Fine-grained tomato disease recognition based on attention residual mechanism
-
摘要:目的
解决温室环境下细粒度番茄病害识别方法不足问题。
方法以早、晚期5种番茄病害叶片为研究对象,提出一种基于注意力与残差思想相结合的新型卷积神经网络模型ARNet。通过引入多层注意力模块,层次化抽取病害分类信息,解决早期病害部位分散、特征难以提取难题;为避免网络训练出现退化现象,构建残差模块有效融合高低阶特征,同时引入数据扩充技术以防止模型过拟合。
结果对44 295张早、晚期病害叶片数据集进行模型训练与测试的结果表明,与VGG16等现有模型相比,ARNet具有更好的分类表现,其平均识别准确率达到88.2%,显著高于其他模型。ARNet对早期病害识别准确率明显优于晚期病害,验证了注意力机制在提取细微区域特征上的有效性,且在训练过程中未发生过度抖动的状况。
结论本文提出的模型具有较强鲁棒性和较高稳定性,在实际应用中可为细粒度番茄病害智能诊断提供参考。
Abstract:ObjectiveTo solve the insufficient identification of fine-grained tomato diseases in greenhouse.
MethodTaking tomato leaves with five early or late diseases as research objects, we proposed a new convolutional neural network model ARNet based on the combination of attention and residual thought. A multi-layered attention module was introduced to solve the problem of early disease location dispersion and the difficulty of feature extraction by extracting hierarchically disease classification information. In order to avoid the degradation of network training, we constructed a residual module to effectively integrate high- and low-order features. Meantime, we introduced the data expansion technology to prevent model over-fitting.
ResultModel training and testing results of early and late disease leaf datasets with 44 295 pictures showed that ARNet has better classification performance with an average recognition accuracy of 88.2%, which was significantly higher than those of other existing models. In addition, the identification accuracy of ARNet for early disease was significantly better than that for late disease, which verified the effectiveness of attention mechanism in extracting fine region features, and there was no excessive jitter during training process.
ConclusionThis model proposed in this paper has strong robustness and high stability, and can provide a reference for intelligent diagnosis of fine-grained tomato diseases in practical application.
-
Keywords:
- fine-grained /
- attention mechanism /
- residual network /
- convolutional network /
- tomato leaf /
- disease recognition
-
在过去的半个多世纪里,遗传选育增加了猪的窝产仔数,但也造成初生质量降低、低初生质量仔猪数比例增加等问题[1]。尽管提高了饲养管理技术,对幼龄动物的营养需求也进行了大量研究,但由于对胎儿和新生动物生长发育的调节机制了解不够全面,宫内发育迟缓(Intrauterine growth retardation,IUGR)仍然是现代畜牧业面临的主要问题[2]。IUGR动物出生后生长迟缓、永久性发育异常和对疾病的易感性增加,导致早期高发病率和高死亡率[3]。据报道,断奶前大约有75%的IUGR仔猪会死亡[4]。在养猪生产中,新生IUGR仔猪吮乳竞争力差[5],而初乳中含有免疫球蛋白A(Immunoglobulin A,IgA)和IgG等免疫因子,造成IUGR仔猪免疫力差和死亡率高。有研究表明,IUGR仔猪的肝脏、肾脏和脾脏的质量显著降低[6];IUGR可降低仔猪血清白介素−1β(Interleukine-1β,IL-1β)和白介素−10(Interleukin-10,IL-10)的含量以及IL-1β与IL-10的比值[7];IUGR仔猪血清和回肠中干扰素−γ(Interferon-γ,IFN-γ)和IL-10的水平均有所降低,可能与IUGR猪热休克蛋白70的过表达抑制了NF-κB信号通路有关[8];与同日龄正常出生质量仔猪相比,IUGR仔猪血清IL-10含量显著降低,血清肿瘤坏死因子−α(Tumor necrosis factor-α,TNF-α)含量呈降低趋势,回肠IL-10和TNF-α的含量及其mRNA表达量均显著降低[9]。可见,目前有关IUGR的研究多集中在断奶仔猪阶段,关于IUGR影响生长肥育猪免疫功能方面的研究报道较少。因此,本文拟研究IUGR对生长肥育猪免疫器官和血浆细胞因子含量的影响,旨在为生长肥育阶段IUGR猪的免疫营养调控提供参考。
1. 材料与方法
1.1 试验动物、分组与饲养管理
动物饲养试验于2018年7月—2019年1月在中国科学院亚热带研究所永安动物试验基地开展。试验选择36头胎次和体况相近的正常分娩母猪,分娩后从每窝中选取IUGR和正常初生质量(作为对照)雄性仔猪各1头,分别组成IUGR组和对照组,每组各36头。参照Zhong等[10]的方法,将出生体质量低于平均体质量10%的仔猪定义为IUGR仔猪,将大于平均体质量的仔猪定义为正常初生质量仔猪。1~27日龄在产床上饲喂,28日龄断奶后转至单栏饲喂,2个组饲喂相同基础饲粮(粉料,不添加抗生素),28~69日龄(对照组猪平均体质量达25 kg)饲喂保育前期料、70~103日龄(对照组猪平均体质量达50 kg)饲喂保育后期料、104~165日龄(对照组猪平均体质量达100 kg)饲喂育肥料。基础饲粮由湖南新五丰有限公司提供,其营养水平不低于美国国家研究委员会提出的猪营养需求标准[11],饲粮组成及营养水平见表1。饲喂、饮水、保温和免疫等饲养管理方式按湖南新五丰有限公司养殖标准规范操作。
表 1 不同生长阶段猪的基础饲粮组成及营养水平(风干基础)Table 1. Ingredients and nutrient levels of basal diets for pigs at different growth stages (air-dry basis)项目
Item组成
Component保育猪(28~69日龄)
Nursery pig
(28−69 days of age)生长猪(70~103日龄)
Growing pig
(70−103 days of age)育肥猪(104~165日龄)
Finishing pig
(104−165 days of age)原料及质量分数/%
Ingredient and content玉米 Corn 60.00 61.00 61.17 大麦 Barley 6.00 8.00 8.00 豆油 Soybean oil 2.00 1.50 1.00 豆粕 Soybean meal 27.50 25.00 25.50 磷酸氢钙 CaHPO4 0.10 0.10 0 赖氨酸 Lysine 0.16 0.18 0.13 蛋氨酸 Methionine 0.02 0.03 0.00 苏氨酸 Threonine 0.10 0.07 0.08 抗氧化剂 Antioxidant 0.02 0.02 0.02 防霉剂 Antimildew agent 0.10 0.10 0.10 保育猪预混料1) Nursery pigs premix 4.00 0 0 生长育肥猪预混料2)
Growing-finishing pigs premix0 4.00 4.00 合计 Total 100.00 100.00 100.00 营养成分及质量分数3)/%
Nutrient and content粗蛋白质 Crude protein 17.20 16.40 16.50 粗脂肪 Crude fat 4.70 4.30 3.80 粗纤维 Crude fiber 2.70 2.70 2.80 赖氨酸 Lysine 1.17 1.08 1.05 蛋氨酸 Methionine 0.33 0.30 0.28 苏氨酸 Threonine 0.77 0.71 0.73 钙 Ca 0.77 0.74 0.66 总磷 Total P 0.56 0.52 0.45 消化能/(MJ·kg−1)
Digestive energy13.91 13.77 13.64 1)保育猪预混料为每千克饲粮提供:维生素A 8 000 IU,维生素D3 228 IU,维生素E 15 IU,维生素K3 3.0 mg,维生素B11.3 mg,维生素B2 3.1 mg,维生素B6 1.2 mg,维生素B12 0.03 mg,泛酸钙13.4 mg,氯化胆碱500 mg,Fe 120 mg,Cu 10 mg,Zn 130 mg,Mn 100 mg,I 0.3 mg,Se 0.3 mg; 2)生长育肥猪预混料为每千克饲粮提供:维生素A 15 000 IU,维生素D3 200 IU,维生素 E 50 IU,维生素 K3 4.0 mg,维生素 B1 4.0 mg,维生素B2 10 mg,维生素B6 3.0 mg,维生素B12 0.04 mg,泛酸钙20.0 mg,氯化胆碱800 mg,Fe 120 mg,Cu 20 mg,Zn 112 mg,Mn 124 mg,I 0.5 mg,Se 0.4 mg; 3)营养成分质量分数均为计算值
1)The premix for nursery pigs provided the following per kg of diet:Vitamin A 8 000 IU, vitamin D3 228 IU, vitamin E 15 IU, vitamin K3 3.0 mg, vitamin B1 1.3 mg, vitamin B2 3.1 mg, vitamin B6 1.2 mg, vitamin B12 0.03 mg, calcium pantothenate 13.4 mg, choline chloride 500 mg, Fe 120 mg, Cu 10 mg, Zn 130 mg, Mn 100 mg, I 0.3 mg, Se 0.3 mg; 2)The premix for growing-finishing pigs provided the following per kg of diet:Vitamin A 15 000 IU, vitamin D3 200 IU, vitamin E 50 IU, vitamin K3 4.0 mg,vitamin B1 4.0 mg,vitamin B2 10 mg, vitamin B6 3.0 mg, vitamin B12 0.04 mg, calcium pantothenate 20 mg, choline chloride 800 mg, Fe 120 mg, Cu 20 mg, Zn 112 mg, Mn 124 mg, I 0.5 mg, Se 0.4 mg; 3)Nutrient contents were calculated values1.2 样品采集与处理
于对照组猪的平均体质量分别达到25、50和100 kg时,每组随机选取7头猪,前腔静脉采血10 mL,肝素抗凝,3 000 r/min离心10 min,分离血浆,−20 ℃保存,用于测定细胞因子含量。每组选取12头猪屠宰,分离肝脏、脾脏和肾脏并称取质量,按下述公式计算器官系数:
器官系数= 器官湿质量/活体质量。
1.3 血浆细胞因子测定
血浆样品于4 ℃解冻后,根据猪的酶联免疫试剂盒(江苏雨桐生物科技有限公司)说明书,使用多功能酶标仪(瑞士TECAN公司)测定血浆中白介素IL-1β、IL-2、IL-6、IL-10、IFN-α和TNF-α等细胞因子含量,并计算IL-1β/IL-10和TNF-α/IL-10的比值。
1.4 数据统计与分析
试验数据经Excel 2010初步整理后,用SPSS 22.0软件进行独立样本t检验,数据结果以“平均值±标准误”表示。
2. 结果与分析
2.1 宫内发育迟缓对生长肥育猪免疫器官的影响
由表2可知,与25或50 kg体质量对照组相比,IUGR组肝脏、脾脏和肾脏的质量在25 kg阶段分别降低32.63%、35.07%和34.28%,在50 kg阶段分别降低22.68%、40.05%和33.03%(P<0.01)。50 kg体质量阶段IUGR组猪肝脏系数升高16.25%(P<0.05);与100 kg体质量对照组相比,同阶段IUGR组猪的脾脏系数升高21.74%(P<0.01),肝脏系数升高10.94%(P<0.05),肝脏和肾脏质量分别降低13.97%(P<0.01)和17.51%(P<0.05)。
表 2 宫内发育迟缓对生长肥育猪免疫器官的影响1)Table 2. Effect of intrauterine growth retardation (IUGR) on immune organs in growing-finishing pigs体质量/kg
Body weight组别
Group肝脏系数/
(g·kg−1)
Liver index肝脏质量/g
Liver weight脾脏系数/
(g·kg−1)
Spleen index脾脏质量/g
Spleen weight肾脏系数/
(g·kg−1)
Kidney index肾脏质量/g
Kidney weight25
对照组
Control group24.71±0.47 652.18±28.34 2.09±0.12 54.64±2.72 5.18±0.16 136.27±5.61 IUGR组
IUGR group24.65±0.44 439.38±22.64** 2.04±0.15 35.48±2.07** 5.06±0.15 89.55±3.76** 50
对照组
Control group21.75±0.66 1 018.18±41.89 1.86±0.06 86.91±3.70 4.38±0.15 205.96±10.99 IUGR组
IUGR group25.97±1.67* 787.27±37.10** 2.02± 0.18 52.10±2.44** 4.67±0.41 137.93±10.30** 100
对照组
Control group15.14±1.30 1 586.67±44.06 1.44 ±0.06 146.19±7.47 3.52 ±0.09 369.21±11.12 IUGR组
IUGR group17.00±0.43* 1 365.00±50.20** 1.84±0.10** 148.39±9.50 3.83±0.26 304.55±27.45* 1) n=12, “*”和“**”分别表示与相同体质量的对照组差异达到0.05和0.01的显著水平(t检验)
1) n=12, “*” and “**”indicate the difference from control group of the same body weight reaches 0.05 and 0.01 significance levels, respectively (t test)2.2 宫内发育迟缓对生长肥育猪血浆细胞因子含量的影响
由表3可知,与25或50 kg体质量对照组相比,同阶段IUGR组猪血浆IL-1β含量分别降低20.66%和27.21%(P<0.05),25 kg阶段IUGR组猪血浆IL-1β/IL-10值呈降低趋势(P=0.07),50 kg阶段IUGR组猪血浆IL-1β/IL-10值降低40.67%(P<0.01);与各体质量阶段对照组相比,IUGR组猪血浆IL-2、IL-6、IL-10、TNF-α和IFN-α含量均无显著差异(P>0.05)。
表 3 宫内发育迟缓对生长肥育猪血浆细胞因子含量的影响1)Table 3. Effect of intrauterine growth retardation (IUGR) on plasma cytokine contents in growing-finishing pigs体质量/kg
Body weight组别
Groupρ/(pg·mL−1) IL-1β/
IL-10TNF-α/
IL-10IL-1β IL-2 IL-6 IL-10 TNF-α IFN-α 25
对照组
Controlgroup529.57±45.69 212.78±10.07 710.50±36.54 126.18±8.28 196.11±11.49 92.85±3.54 4.88±0.77 1.70±0.09 IUGR组
IUGR group420.18±21.56* 208.02±10.20 698.55±43.17 124.91±9.46 208.02±10.20 92.20±4.98 3.16±0.38 1.62±0.07 50
对照组
Control group857.73±89.52 268.72±20.83 930.22±111.55 180.32±18.72 281.84±16.67 110.86±9.13 5.04±0.56 1.55±0.07 IUGR组
IUGR group624.33±42.08* 282.12±15.24 949.67±51.89 191.58±29.26 259.40±24.51 105.86±10.65 2.99±0.49** 1.41±0.15 100
对照组
Control group674.67±52.18 273.88±19.17 886.45±160.09 194.03±26.55 266.29±32.53 102.37±9.88 3.89±0.58 1.42±0.09 IUGR组
IUGR group626.92±83.67 271.76±13.23 845.50±61.22 192.20±15.33 256.36±31.21 95.94±11.40 3.56±0.64 1.38±0.13 1) n=7, “*”和“**”分别表示与相同体质量的对照组差异达到0.05和0.01的显著水平(t检验)
1) n=7, “*” and “**”indicate the difference from control group of the same body weight reaches 0.05 and 0.01 significance levels, respectively (t test)3. 讨论与结论
器官大小可在一定程度上反映其功能的强弱[12]。肝脏是动物体内最大的消化代谢器官和重要的免疫器官,可参与机体的免疫调节,是胸腺以外的T细胞分化的重要场所[13]。脾脏是机体最大的外周免疫器官,含有大量的淋巴细胞和巨噬细胞,是各种免疫细胞产生、分化、成熟以及进行免疫应答的主要场所。本试验中,25和50 kg体质量阶段IUGR猪的肝脏、脾脏和肾脏质量均显著降低,50 kg体质量阶段IUGR猪的肝脏系数显著升高,100 kg体质量阶段IUGR猪的肝脏和脾脏系数显著升高,肝脏和脾脏质量极显著降低。Alvarenga等[14]也报道,IUGR仔猪脾脏、肝脏和肾脏的质量低于正常初生质量仔猪,这与IUGR仔猪在母体子宫内生长发育受到影响有关。免疫器官指数升高可能与IUGR猪的追赶生长有关。另外,Monaghan等[15]报道,IUGR动物表型的改变可归因于子宫−胎盘的“权衡机制”,当胎儿处在恶劣的子宫内环境时,母体会优先将营养物质供给重要的免疫器官,这也是IUGR胎儿在不良子宫生长环境中表现出的适应性改变。所以,IUGR猪生长过程中会将更多的营养物质供给重要的免疫器官,使免疫器官指数更高。
细胞因子具有调节细胞生长、免疫应答、炎症反应和修复组织等多种功能[16],根据其作用可分为促炎细胞因子与抗炎细胞因子。促炎细胞因子主要包括由单核细胞和巨噬细胞产生的IL-1、IL-2、IL-6、TNF-α和IFN-α等,参与细胞免疫反应;抗炎细胞因子主要包括由T淋巴细胞产生的IL-4、IL-10和IL-13等,参与体液免疫反应[17]。TNF-α不仅能通过活化单核细胞和巨噬细胞增强对病原体的清除能力[18],还能损伤肿瘤细胞,促进血管生成、伤口愈合等[19]。本研究中,与50和100 kg体质量对照组相比,同阶段IUGR组猪血浆TNF-α含量有一定程度的降低,提示IUGR减弱了生长肥育猪的细胞免疫反应。IL-1β是炎症早期分泌最早的促炎性细胞因子,能够激活和调控炎症反应[20],并能促进胸腺细胞和T细胞的增殖和分化,诱导B细胞分泌抗体。抗炎因子IL-10能减轻机体炎症反应,发挥一定的免疫刺激和调节作用,抑制T细胞产生细胞因子,尤其是抑制Th1细胞产生IL-2、IFN-γ等细胞因子,从而抑制细胞免疫反应[21]。本试验中,与25和50 kg体质量对照组相比,同阶段IUGR组猪血浆的IL-1β含量和IL-1β/IL-10值降低,这与Hu等[22]的报道一致,提示IUGR可降低生长肥育猪细胞因子的含量,损伤机体的免疫功能。另外,随着试验猪体质量的逐渐增大,对照组和IUGR组猪各测定指标尤其是细胞因子含量的差异减少,这可能与IUGR猪生长后期免疫功能的完善有关。
综上所述,IUGR能改变生长肥育猪的肝脏、脾脏和肾脏的器官指数和质量,降低血浆IL-1β含量,进而影响其免疫功能。
-
图 3 番茄病害初始数据集分布
1:早期白粉病;2:晚期白粉病;3:早期早疫病;4:晚期早疫病;5:早期叶霉病;6:晚期叶霉病;7:早期斑枯病;8:晚期斑枯病;9:早期黄化曲叶病;10:晚期黄化曲叶病
Figure 3. The distribution of initial dataset for tomato disease
1: Early powdery mildew; 2: Later powdery mildew; 3: Early early blight; 4: Later early blight; 5: Early leaf frost disease; 6: Later leaf frost disease; 7: Early spot blight; 8: Later spot blight; 9: Early yellow flower curly leaf disease; 10: Later yellow flower curly leaf disease
图 7 3种模型测试集混淆矩阵
行号1~10分别表示早期白粉病、晚期白粉病、早期早疫病、晚期早疫病、早期叶霜病、晚期叶霜病、早期斑枯病、晚期斑枯病、早期黄化曲叶病以及晚期黄化曲叶病,列号1~10类别与其对应对应编号的行号类别一致
Figure 7. The confusion matrixes of test sets of three models
Line numbers 1 to 10 indicate early powdery mildew, later powdery mildew, early early blight, later early blight, early leaf frost disease, later leaf frost disease, early spot blight, later spot blight, early yellow flower curl leaf disease, and in the case of later yellow flower curl leaf disease, the column numbers 1 to 10 are consistent with the row number category corresponding to the corresponding number
表 1 不同模型对番茄病害的分类准确率1)
Table 1 Classification accuracy of tomato diseases by different models
病害 Disease 时期 Stage VGG16 InceptionV3 Xception MobileNetV2 ResNet34 ARNet 白粉病 Powdery mildew 早期 Early 0.176 0.191 0.197 0.521 0.521 0.638 晚期 Late $ \setlength{\fboxsep}{0.1cm} \fbox{\bf {0.996}}$ 0.978 0.972 0.939 0.967 0.967 早疫病 Early blight 早期 Early 0.647 0.571 0.541 0.797 0.872 $ \setlength{\fboxsep}{0.1cm} \fbox{\bf {0.940}}$ 晚期 Late $ \setlength{\fboxsep}{0.1cm} \fbox{\bf {0.909}}$ 0.683 0.706 0.794 0.833 0.865 叶霜病 Leaf frost disease 早期 Early 0.734 0.814 0.824 0.830 $ \setlength{\fboxsep}{0.1cm} \fbox{\bf {0.920}}$ $ \setlength{\fboxsep}{0.1cm} \fbox{\bf {0.920}}$ 晚期 Late 0.773 0.432 0.492 0.589 0.627 $ \setlength{\fboxsep}{0.1cm} \fbox{\bf {0.843}}$ 斑枯病 Spot blight 早期 Early 0.573 0.300 0.496 0.712 0.838 $ \setlength{\fboxsep}{0.1cm} \fbox{\bf {0.888}}$ 晚期 Late 0.938 0.913 0.825 0.877 0.931 $ \setlength{\fboxsep}{0.1cm} \fbox{\bf {0.948}}$ 黄化曲叶病
Yellow flower Curly leaf disease早期 Early 0.715 0.693 0.713 $ \setlength{\fboxsep}{0.1cm} \fbox{\bf {0.830}}$ $ \setlength{\fboxsep}{0.1cm} \fbox{\bf {0.830}}$ 0.826 晚期 Late $ \setlength{\fboxsep}{0.1cm} \fbox{\bf {0.911}}$ 0.868 0.855 0.804 0.856 0.887 平均值 Average 0.817 0.753 0.758 0.807 0.850 $ \setlength{\fboxsep}{0.1cm} \fbox{\bf {0.882}}$ 1)加框数据表示对应列模型在对应行病害中的最佳准确率
1)Framed data indicated the best accuracy of corresponding column model in the corresponding row disease -
[1] BAI X, LI X, FU Z, et al. A fuzzy clustering segmentation method based on neighborhood grayscale information for defining cucumber leaf spot disease images[J]. Comput Electron Agric, 2017, 136: 157-165. doi: 10.1016/j.compag.2017.03.004
[2] 王翔宇, 温皓杰, 李鑫星, 等. 农业主要病害检测与预警技术研究进展分析[J]. 农业机械学报, 2016, 47(9): 266-277. doi: 10.6041/j.issn.1000-1298.2016.09.037 [3] 龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194-201. doi: 10.11975/j.issn.1002-6819.2018.18.024 [4] MOKHTAR U, ALI M A S, HASSENIAN A E, et al. Tomato leaves diseases detection approach based on support vector machines[C]//IEEE. Computer Engineering Conference (ICENCO). Egypt: IEEE, 2015: 246-250.
[5] XIE C, SHAO Y, LI X, et al. Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging[J]. Sci Rep, 2015, 5: 16564. doi: 10.1038/srep16564
[6] 柴阿丽, 李宝聚, 石延霞, 等. 基于计算机视觉技术的番茄叶部病害识别[J]. 园艺学报, 2010, 37(9): 1423-1430. [7] AMARA J, BOUAZIZ B, ALGERGAWY A. A deep learning based approach for banana leaf diseases classification[M]// MITSCHANG B. Lecture Notes in Informatics (LNI). Bonn : Gesellschaft Für Informatik, 2017: 79-88.
[8] 马浚诚, 杜克明, 郑飞翔, 等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报, 2018, 34(12): 186-192. doi: 10.11975/j.issn.1002-6819.2018.12.022 [9] DURMUS H, GUNES E O, KIRCI M. Disease detection on the leaves of the tomato plants by using deep learning[C]//IEEE. 2017 6th International Conference on Agro-Geoinformatics. Fairfax VA: IEEE, 2017: 1-5.
[10] FUENTES A, YOON S, KIM S C, et al. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J]. Sensors, 2017, 17(9): 2022. doi: 10.3390/s17092022
[11] BRAHIMI M, BOUKHALFA K, MOUSSAOUI A. Deep learning for tomato diseases: Classification and symptoms visualization[J]. Appl Artif Intell, 2017, 31(4): 299-315.
[12] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Curran Associates. Advances in Neural Information Processing Systems(NIPS). New York: Curran Associates, 2017: 5998-6008.
[13] LETARTE G, PARADIS F, GIGUERE P, et al. Importance of self-attention for sentiment analysis[C]// Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Brussels: Association for Computational Linguistics. 2018: 267-275.
[14] YU C, WANG J, PENG C, et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation [C]//Springer. Proceedings of the European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 325-341.
[15] WANG F, JIANG M, QIAN C, et al. Residual attention network for image classification[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 3156-3164.
[16] FU J, ZHENG H, MEI T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 4476-4484.
[17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
[18] HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]//Springer. Proceedings of the European Conference on Computer Vision (ECCV). Amsterdam : Springer, 2016: 630-645.
[19] ZHANG K, SUN M, HAN T X, et al. Residual networks of residual networks: Multilevel residual networks[J]. IEEE T Circ Syst Vid, 2018, 28(6): 1303-1314. doi: 10.1109/TCSVT.2017.2654543
[20] 孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215. doi: 10.11975/j.issn.1002-6819.2017.19.027 [21] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 2818-2826.
[22] CHOLLET F. Xception: Deep Learning with Depthwise Separable Convolutions[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 1800-1807.
[23] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 4510-4520.
[24] RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. Int J Comput Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y