氮、磷添加对青藏高原高寒草甸丛枝菌根真菌群落的影响

    林昕, 董强, 王平, 姜丽丽, 胡嘉丽, 汪诗平, 纪宝明

    林昕, 董强, 王平, 等. 氮、磷添加对青藏高原高寒草甸丛枝菌根真菌群落的影响[J]. 华南农业大学学报, 2020, 41(2): 95-103. DOI: 10.7671/j.issn.1001-411X.201903017
    引用本文: 林昕, 董强, 王平, 等. 氮、磷添加对青藏高原高寒草甸丛枝菌根真菌群落的影响[J]. 华南农业大学学报, 2020, 41(2): 95-103. DOI: 10.7671/j.issn.1001-411X.201903017
    LIN Xin, DONG Qiang, WANG Ping, et al. Effects of nitrogen and phosphorus additions on arbuscular mycorrhizal fungi community in the alpine meadow in Qinghai-Tibetan plateau[J]. Journal of South China Agricultural University, 2020, 41(2): 95-103. DOI: 10.7671/j.issn.1001-411X.201903017
    Citation: LIN Xin, DONG Qiang, WANG Ping, et al. Effects of nitrogen and phosphorus additions on arbuscular mycorrhizal fungi community in the alpine meadow in Qinghai-Tibetan plateau[J]. Journal of South China Agricultural University, 2020, 41(2): 95-103. DOI: 10.7671/j.issn.1001-411X.201903017

    氮、磷添加对青藏高原高寒草甸丛枝菌根真菌群落的影响

    基金项目: 国家重点研发计划(2016YFC0501802);中国科学院战略性先导科技专项(XDA2005100402);中央高校基本科研业务费专项资金(2017jc08)
    详细信息
      作者简介:

      林昕(1993—),男,硕士研究生,E-mail: 540765872@qq.com

      通讯作者:

      纪宝明(1972—),男,教授,博士,E-mail: baomingji@bjfu.edu.cn

    • 中图分类号: Q938.1

    Effects of nitrogen and phosphorus additions on arbuscular mycorrhizal fungi community in the alpine meadow in Qinghai-Tibetan plateau

    • 摘要:
      目的 

      探究青藏高原高寒嵩草草甸生态系统中丛枝菌根真菌(AMF)群落对氮、磷添加的响应及其驱动因子,补充目前高寒草甸AMF对施肥响应研究的不足。

      方法 

      通过常规分析和高通量(Illumina-Miseq)测序,分析氮(0、7.5、15.0 g·m−2)、磷(0、7.5、15.0、30.0 g·m−2 P2O5)添加3年对青藏高原高寒小嵩草草甸土壤化学性质、AMF侵染率、OTU丰度、 Shannon多样性指数和AMF群落组成的影响。

      结果 

      测序共发现36个AMF的OTU,归属于7个科。氮、磷的添加及其交互作用对AMF侵染率、OTU丰度和 Shannon多样性指数均无显著影响。相对于低施氮处理,高施氮处理显著降低球囊霉门的相对丰度。土壤有机碳、硝态氮、有效磷和全磷含量均是影响AMF群落的土壤因子。

      结论 

      青藏高原高寒嵩草草甸根系AMF群落不受氮、磷添加的影响,群落分布与土壤因子有显著相关性。

      Abstract:
      Objective 

      To investigate the responses of arbuscular mycorrhizal fungi (AMF) community to nitrogen and phosphorus additions and the driven factors in the Qinghai-Tibetan alpine meadow, and have a better knowledge of the effects of fertilization on alpine meadow AMF community.

      Method 

      Through regular analyses and high-throughput sequencing (Illumina Miseq), we studied the effects of nitrogen addition (0, 7.5, 15.0 g·m−2) and phosphorus addition (0, 7.5, 15.0 and 30.0 g·m−2 P2O5) for three year on soil chemical property, AMF colonization rate, OTU richness, Shannon diversity index and AMF community composition in Qinghai-Tibetan alpine meadow.

      Result 

      The 36 AMF OTUs from seven families were detected. The addition of nitrogen, phosphorus and their interaction had no influence on AMF colonization rate, OTU richness and Shannon diversity index. Compared with low nitrogen addition treatment, high nitrogen input treatment significantly decreased the relative abundance of Glomeraceae. Soil organic carbon, nitrate nitrogen, available phosphorus and total phosphorus contents were the factors which impacted AMF community.

      Conclusion 

      Root AMF community in Qinghai-Tibetan alpine Kobresia meadow wasn’ t affected by nitrogen or phosphorus addition. However, the distribution of community was significantly correlated with edaphic factors.

    • 图  1   不同施肥处理下丛枝菌根真菌侵染率

      N0、N1、N2指氮施用量为0、7.5、15.0 g·m−2的处理;P0、P1、P2和P3指磷施用量为0、7.5、15.0、30.0 g·m−2的处理

      Figure  1.   Arbuscular mycorrhizal fungal colonization rates in different fertilization treatments

      N0, N1, N2 indicated nitrogen application amount 0, 7.5, 15.0 g·m−2; P0, P1, P2, P3 indicated phosphorus application amount 0, 7.5, 15.0, 30.0 g·m−2

      图  2   不同施肥处理下分子测序的稀释曲线

      N0、N1、N2指氮施用量为0、7.5、15.0 g·m−2的处理;P0、P1、P2和P3指磷施用量为0、7.5、15.0、30.0 g·m−2的处理

      Figure  2.   Rarefaction curve of sequencing samples in different fertilization treatments

      N0, N1, N2 indicated nitrogen application amount 0, 7.5, 15.0 g·m−2; P0, P1, P2, P3 indicated phosphorus application amount 0, 7.5, 15.0, 30.0 g·m−2

      图  3   不同施肥处理下丛枝菌根真菌各科的相对丰度

      N0、N1、N2指氮施用量为0、7.5、15.0 g·m−2的处理;P0、P1、P2和P3指磷施用量为0、7.5、15.0、30.0 g·m−2的处理

      Figure  3.   Relative abundance of different arbuscular mycorrhizal fungal families in different fertilization treatments

      N0, N1, N2 indicated nitrogen application amount 0, 7.5, 15.0 g·m−2; P0, P1, P2, P3 indicated phosphorus application amount 0, 7.5, 15.0, 30.0 g·m−2

      图  4   36个丛枝菌根真菌OTU代表序列及其参考序列构建的邻接树

      模型:p-distance;Boostrap值:1 000;DQ846895作为outgroup

      Figure  4.   Neighbor-joining tree constructed based on representative sequences of 36 arbuscular mycorrhizal fungal OTUs and their reference sequences

      Model: p-distance;Boostrap value: 1 000; DQ846895 was used as an outgroup

      图  5   不同施肥处理丛枝菌根真菌OTU丰度、Shannon多样性指数及球囊霉科相对丰度

      不同柱子上不同大写字母表示在P<0.001水平差异显著(Tukey’ s HSD检验)

      Figure  5.   OTU richness, Shannon diversity index of arbuscular mycorrhizal fungi and relative abundance of Glomeraceae in different fertilization treatments

      Different capital letters on different columns indicated significant differences at P<0.001 level (Tukey’ s HSD test)

      图  6   不同施肥处理丛枝菌根真菌群落以及显著环境变量的典范对应分析图

      Figure  6.   Canonical correspondence analysis plot of arbuscular mycorrhizal fungal community distribution and significant environmental variables among different fertilization treatments

      表  1   不同施肥处理土壤化学成分含量差异显著性分析

      Table  1   Significance analyzes of soil chemical component content differences in different fertilization treatments

      指标 Index 氮添加
      Nitrogen addition
      磷添加
      Phosphorus addition
      氮、磷添加交互作用
      Interaction between nitrogen and phosphorus additions
      F P F P F P
      有机碳 Organic carbon 0.610 0.549 0.940 0.431 1.849 0.117
      全氮 Total nitrogen 0.737 0.486 0.343 0.794 0.674 0.672
      铵态氮 Ammonium nitrogen 15.662 < 0.001 1.094 0.367 1.939 0.105
      硝态氮 Nitrate nitrogen 21.780 < 0.001 2.711 0.061 2.964 0.021
      全磷全磷 Total phosphorus 0.304 0.740 17.135 < 0.001 0.389 0.881
      有效磷 Available phosphorus 0.502 0.610 33.642 < 0.001 2.509 0.040
      pH 1.336 0.276 0.329 0.804 0.948 0.473
      下载: 导出CSV

      表  2   不同施肥处理试验样地的土壤化学成分含量1)

      Table  2   Soil chemical component contents of the experiment field in different fertilization treatments

      处理 Treatment w/% w/(mg·kg−1) pH
      N P 有机碳
      Organic carbon
      全氮
      Total nitrogen
      全磷
      Total phosphorus
      铵态氮
      Ammonium nitrogen
      硝态氮
      Nitrate nitrogen
      有效磷
      Available phosphorus
      N0 P0 4.79±0.45a 0.26±0.01a 0.040±0.001cd 2.53±0.77b 7.49±1.43bc 2.72±0.49d 6.74±0.08a
      P1 3.61±0.79a 0.21±0.06a 0.040±0.006cd 3.91±2.16b 5.23±1.25bc 6.39±2.34cd 6.77±0.11a
      P2 3.25±0.58a 0.23±0.04a 0.044±0.007abcd 2.06±0.27b 6.26±1.90bc 13.64±7.19bcd 6.66±0.06a
      P3 3.69±0.65a 0.27±0.09a 0.057±0.012abc 2.15±1.37b 4.67±1.14c 21.78±4.00abc 6.65±0.12a
      N1 P0 3.59±0.42a 0.22±0.01a 0.038±0.001d 1.83±0.73b 15.32±5.27bc 2.17±1.35d 6.69±0.08a
      P1 3.35±0.40a 0.24±0.01a 0.046±0.003abcd 2.25±1.07b 6.96±0.95bc 9.73±0.83bcd 6.47±0.15a
      P2 3.77±0.47a 0.22±0.04a 0.042±0.004bcd 6.07±4.38b 9.00±0.49bc 5.49±2.61d 6.73±0.19a
      P3 3.83±0.73a 0.24±0.04a 0.060±0.010ab 6.28±5.37b 5.79±0.91bc 26.02±13.21ab 6.67±0.23a
      N2 P0 2.98±0.32a 0.19±0.01a 0.038±0.003d 27.07±11.00a 35.66±15.70ab 2.28±0.12d 6.64±0.11a
      P1 3.57±0.94a 0.23±0.08a 0.044±0.004abcd 13.72±9.81ab 24.76±22.05bc 4.54±1.96d 6.61±0.15a
      P2 3.29±0.39a 0.24±0.05a 0.047±0.003abcd 7.13±0.85b 14.94±3.58bc 11.30±5.63bcd 6.61±0.05a
      P3 4.24±1.50a 0.23±0.03a 0.060±0.010a 15.41±11.90ab 59.55±23.70a 35.21±5.05a 6.60±0.07a
       1)表中数据为平均值±标准差;同列数据后不同小写字母表示差异显著(P < 0.05,Tukey′s HSD法);N0、N1、N2指氮施用量为0、7.5、15.0 g·m −2的处理;P0、P1、P2和P3指磷施用量为0、7.5、15.0、30.0 g·m−2的处理
       1) Data in the table were mean value ± standard deviation; Different lowercase letters in the same column indicated significant differences (P<0.05, Tukey′s HSD test); N0, N1, N2 indicated nitrogen application amount 0, 7.5, 15.0 g·m−2; P0, P1, P2, P3 indicated phosphorus application amount 0, 7.5, 15.0, 30.0 g·m−2
      下载: 导出CSV
    • [1]

      SMITH S E, READ D J. Mycorrhizal symbiosis[M]. 3rd ed. Salt Lake City: American Academic Press, 2008.

      [2]

      van der HEIJDEN M G A, BARDGETT R D, van STRAALEN N M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecol Lett, 2008, 11(3): 296-310. doi: 10.1111/j.1461-0248.2007.01139.x

      [3]

      SMITH M D, HARTNETT D C, WILSON G W T. Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie[J]. Oecologia, 1999, 121(4): 574-582. doi: 10.1007/s004420050964

      [4]

      van der HEIJDEN M G A, WIEMKEN A, SANDERS I R. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant[J]. New Phytol, 2003, 157(3): 569-578. doi: 10.1046/j.1469-8137.2003.00688.x

      [5]

      MIEHE G, MLEHE S, KAISER K. Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan plateau[J]. Ambio, 2008, 37(4): 272-279. doi: 10.1579/0044-7447(2008)37[272:SADOTK]2.0.CO;2

      [6] 杨元合, 饶胜, 胡会峰, 等. 青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系[J]. 生物多样性, 2004, 12(1): 200-205. doi: 10.3321/j.issn:1005-0094.2004.01.024
      [7] 王长庭, 龙瑞军, 丁路明. 青藏高原高寒嵩草草甸基本特征的研究[J]. 草业科学, 2004, 21(8): 16-19. doi: 10.3969/j.issn.1001-0629.2004.08.005
      [8]

      MUTHUKUMAR T, UDAIYAN K, SHANMUGHAVEL P. Mycorrhiza in sedges: An overview[J]. Mycorrhiza, 2004, 14(2): 65-77. doi: 10.1007/s00572-004-0296-3

      [9]

      GAI J P, CAI X B, FENG G, et al. Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau[J]. Mycorrhiza, 2006, 16(3): 151-157. doi: 10.1007/s00572-005-0031-8

      [10]

      LI X, ZHANG J, GAI J, et al. Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the Tibetan Plateau[J]. Environ Microbiol, 2015, 17(8): 2841-2857. doi: 10.1111/1462-2920.12792

      [11] 马玉寿, 郎百宁, 王启基. “黑土型”退化草地研究工作的回顾与展望[J]. 草业科学, 1999, 16(2): 5-9.
      [12]

      LIU Y, SHI G, MAO L, et al. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem[J]. New Phytol, 2012, 194(2): 523-535. doi: 10.1111/j.1469-8137.2012.04050.x

      [13]

      XIANG X, GIBBONS S M, HE J S, et al. Rapid response of arbuscular mycorrhizal fungal communities to short-term fertilization in an alpine grassland on the Qinghai-Tibet Plateau[J]. PeerJ, 2016, 4. doi: 10.7717/peerj.2226.

      [14]

      SHEN D, YE C, HU Z, et al. Increased chemical stability but decreased physical protection of soil organic carbon in response to nutrient amendment in a Tibetan alpine meadow[J]. Soil Biol Biochem, 2018, 126: 11-21. doi: 10.1016/j.soilbio.2018.08.008

      [15]

      GAI J P, TIAN H, YANG F Y, et al. Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient[J]. Pedobiologia, 2012, 55(3): 145-151. doi: 10.1016/j.pedobi.2011.12.004

      [16]

      LIU L, HART M M, ZHANG J, et al. Altitudinal distribution patterns of AM fungal assemblages in a Tibetan alpine grassland[J]. FEMS Microbiol Ecol, 2015, 91(7). doi: 10.1093/femsec/fiv078.

      [17]

      PERRIER E R, KELLOGG M. Colorimetric determination of soil organic matter[J]. Soil Sci, 1960, 90(2): 104-106. doi: 10.1097/00010694-196008000-00005

      [18]

      BRADSTREET R B. Kjeldahl method for organic nitrogen[J]. Anal Chem, 1965, 26(1). doi: 10.1021/ac60085a028.

      [19]

      NORMAN R J, EDBERG J C, STUCKI J W. Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotometry 1[J]. Soil Sci Soc Am J, 1985, 49(5): 1182-1185. doi: 10.2136/sssaj1985.03615995004900050022x

      [20]

      OLSEN S R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate[M]. Washington: United States Department of Agriculture, 1954.

      [21]

      BRAY R H, KURTZ L T. Determination of total, organic, and available forms of phosphorus in soils[J]. Soil Sci, 1945, 59(1): 39-46. doi: 10.1097/00010694-194501000-00006

      [22]

      BRUNDRETT M, BOUGHER N, DELL B, et al. Working with mycorrhizas in forestry and agriculture[M]. Canberra: RePEc, 1996.

      [23]

      BRUNDRETT M C, MELVILLE L, PETERSON L. Practical methods in mycorrhiza research[M]. Guelph: Mycologue Publications, 2000.

      [24]

      McGONIGLE T P, MILLER M H, EVANS D G, et al. A new method which gives an objective measure of colonization of roots by vesicular: A arbuscular mycorrhizal fungi[J]. New Phytol, 1990, 115(3): 495-501. doi: 10.1111/j.1469-8137.1990.tb00476.x

      [25]

      STEWART C N Jr., VIA L E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications[J]. Biotechniques, 1993, 14(5): 748-750.

      [26]

      LUMINI E, ORGIAZZI A, BORRIELLO R, et al. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach[J]. Environ microbiol, 2010, 12(8): 2165-2179.

      [27]

      CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat methods, 2010, 7(5): 335-336. doi: 10.1038/nmeth.f.303

      [28]

      LIN X, FENG Y, ZHANG H, et al. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing[J]. Environ Sci Technol, 2012, 46(11): 5764-5771. doi: 10.1021/es3001695

      [29]

      CAMENZIND T, HEMPEL S, HOMEIER J, et al. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest[J]. Glob Chang Biol, 2014, 20(12): 3646-3659. doi: 10.1111/gcb.12618

      [30]

      JOHNSON N C. Can fertilization of soil select less mutualistic mycorrhizae?[J]. Ecol Appl, 1993, 3(4): 749-757. doi: 10.2307/1942106

      [31]

      SHI L, YANG R, ZHANG J, et al. Evidence for functional divergence in AM fungal communities from different montane altitudes[J]. Fungal Ecol, 2015, 16: 19-25. doi: 10.1016/j.funeco.2015.03.009

      [32]

      LI X, XU M, CHRISTIE P, et al. Large elevation and small host plant differences in the arbuscular mycorrhizal communities of montane and alpine grasslands on the Tibetan Plateau[J]. Mycorrhiza, 2018, 28(7): 605-619. doi: 10.1007/s00572-018-0850-z

      [33]

      CHEN S, JIN W, LIU A, et al. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress[J]. Sci Hortic, 2013, 160: 222-229. doi: 10.1016/j.scienta.2013.05.039

      [34]

      ZHENG Y, KIM Y C, TIAN X F, et al. Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow[J]. FEMS Microbiol Ecol, 2014, 89(3): 594-605. doi: 10.1111/1574-6941.12361

      [35]

      ZHENG Y, CHEN L, LUO C Y, et al. Plant identity exerts stronger effect than fertilization on soil arbuscular mycorrhizal fungi in a sown pasture[J]. Microb Ecol, 2016, 72(3): 647-658. doi: 10.1007/s00248-016-0817-6

      [36]

      BÜNEMANN E K, SCHWENKE G D, van ZWIETEN L. Impact of agricultural inputs on soil organisms: A review[J]. Aust J Soil Res, 2006, 44(4): 379-406. doi: 10.1071/SR05125

      [37]

      KERNAGHAN G. Mycorrhizal diversity: Cause and effect?[J]. Pedobiologia, 2005, 49(6): 511-520. doi: 10.1016/j.pedobi.2005.05.007

    • 期刊类型引用(0)

      其他类型引用(1)

    图(6)  /  表(2)
    计量
    • 文章访问数:  2430
    • HTML全文浏览量:  4
    • PDF下载量:  2634
    • 被引次数: 1
    出版历程
    • 收稿日期:  2019-03-11
    • 网络出版日期:  2023-05-17
    • 刊出日期:  2020-03-09

    目录

      /

      返回文章
      返回