488.58±3.32Aa 480.58±6.92Bab
    P 447.74±12.65Ab 485.44±5.03Bab 471.16±4.35Bb 465.51±4.06BCb
    N+P 471.79±4.12Aa 472.21±1.47Cb 475.74±4.70Aab 484.62±4.63Ba
    80 CK 457.01±5.11Aa 490.15±7.01Aa 492.16±6.15Aa 480.11±2.77Ba
    N 457.79±6.02ABa 492.82±2.25Aa 482.77±2.22ABab 483.05±1.17Ba
    P 449.37±3.65Aa 499.93±3.63Aa 490.58±3.17Aa 448.61±14.61Cb
    N+P 452.35±14.07Aa 496.53±3.24Aa 475.81±5.28Ab 486.18±4.52Ba
     1) 同列数据后,不同大写字母表示相同N、P添加处理下不同种植密度间差异显著,不同小写字母表示相同种植密度下不同N、P添加处理间差异显著(P<0.05,Duncan’ s法)
     1)Different capital letters in the same column indicate significant differences among different planting densities under the same N/P addition treatment, and different lowercase letters in the same column indicate significant differences among different N/P addition treatments under the same planting density (P<0.05, Duncan’ s test)
    下载: 导出CSV

    表  3   不同种植密度及氮、磷添加处理下单株幼苗各器官的碳储量和分配比例1)

    Table  3   Carbon storage of organs and its allocation per seedling under different planting densities and nitrogen and phosphorus additions

    种植密度/
    (株·m−2)
    Planting density
    N、P添加
    N and P additions
    根 Root 茎 Stem 枝 Branch 叶 Leaf 全株 Total
    C储量/g
    C storage
    分配比例/%
    Ratio
    C储量/g
    C storage
    分配比例/%
    Ratio
    C储量/g
    C storage
    分配比例/%
    Ratio
    C储量/g
    C storage
    分配比例/%
    Ratio
    C储量/g
    C storage
    分配比例/%
    Ratio
    10 CK 1.19Aa 41.66 0.97Aa 33.95 0.16Bb 5.47 0.54Ac 18.92 2.86Ab 100
    N 2.04Aa 35.06 1.30Aa 22.32 0.78Aa 13.37 1.70Ab 29.25 5.82Aa 100
    P 1.90Aa 32.78 1.04ABa 17.94 0.93Aa 16.00 1.93Ab 33.28 5.79Aa 100
    N+P 2.13Aa 29.27 1.30Aa 17.86 1.05Aa 14.50 2.79Aa 38.37 7.27Aa 100
    20 CK 1.00Aa 39.16 0.91ABa 35.33 0.15Bb 5.78 0.51Ac 19.73 2.57ABb 100
    N 1.37Ba 32.94 1.07Aa 25.74 0.52Ba 12.38 1.21Ab 28.93 4.17Ba 100
    P 1.42Ba 39.72 1.16Aa 32.53 0.26Bb 7.20 0.73Bc 20.55 3.58Ba 100
    N+P 1.19Ba 28.11 0.98Aa 23.18 0.51Ba 11.94 1.56Ba 36.76 4.24Ba 100
    40 CK 0.79Ab 37.97 0.75Ba 35.96 0.14Bb 6.83 0.40Ab 19.23 2.09BCb 100
    N 1.36Ba 46.43 0.96Aa 32.86 0.23Cab 7.74 0.38Bb 12.97 2.93Ca 100
    P 1.34Ba 47.16 0.80Ca 28.24 0.27Ba 9.34 0.43BCb 15.26 2.84BCa 100
    N+P 1.27Ba 39.60 1.00Aa 31.36 0.31BCa 9.72 0.62Ca 19.33 3.20BCa 100
    80 CK 0.79Aa 42.11 0.75Ba 39.84 0.22Aa 11.85 0.12Ba 6.20 1.88Ca 100
    N 1.00Ba 43.05 0.90Aa 38.54 0.23Ca 9.74 0.20Ba 8.66 2.33Ca 100
    P 0.71Ca 36.03 0.85BCa 42.94 0.21Ba 10.71 0.20Ca 10.33 1.98Ca 100
    N+P 1.07Ba 42.72 0.99Aa 39.66 0.18Ca 7.01 0.27Ca 10.61 2.50Ca 100
     1) 同列数据后,不同大写字母表示相同N、P添加处理下不同种植密度间差异显著,不同小写字母表示相同种植密度下不同N、P添加处理间差异显著(P<0.05,Duncan’ s法)
     1) Different capital letters in the same column indicate significant differences among different planting densities under the same N/P addition, and different lowercase letters in the same column indicate significant differences among different N/P addition under the same planting density (P<0.05, Duncan’ s test)
    下载: 导出CSV

    表  4   不同种植密度和氮、磷添加对单株幼苗各器官碳储量交互作用的方差分析

    Table  4   Variance analyses of interaction effects of planting density and nitrogen and phosphorus additions on carbon storage of organs per seedling

    器官碳储量
    Carbon storage of organs
    种植密度
    Planting density
    N、P添加
    N and P additions
    种植密度与N、P添加交互作用
    Interaction effect of planting density and N and P additions
    F P F P F P
    根 Root 17.219 0.000 6.261 0.001 1.003 0.441
    茎 Stem 6.800 0.000 4.157 0.007 0.745 0.667
    枝 Branch 33.459 0.000 13.035 0.000 5.281 0.000
    叶 Leaf 93.367 0.000 28.212 0.000 8.978 0.000
    全株 Total 54.661 0.000 18.687 0.000 3.565 0.001
    下载: 导出CSV

    表  5   不同种植密度及氮、磷添加处理下幼苗各器官的单位面积碳储量和分配比例1)

    Table  5   Carbon storage of organs and its allocation in unit area under different planting densities and nitrogen and phosphorus additions

    种植密度/
    (株·m−2)
    Planting density
    N、P添加
    N and P additions
    根 Root 茎 Stem 枝 Branch 叶 Leaf 全株 Total
    C储量/
    (g·m−2)
    C storage
    分配比
    例/%
    Ratio
    C储量/
    (g·m−2)
    C storage
    分配比
    例/%
    Ratio
    C储量/
    (g·m−2)
    C storage
    分配比
    例 /%
    Ratio
    C储量/
    (g·m−2)
    C storage
    分配比
    例/%
    Ratio
    C储量/
    (g·m−2)
    C storage
    分配比
    例/%
    Ratio
    10 CK 11.89Ca 41.66 9.70Da 33.95 1.56Cb 5.47 5.40Cc 18.92 28.55Db 100
    N 20.40Ca 35.00 12.98Ca 22.32 7.78Ba 13.37 17.02Bb 29.55 58.18Ca 100
    P 18.99Ba 32.78 10.39Ca 17.94 9.27Ca 16.00 19.28Ab 33.28 57.93Ca 100
    N+P 21.28Ca 29.27 12.99Ca 17.86 10.54Aa 14.50 27.90Aa 38.37 72.71Ca 100
    20 CK 20.07BCa 39.16 18.11Ca 35.33 2.96Cb 5.78 10.11Bc 19.73 51.25Cb 100
    N 27.47Ca 32.94 21.46BCa 25.74 10.33Ba 12.38 24.13Bb 28.93 83.39BCa 100
    P 28.41Ba 39.72 23.27Ba 32.53 5.15BCb 7.20 14.70Ac 20.55 71.53Ba 100
    N+P 23.84Ca 28.11 19.66Ca 23.18 10.13Aa 11.94 31.18Aa 36.76 84.80BCa 100
    40 CK 31.80Bb 37.97 30.11Ba 35.96 5.72Bb 6.83 16.11Ab 19.23 83.74Bb 100
    N 54.37Ba 46.43 38.47Ba 32.86 9.07Bb 7.74 15.18Bb 12.97 117.10Ba 100
    P 53.62Aa 47.16 32.10Ba 28.24 10.62Ba 9.34 17.34Ab 15.26 113.68Ba 100
    N+P 50.62Ba 39.60 40.08Ba 31.36 12.42Aa 9.72 24.70Aa 19.33 127.82Ba 100
    80 CK 63.24Aa 42.11 59.83Aa 39.84 17.80Aa 11.85 9.31Ba 6.20 150.19Aa 100
    N 80.25Aa 43.05 71.86Aa 38.54 18.17Aa 9.74 16.15Aa 8.66 186.43Aa 100
    P 57.14Aa 36.02 68.12Aa 42.94 16.99Aa 10.71 16.39Aa 10.33 158.64Aa 100
    N+P 85.55Aa 42.72 79.42Aa 39.66 14.03Aa 7.01 21.25Aa 10.61 200.24Aa 100
     1) 同列数据后,不同大写字母表示相同N、P添加处理下不同种植密度间差异显著,不同小写字母表示相同种植密度下不同N、P添加处理间差异显著(P<0.05,Duncan’ s法)
     1)Different capital letters in the same column indicate significant differences among different planting densities under the same N/P addition, and different lowercase letters in the same column indicate significant differences among different N/P additions under the same planting density (P<0.05, Duncan’ s test)
    下载: 导出CSV

    表  6   不同种植密度及氮、磷添加对幼苗各器官的单位面积碳储量交互作用的方差分析

    Table  6   Variance analyses of interaction effects of planting density and nitrogen and phosphorus additions on carbon storage of organs in unit area

    器官单位面积碳储量
    Carbon storage of organs in
    unit area
    种植密度
    Planting density
    N、P添加
    N and P additions
    种植密度与N、P添加交互作用
    Interaction effect of planting density and N and P additions
    F P F P F P
    根 Root 51.780 0.000 3.743 0.013 1.003 0.313
    茎 Stem 127.420 0.000 2.741 0.047 0.676 0.730
    枝 Branch 29.407 0.000 6.744 0.000 2.670 0.007
    叶 Leaf 1.959 0.123 26.787 0.000 2.340 0.017
    全株 Total 201.698 0.000 3.062 0.030 0.874 0.550
    下载: 导出CSV
  • [1] 辛小娟, 王刚, 杨莹博, 等. 氮、磷添加对亚高山草甸地上/地下生物量分配的影响[J]. 生态科学, 2014, 33(3): 452-458.
    [2] 陈瑶, 王法明, 莫其锋, 等. 氮磷添加对华南热带森林尾叶桉木质残体分解和养分动态的影响[J]. 应用与环境生物学报, 2015, 21(4): 747-753.
    [3]

    CHEN H, ZHANG W, GILLIAM F, et al. Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China[J]. Biogeosciences, 2013, 10(10): 6609-6616. doi: 10.5194/bg-10-6609-2013

    [4] 刘顺, 罗达, 刘千里, 等. 川西亚高山不同森林生态系统碳氮储量及其分配格局[J]. 生态学报, 2017, 37(4): 1074-1083.
    [5]

    LUO Y, ZHANG X, WANG X, et al. Dissecting variation in biomass conversion factors across China’s forests: Implications for biomass and carbon accounting[J]. PLoS One, 2014, 9(4): e94777. doi: 10.1371/journal.pone.0094777

    [6]

    LIE Z Y, XUE L, JACOBS D F. Allocation of forest biomass across broad precipitation gradients in China’ s forests[J]. Sci Rep, 2018, 8: 10536. doi: 10.1038/s41598-018-28899-5

    [7]

    YAN G Y, XING Y J, WANG J Y, et al. Sequestration of atmospheric CO2 in boreal forest carbon pools in Northeastern China: Effects of nitrogen deposition[J]. Agric Forest Meteorol, 2018, 248: 70-81. doi: 10.1016/j.agrformet.2017.09.015

    [8]

    SPARRIUS L B, SEVINK J, KOOIJMAN A M. Effects of nitrogen deposition on soil and vegetation in primary succession stages in inland drift sands[J]. Plant Soil, 2012, 353(1/2): 261-272.

    [9]

    GAO Y, HAO Z, YANG T T, et al. Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed: A Chinese case study[J]. Environ Pollut, 2017, 226: 69-78. doi: 10.1016/j.envpol.2017.03.067

    [10] 王鑫瑶, 王旭, 朱美玲, 等. 海南主要森林类型植被碳贮量与固碳价值评价[J]. 中南林业科技大学学报, 2017, 37(7): 92-98.
    [11] 明安刚, 刘世荣, 莫慧华, 等. 南亚热带红锥、杉木纯林与混交林碳贮量比较[J]. 生态学报, 2016, 36(1): 244-251.
    [12] 郭剑芬, 杨玉盛, 陈光水, 等. 火烧对森林土壤有机碳的影响研究进展[J]. 生态学报, 2015, 35(9): 2800-2809.
    [13]

    DEZI S, MEDLYN B E, TONON G, et al. The effect of nitrogen deposition on forest carbon sequestration: a model-based analysis[J]. Global Change Biol, 2010, 16(5): 1470-1486. doi: 10.1111/j.1365-2486.2009.02102.x

    [14]

    ZAEHLE S, CIAIS P, FRIEND A D, et al. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions[J]. Nat Geosci, 2011(9): 601-605.

    [15] 朱仕明, 肖玲玲, 薛立, 等. 密度对乐昌含笑幼苗的生长和生物量的影响[J]. 中南林业科技大学学报, 2015, 35(8): 77-80.
    [16] 肖玲玲, 朱仕明, 胡继文, 等. 不同密度条件下樟树幼苗生长和幼苗重量分配格局[J]. 安徽农业大学学报, 2015, 42(3): 353-356.
    [17] 董喜光, 张越, 薛立, 等. 不同密度的山杜英幼苗生长分析[J]. 生态科学, 2016, 35(4): 86-90.
    [18] 伍艳芳, 肖复明, 徐海宁, 等. 樟树全基因组调查[J]. 植物遗传资源学报, 2014, 15(1): 149-152.
    [19] 张赐成, 韩广, 关华德, 等. 樟树和桂花树光合最适温度对环境温度改变的响应[J]. 生态学杂志, 2014, 33(11): 2980-2987.
    [20] 王卓敏, 郑欣颖, 薛立. 樟树幼苗对干旱胁迫和种植密度的生理响应[J]. 生态学杂志, 2017, 36(6): 1495-1502.
    [21] 文丽, 雷丕锋, 戴凌. 不同林龄樟树林土壤碳氮贮量及分布特征[J]. 中南林业科技大学学报, 2014, 34(6): 106-111. doi: 10.3969/j.issn.1673-923X.2014.06.021
    [22] 文汲, 闫文德, 刘益君, 等. 施氮对亚热带樟树人工林土壤氮矿化的影响[J]. 中南林业科技大学学报, 2015, 35(5): 103-108.
    [23] 赵晶, 闫文德, 郑威, 等. 樟树人工林凋落物养分含量及归还量对氮沉降的响应[J]. 生态学报, 2016, 36(2): 350-359.
    [24]

    AERTS R, VANLOGTESTIJN R, KARLSSON P S. Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species[J]. Oecologia, 2006, 146(4): 652-658. doi: 10.1007/s00442-005-0247-5

    [25] 佘汉基, 郑欣颖, 薛立, 等. 外源性氮和磷对尾叶桉凋落叶分解的影响[J]. 安徽农业大学学报, 2017, 44(3): 409-414.
    [26] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-106.
    [27] 陈莉, 宋敏, 宋同清, 等. 广西不同林龄软阔林碳储量及其分配格局[J]. 生态学杂志, 2017, 36(3): 592-600.
    [28]

    CURREY P M, JOHNSON D, DAWSON L A, et al. Five years of simulated atmospheric nitrogen deposition have only subtle effects on the fate of newly synthesized carbon in Calluna vulgaris and Eriophorum vaginatum[J]. Soil Biol Biochem, 2011, 43(3): 495-502. doi: 10.1016/j.soilbio.2010.11.003

    [29] 张慧, 郭卫红, 杨秀清, 等. 麻栎种源林叶片碳、氮、磷化学计量特征的变异[J]. 应用生态学报, 2016, 27(7): 2225-2230.
    [30] 翁俊, 顾鸿昊, 王志坤, 等. 氮沉降对毛竹叶片生态化学计量特征的影响[J]. 生态科学, 2015, 34(2): 63-70.
    [31] 蒋思思, 魏丽萍, 杨松, 等. 不同种源油松幼苗的光合色素和非结构性碳水化合物对模拟氮沉降的短期响应[J]. 生态学报, 2015, 35(21): 7061-7070.
    [32] 吴家兵, 井艳丽, 关德新, 等. 氮沉降对森林碳汇功能影响的研究进展[J]. 世界林业研究, 2012, 25(2): 12-16.
    [33]

    HOFMOCKEL K S. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2[J]. Ecol Lett, 2011, 14(4): 349-57. doi: 10.1111/j.1461-0248.2011.01593.x

    [34] 黎磊, 周道玮, 盛连喜. 密度制约决定的植物生物量分配格局[J]. 生态学杂志, 2011, 30(8): 1579-1589.
    [35] 沈杰, 蔡艳, 何玉亭, 等. 种植密度对烤烟养分吸收及品质形成的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(10): 51-58.
    [36]

    LU X K, MO J M, GILLIAM F S, et al. Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China[J]. Biotropica, 2012, 44(3): 302-311. doi: 10.1111/j.1744-7429.2011.00831.x

    [37] 苗惠田, 吕家珑, 张文菊, 等. 潮土小麦碳氮含量对长期不同施肥模式的响应[J]. 植物营养与肥料学报, 2015, 21(1): 72-80. doi: 10.11674/zwyf.2015.0108
    [38]

    ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecol Lett, 2007, 10(12): 1135. doi: 10.1111/j.1461-0248.2007.01113.x

    [39] 何利元, 胡中民, 郭群, 等. 氮磷添加对内蒙古温带草地地上生物量的影响[J]. 应用生态学报, 2015, 26(8): 2291-2297.
    [40] 黄钰辉, 张卫强, 甘先华, 等. 南亚热带杉木林改造不同树种配置模式的土壤质量评价[J]. 中国水土保持科学, 2017, 15(3): 123-130.
    [41] 樊后保, 刘文飞, 李燕燕, 等. 杉木(Cunninghamia lanceolata)人工林生长与土壤养分对氮沉降的响应[J]. 生态学报, 2007, 27(11): 4630-4642. doi: 10.3321/j.issn:1000-0933.2007.11.031
    [42] 詹书侠, 陈伏生, 胡小飞, 等. 中亚热带丘陵红壤区森林演替典型阶段土壤氮磷有效性[J]. 生态学报, 2009, 29(9): 4673-4680. doi: 10.3321/j.issn:1000-0933.2009.09.010
    [43] 苏波, 韩兴国, 渠春梅, 等. 森林土壤氮素可利用性的影响因素研究综述[J]. 生态学杂志, 2002, 21(2): 40-46. doi: 10.3321/j.issn:1000-4890.2002.02.011
    [44]

    XIA J Y, WAN S Q. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytolog, 2008, 179(2): 428-439. doi: 10.1111/j.1469-8137.2008.02488.x

    [45]

    REICH P B, LUO Y, BRADFORD J B, et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots[J]. Proc Nat Acad Sci USA, 2014, 111(38): 13721-13726. doi: 10.1073/pnas.1216053111

    [46]

    XUE L, HAGIHARA A. Density effects on organs in self-thinning Pinus densiflora Sieb. et Zucc. stands[J]. Ecol Res, 2008, 23(4): 689-695. doi: 10.1007/s11284-007-0427-3

    [47]

    XUE L, PAN L, ZHANG R, et al. Density effects on the growth of self-thinning Eucalyptus urophylla stands[J]. Trees, 2011, 25(6): 1021-1031. doi: 10.1007/s00468-011-0576-4

    [48]

    POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control[J]. New Phytolog, 2012, 193(1): 30-50. doi: 10.1111/j.1469-8137.2011.03952.x

    [49]

    GOWER S T, GHOLZ H L, NAKANE K, et al. Production and carbon allocation patterns of pine forests[J]. Ecol Bull, 1994, 43(43): 115-135.

    [50]

    FANG Y R, ZOU X J, LIE Z Y, et al. Variation in organ biomass with changing climate and forest characteristics across Chinese forests[J]. Forests, 2018, 9: 521. doi: 10.3390/f9090521

  • 期刊类型引用(1)

    1. 张运春,欧春予,张桥英. 氮添加对不同密度入侵植物喜旱莲子草生长的影响. 生态环境学报. 2020(09): 1745-1751 . 百度学术

    其他类型引用(5)

表(6)
计量
  • 文章访问数:  1151
  • HTML全文浏览量:  3
  • PDF下载量:  1388
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-04-12
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2020-01-09

目录

    Corresponding author: XUE Li, forxue@scau.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回