Impacts of different ecological types of earthworm on aggregate distribution and stability in typical latosolic red and red soils
-
摘要:目的
综合分析华南地区不同生态类型蚯蚓对土壤团聚体分布、团聚体水稳定性以及土壤团聚体破坏率的影响,以期为蚯蚓改善土壤结构提供科学依据和理论支持。
方法采用室内盆栽培养试验,在华南地区具有代表性的赤红壤和红壤中分别接种生态类型不同的4种蚯蚓:赤子爱胜蚓Eisenia fetida、南美岸蚓Pontoscolex corethrurus、壮伟远盲蚓Amynthas robustus和参状远盲蚓A. aspergillum,研究不同生态类型蚯蚓对土壤结构的影响。
结果与空白对照相比,南美岸蚓、壮伟远盲蚓和参状远盲蚓的添加均显著增加了2种土壤中的大团聚体(d>2 000 μm)比例(P<0.05),其中,赤红壤中其分别提升了35.20%、44.81%和37.88%,红壤中其分别提升了14.92%、25.31%和20.18%;与空白对照相比,壮伟远盲蚓的添加均显著降低了赤红壤水稳性大团聚体和水稳性小团聚体(250 μm≤d≤2 000 μm)的比例,却显著提升了赤红壤水稳性微团聚体(d<250 μm)的比例(37.84%,P<0.05);4种蚯蚓的添加均显著提升了2种土壤的团聚体破坏率(P<0.05),其中添加参状远盲蚓的2种土壤的团聚体破坏率均最低。主成分分析结果显示:在2种不同的土壤中,不同蚯蚓作用后土壤的团聚体分布和稳定性之间存在显著差异(P<0.05)。
结论华南不同生态类型的蚯蚓对赤红壤和红壤的团聚体分布和稳定性的影响不同;内栖型蚯蚓(南美岸蚓和壮伟远盲蚓)对土壤团聚体的形成和土壤结构的改善效果最好;深栖型蚯蚓(参状远盲蚓)对土壤水稳性团聚体的破坏作用最小。
Abstract:ObjectiveTo comprehensively analyze the effects of different ecological types of earthworm on soil aggregate distribution, water stability of aggregate and percentage of aggregate disruption (PAD) in South China, and provide scientific basis and theoretical support for utilizing earthworms to improve soil structure.
MethodThe laboratory culture experiment was carried out in this study. Eisenia fetida, Pontoscolex corethrurus, Amynthas robustus and A. aspergillum were added in typical latosolic red soil and red soil in South China to study the impacts of different ecological species of earthworm on soil structure.
ResultCompared with the blank control, the addition of P. corethrurus, A. robustus and A. aspergillum significantly promoted the formation of large-aggregates (d > 2 000 μm) in two soil types ( P < 0.05), The large-aggregate proportion in latosolic red soil increased respectively by 35.20%, 44.81% and 37.88%, and increased respectively by 14.92%, 25.31% and 20.18% in red soil. A. robustus significantly reduced the contents of water stable large-aggregates (d > 2 000 μm) and small-aggregates (250 μm≤ d≤2 000 μm) in latosolic red soil, but significantly increased the proportion of water stable micro-aggregates (d < 250 μm, P < 0.05), which was 37.84% higher than that of the blank control. The addition of four types of earthworms significantly increased PAD values in both two soil types ( P < 0.05), and the PAD value in adding A. aspergillum treatment was the lowest. The results of principal component analysis showed that there were significant differences in the distributions and stabilities of soil aggregates under the action of different earthworms in two different soils (P < 0.05).
ConclusionThe impacts of different earthworm types in South China on latosolic red soil and red soil aggregate distribution and stability are different. The endogenic earthworm (P. corethrurus and A. robustus) has the best impact on the improvement of soil structure. The endo-anecic (A. aspergillum) had the least destructive impact on water stable soil aggregate.
-
Keywords:
- earthworm /
- soil structure /
- soil aggregate /
- distribution /
- stability /
- percentage of aggregate disruption
-
-
图 1 不同生态类型蚯蚓处理的赤红壤各粒级(d)团聚体的分布情况
LCK:赤红壤不接种蚯蚓;LEf:赤红壤+赤子爱胜蚓;LPc:赤红壤+南美岸蚓;LAr:赤红壤+壮伟远盲蚓;LAa:赤红壤+参状远盲蚓;图中相同粒级柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’ s法)
Figure 1. Distributions of latosolic red soil aggregates with different size (d) processed by different ecological types of earthworm
LCK: Latosolic red soil without earthworm; LEf: Latosolic red soil+E. fetida; LPc: Latosolic red soil+P. corethrurus; LAr: Latosolic red soil+A. robustus; LAa: Latosolic red soil+A. aspergillum. Different lowercase letters on the bars of the same graded column indicated significant differences among different treatments(P<0.05, Duncan’ s test)
图 2 不同生态类型蚯蚓处理的红壤各粒级(d)团聚体的分布情况
RCK:红壤不接种蚯蚓;REf:红壤+赤子爱胜蚓;RPc:红壤+南美岸蚓;RAr:红壤+壮伟远盲蚓;RAa:红壤+参状远盲蚓. 图中相同粒级柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’ s法)
Figure 2. Distributions of red soil aggregates with different size (d) processed by different ecological types of earthworm
RCK: Red soil without earthworm; REf: Red soil+E. fetida; RPc: Red soil+P. corethrurus; RAr: Red soil+A. robustus; RAa: Red soil+A. aspergillum. Different lowercase letters on the bars of the same graded column indicated significant differences among different treatments(P<0.05, Duncan’ s test)
图 3 不同生态类型蚯蚓处理的赤红壤各粒级(d)水稳性团聚体分布情况
LCK:赤红壤不接种蚯蚓;LEf:赤红壤+赤子爱胜蚓;LPc:赤红壤+南美岸蚓;LAr:赤红壤+壮伟远盲蚓;LAa:赤红壤+参状远盲蚓;图中相同粒级柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’ s法)
Figure 3. Distributions of water stable aggregates with different size (d) in latosolic red soil processed by different ecological types of earthworm
LCK: Latosolic red soil without earthworm; LEf: Latosolic red soil+E. fetida; LPc: Latosolic red soil+P. corethrurus; LAr: Latosolic red soil+A. robustus; LAa: Latosolic red soil+A. aspergillum. Different lowercase letters on the bars of the same graded column indicated significant differences among different treatments (P<0.05, Duncan’ s test)
图 4 不同生态类型蚯蚓处理的红壤各粒级(d)水稳性团聚体分布情况
RCK:红壤不接种蚯蚓;REf:红壤+赤子爱胜蚓;RPc:红壤+南美岸蚓;RAr:红壤+壮伟远盲蚓;RAa:红壤+参状远盲蚓. 图中相同粒级柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’ s法)
Figure 4. Distributions of water stable aggregates with different size (d) in red soil processed by different ecological types of earthworm
RCK: Red soil without earthworm; REf: Red soil+E. fetida; RPc: Red soil+P. corethrurus; RAr: Red soil+A. robustus; RAa: Red soil+A. aspergillum. Different lowercase letters on the bars of the same graded column indicated significant differences among different treatments(P<0.05, Duncan’ s test)
图 5 不同生态类型蚯蚓处理的土壤团聚体破坏率(PAD)
CK:不接种蚯蚓;Ef:接种赤子爱胜蚓;Pc:接种南美岸蚓;Ar:接种壮伟远盲蚓;Aa:接种参状远盲蚓. 图中相同土壤类型柱子上方的不同小写字母表示不同生态类型蚯蚓处理间差异显著(P<0.05,Duncan’ s法)
Figure 5. Percentage of aggregate disruption(PAD) of soil aggregates processed by different ecological types of earthworm
CK: Without earthworm; Ef: Adding E. fetida; Pc: Adding P. corethrurus; Ar: Adding A. robustus; Aa: Adding A. aspergillum. Different lowercase letters on the bars of the same soil type indicated significant differences among different treatments by different ecological types of earthworm(P<0.05, Duncan’ s test)
图 6 不同生态类型蚯蚓对土壤团聚体分布及稳定性影响的主成分分析
DL:大团聚体含量;DS:小团聚体含量;DM:微团聚体含量;WL:水稳性大团聚体含量;WS:水稳性小团聚体含量;WM:水稳性微团聚体含量;PAD:土壤团聚体破坏率;LCK:赤红壤不接种蚯蚓;LEF:赤红壤+赤子爱胜蚓;LPc:赤红壤+南美岸蚓;LAr:赤红壤+壮伟远盲蚓;LAa:赤红壤+参状远盲蚓;RCK:红壤不接种蚯蚓;REf:红壤+赤子爱胜蚓;RPc:红壤+南美岸蚓;RAr:红壤+壮伟远盲蚓;RAa:红壤+参状远盲蚓
Figure 6. Principal component analyses of the effects of different ecological types of earthworm on the distributions and stabilities of soil aggregates
DL: Large-aggregate content; DS: Small-aggregate content; DM: Micro-aggregate content; WL: Water stable large-aggregate content; WS: Water stable small-aggregate content; WM: Water stable micro-aggregate content; PAD: Percentage of aggregate disruption of soil aggregate; LCK: Latosolic red soil without earthworm; LEf: Latosolic red soil+E. fetida; LPc: Latosolic red soil+P. corethrurus; LAr: Latosolic red soil+A. robustus; LAa: Latosolic red soil+A. aspergillum; RCK: Red soil without earthworms; REf: Red soil+E. fetida; RPc: Red soil+P. corethrurus; RAr: Red soil+A. robustus; RAa: Red soil+A. aspergillum
表 1 供试土壤的基本理化性质
Table 1 Physichemical properties of the soil sample
土壤类型
Soil typepH(H2O) w/(g·kg−1) 碳/氮质量比
Carbon/nitrogen mass ratiow(黏粒1))/%
Clay content阳离子交换量/(cmol·kg−1)
Cation exchange capacity有机碳
Organic carbon全氮
Total nitrogen赤红壤 Latosolic red soil 4.25 27.00 1.85 14.60 22.00 12.3 红壤 Red soil 6.77 21.30 2.92 7.30 32.10 13.3 1) d<2 000 μm -
[1] 赵其国. 中国东部红壤地区土壤退化的时空变化、机理及调控[M]. 北京: 科学出版社, 2002. [2] 张凤荣. 土壤地理学[M]. 北京: 中国农业出版社, 2001: 126-130. [3] 冯瑞章, 周万海, 龙瑞军, 等. 江河源区不同退化程度高寒草地土壤物理、化学及生物学特征研究[J]. 土壤通报, 2010, 41(2): 263-269. [4] 江仁涛, 李富程, 沈凇涛. 川西北高寒草地退化对土壤团聚体组成及稳定性的影响[J]. 水土保持研究, 2018, 25(4): 36-42. [5] 黄福珍. 论蚯蚓对土壤结构形成及性态的影响[J]. 土壤学报, 1979, 16(3): 211-217. [6] 张卫信, 陈迪马, 赵灿灿. 蚯蚓在生态系统中的作用[J]. 生物多样性, 2007, 15(2): 142-153. doi: 10.3321/j.issn:1005-0094.2007.02.005 [7] 王笑, 王帅, 滕明姣, 等. 两种代表性蚯蚓对设施菜地土壤微生物群落结构及理化性质的影响[J]. 生态学报, 2017, 37(15): 5146-5156. [8] KARACA A. Biology of earthworms[M]. London: Chapman & Hall, 2011: 39-50.
[9] 郝桂玉, 黄民生, 徐亚同. 蚯蚓及其在生态环境保护中的应用[J]. 环境科学研究, 2004, 17(3): 75-77. doi: 10.3321/j.issn:1001-6929.2004.03.020 [10] 袁新田, 焦加国, 朱玲, 等. 不同秸秆施用方式下接种蚯蚓对土壤团聚体及其中碳分布的影响[J]. 土壤, 2011, 43(6): 968-974. [11] 于建光, 胡锋, 李辉信, 等. 接种蚯蚓对土壤团聚体分布、稳定性及有机碳赋存的影响[J]. 水土保持学报, 2010, 24(3): 175-179. [12] BOSSUYT H, SIX J, HENDRIX P F. Protection of soil carbon by micro-aggregates within earthworm casts[J]. Soil Biol Biochem, 2005, 37(2): 251-258. doi: 10.1016/j.soilbio.2004.07.035
[13] SCHRADER S, ZHANG H. Earthworm casting: Stabilization or destabilization of soil structure?[J]. Soil Biol Biochem, 1997, 29: 469-475. doi: 10.1016/S0038-0717(96)00103-4
[14] 赵长巍. 接种蚯蚓对黑土水稳性团聚体含量及有机碳蓄积的影响[D]. 长春: 吉林农业大学, 2007. [15] BOSSUYT H, SIX J, HENDRIX P F. Rapid incorporation of carbon from fresh residues into newly formed stable micro-aggregates within earthworm casts[J]. Eur J Soil Sci, 2004, 55(2): 393-399. doi: 10.1111/j.1351-0754.2004.00603.x
[16] JONGMANS A G, PULLEMAN M M, MARINISSEN J C Y. Soil structure and earthworm activity in a marine silt loam under pasture versus arable land[J]. Biol Fertil Soil, 2001, 33(4): 279-285. doi: 10.1007/s003740000318
[17] WINSOME T, MCCOLL J G. Changes in chemistry and aggregation of a California forest soil worked by the earthworm Argilophilus papillifer eisen (megascolecidae)[J]. Soil Biol Biochem, 1998, 30(13): 1677-1687. doi: 10.1016/S0038-0717(97)00262-9
[18] SHIPITALO M J, PROTZ R. Chemistry and micro-morphology of aggregation in earthworm casts[J]. Geoderma, 1989, 45(3): 357-374.
[19] 徐芹, 肖能文. 中国陆栖蚯蚓[M]. 北京: 中国农业出版社, 2011: 281-293. [20] 黄锦华. 蚯蚓对南亚热带森林根系来源碳转化及土壤生态过程的影响[D]. 广州: 中国科学院华南植物园, 2015. [21] ZHANG B G, LI G T, SHEN T S, et al. Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida[J]. Soil Biol Biochem, 2000, 32(14): 2055-2062. doi: 10.1016/S0038-0717(00)00111-5
[22] ZHANG C, MORA P, DAI J, et al. Earthworm and organic amendment effects on microbial activities and metal availability in a contaminated soil from China[J]. Appl Soil Ecol, 2016, 104: 54-66. doi: 10.1016/j.apsoil.2016.03.006
[23] 吕贻忠, 李保国. 土壤学实验[M]. 北京: 中国农业出版社, 2010: 88-92. [24] SIX J, ELLIOTT E T, PAUSTIAN K. Soil macro-aggregate turnover and micro-aggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biol Biochem, 2000, 32(14): 2099-2103. doi: 10.1016/S0038-0717(00)00179-6
[25] 史奕, 陈欣, 沈善敏. 土壤团聚体的稳定机制及人类活动的影响[J]. 应用生态学报, 2002, 13(11): 1491-1494. doi: 10.3321/j.issn:1001-9332.2002.11.032 [26] THIOULOUSE J, CHESSEL D, DOLEDEC S, et al. ADE-4: A multivariate analysis and graphical display software[J]. Stat Comput, 1997(7): 75-83.
[27] SCULLION J, MALIK A. Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after opencast mining for coal[J]. Soil Biol Biochem, 2000, 32(1): 119-126. doi: 10.1016/S0038-0717(99)00142-X
[28] SPURGEON D J, KEITH A M, Schmidt O, et al. Land-use and land-management change: Relationships with earthworm and fungi communities and soil structural properties[J]. BMC Ecol, 2013, 13(1): 1-13. doi: 10.1186/1472-6785-13-1
[29] BLANCHART E, LAVELLE P, BRAUDEAU E, et al. Regulation of soil structure by geophagous earthworm activities in humid savannas of cote d'ivoire[J]. Soil Biol Biochem, 1997, 29(3/4): 431-439. doi: 10.1016/S0038-0717(96)00042-9
[30] 王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 2005, 36(3): 415-421. doi: 10.3321/j.issn:0564-3945.2005.03.031 [31] PULLEMAN M M, SIX J, BREEMEN N V, et al. Soil organic matter distribution and micro-aggregate characteristics as affected by agricultural management and earthworm activity[J]. Eur J Soil Sci, 2005, 56(4): 453-467. doi: 10.1111/j.1365-2389.2004.00696.x
[32] MAGID J, KJAERGAARD C, GORISSEN A, et al. Drying and re-wetting of a loamy sand soil did not increase the turnover of native organic matter, but retarded the decomposition of added 14C-labelled plant material[J]. Soil Biol Biochem, 1999, 31(4): 595-602. doi: 10.1016/S0038-0717(98)00164-3
[33] 章明奎, 何振立, 陈国潮, 等. 利用方式对红壤水稳定性团聚体形成的影响[J]. 土壤学报, 1997(4): 359-366. doi: 10.3321/j.issn:0564-3929.1997.04.002 [34] 刘艳, 马茂华, 吴胜军, 等. 干湿交替下土壤团聚体稳定性研究进展与展望[J]. 土壤, 2018, 50(5): 4-16. [35] 张池, 周波, 吴家龙, 等. 蚯蚓在我国南方土壤修复中的应用[J]. 生物多样性, 2018, 26(10): 1091-1102. doi: 10.17520/biods.2018151 [36] 张池, 陈旭飞, 周波, 等. 华南地区壮伟环毛蚓(Amynthas robustus)和皮质远盲蚓(Amynthas corticis)对土壤酶活性和微生物学特征的影响[J]. 中国农业科学, 2012, 45(13): 2658-2667. [37] LAVELLE P, SPAIN A V. Soil ecology[M]. Berlin: Springer Netherlands, 2001: 44-57.
-
期刊类型引用(15)
1. 邱裕丰,唐荣贵,沈玉叶,陈有超,刘益宏,蔡延江. 不同密度蚯蚓对毛竹林土壤团聚体稳定性及有机碳的影响. 应用生态学报. 2025(03): 819-827 . 百度学术
2. 肖远业,张守涛,张孟豪,钟鹤森,许炜晴,李馨妤,毛润乾,张池. 光伏-蚯蚓模式与有机物料施用对土壤质量的影响. 应用生态学报. 2025(04): 995-1002 . 百度学术
3. 张香凝,史福刚,李太魁,郭战玲,寇长林. 接种蚯蚓对有机茶园土壤结构及有机碳库的影响. 生态学报. 2024(04): 1747-1754 . 百度学术
4. 曾海琪,宋书巧,赵婷. 淋溶作用下桉树浸提液单宁对赤红壤铁形态影响. 环境科学学报. 2024(06): 395-403 . 百度学术
5. 王玉霞,张建云,房慧勇,郑玉光,马东来,谷仙. 蚯蚓肥中养分、微生物群落及抑菌功能研究——以华北平原牛粪堆肥为例. 中国农业大学学报. 2024(09): 135-146 . 百度学术
6. 裴诗宇,杨家伟,吴彬,赵叶新,叶成龙,胡水金. 接种蚯蚓和腐解菌对秸秆腐解及土壤矿物结合有机碳形成的影响. 江苏农业学报. 2024(08): 1424-1433 . 百度学术
7. 张雪莲,王国兵,徐晓. 不同生态类型蚯蚓对土壤团聚体有机碳质量分数的影响. 东北林业大学学报. 2023(01): 101-105 . 百度学术
8. 沈松蓉,陈云,康茜琳,向媛羚,耿育红,张伟,韩颖. 寡氧单胞菌、水稻秸秆和蚯蚓协同修复Cr(Ⅵ)污染土壤. 农业环境科学学报. 2023(11): 2440-2452 . 百度学术
9. 陈静,张孟豪,杨倩楠,张晓龙,王超,张池,刘科学. 蚯蚓改良水浇地土壤入渗性能及影响因素分析. 福建农业学报. 2023(11): 1367-1375 . 百度学术
10. 郭澎,诸莉燕,柳开楼,付责,张行健,罗朝晖,毕利东. 红壤区不同母质对水稻土土壤团聚体稳定性的影响. 广东农业科学. 2022(03): 77-85 . 百度学术
11. 王鑫格,李娜,许宜平,韩颖楠,饶凯锋,马梅. 基于有机污染物生物有效性的土壤环境质量基准的探讨. 生态毒理学报. 2022(01): 32-46 . 百度学术
12. 张维兰,张悦,刘萍,段昌群,刘嫦娥. 蚯蚓在植物修复重金属污染土壤中的研究进展. 环境科学与技术. 2022(08): 155-165 . 百度学术
13. 陈静,陈金洁,杨倩楠,Cevin Tibihenda,李祥东,张晓龙,王超,张池,刘科学. 蚯蚓生态类型和密度对水浇地土壤综合质量的影响. 南方农业学报. 2022(07): 1899-1907 . 百度学术
14. 刘嫦娥,岳敏慧,谭辉林,张悦,张维兰,肖艳兰,潘瑛,段昌群. 纳米零价铁(nZVI)对蚯蚓-微生物-土壤生态系统的毒性效应研究. 中国生态农业学报(中英文). 2021(10): 1722-1732 . 百度学术
15. 张宇,蒋代华,黄金兰,王明释,邓华为. 粉垄耕作对赤红壤团聚体粒级分布和稳定性的影响. 生态学杂志. 2021(12): 3922-3932 . 百度学术
其他类型引用(7)