牛分枝杆菌PtpA蛋白对NF-κB信号通路的调控机制

    窦燚萍, 赵琰, 平晓坤, 罗静龙, 贾坤

    窦燚萍, 赵琰, 平晓坤, 等. 牛分枝杆菌PtpA蛋白对NF-κB信号通路的调控机制[J]. 华南农业大学学报, 2019, 40(4): 1-7. DOI: 10.7671/j.issn.1001-411X.201809022
    引用本文: 窦燚萍, 赵琰, 平晓坤, 等. 牛分枝杆菌PtpA蛋白对NF-κB信号通路的调控机制[J]. 华南农业大学学报, 2019, 40(4): 1-7. DOI: 10.7671/j.issn.1001-411X.201809022
    DOU Yiping, ZHAO Yan, PING Xiaokun, et al. Regulation mechanism of Mycobacterium bovis PtpA protein on NF-κB signaling pathway[J]. Journal of South China Agricultural University, 2019, 40(4): 1-7. DOI: 10.7671/j.issn.1001-411X.201809022
    Citation: DOU Yiping, ZHAO Yan, PING Xiaokun, et al. Regulation mechanism of Mycobacterium bovis PtpA protein on NF-κB signaling pathway[J]. Journal of South China Agricultural University, 2019, 40(4): 1-7. DOI: 10.7671/j.issn.1001-411X.201809022

    牛分枝杆菌PtpA蛋白对NF-κB信号通路的调控机制

    基金项目: 广东省自然科学基金(2017A030310032);广东省现代农业科技创新联盟建设项目(2018LM2150);广州市珠江科技新星项目(201610010073)
    详细信息
      作者简介:

      窦燚萍(1994—),女,硕士研究生,E-mail: 441952235@qq.com

      通讯作者:

      贾 坤(1981—),男,讲师,博士,E-mail: jiakun@scau.edu.cn

    • 中图分类号: S852.618

    Regulation mechanism of Mycobacterium bovis PtpA protein on NF-κB signaling pathway

    • 摘要:
      目的 

      研究牛分枝杆菌Mycobacterium bovis PtpA蛋白对免疫应答相关的NF-κB信号通路的影响,以揭示PtpA蛋白在机体免疫应答中的作用。

      方法 

      构建PtpA基因真核表达载体FLAG-PtpA,并将其转染到HEK293T中,进行SDS-PAGE分析及Western blot检测。激活NF-κB信号通路后,通过双荧光素酶试验和qPCR方法探究PtpA蛋白对NF-κB信号通路的影响。

      结果 

      成功构建PtpA基因真核表达载体FLAG-PtpA,转染HEK293T后经SDS-PAGE分析,相对分子质量约为22 000处可见特异性蛋白条带。Western blot结果显示,表达产物可与一抗特异性结合,证明该蛋白是PtpA蛋白。双荧光素酶试验中,转染2~24 h,试验组与对照组萤火虫荧光素酶和海肾荧光素酶的相对荧光强度的比值差异显著(P<0.05);转染2 h后,对照组萤火虫荧光素酶和海肾荧光素酶的相对荧光值是试验组的2.93倍,说明PtpA蛋白对NF-κB信号通路激活早期具有显著的抑制作用。qPCR结果显示,转染2 h后,对照组的IL-6、GM-CSF、BIRC-2和BIRC-3的表达量分别是试验组的3.93、3.42、2.17和2.30倍(P<0.01);转染4 h后,对照组的IL-6、GM-CSF、BIRC-2和BIRC-3的表达量分别是试验组的4.26、3.93、2.36和2.50倍(P<0.01),说明PtpA蛋白对NF-κB信号通路相关的细胞因子(IL-6、GM-CSF、BIRC-2、BIRC-3)在免疫早期具有显著抑制作用。

      结论 

      qPCR结果与双荧光素酶试验结果一致,表明牛分枝杆菌PtpA蛋白对NF-κB信号通路的影响主要发生在早期。本研究为后续研究有效的结核病防控药物提供了理论基础。

      Abstract:
      Objective 

      To investigate the effect of Mycobacterium bovis PtpA protein on NF-κB signaling pathway which is related to immune response, and reveal the role of PtpA protein in the body's response to immunity.

      Method 

      The PtpA gene eukaryotic expression vector FLAG-PtpA was transfected into HEK293T for SDS-PAGE analysis and Western blot detection. After activation of NF-κB signaling pathway, the effects of PtpA protein on NF-κB signaling pathway were investigated by dual luciferase assay and qPCR.

      Result 

      The eukaryotic expression vector FLAG-PtpA of PtpA gene was successfully constructed, transfected into HEK293T and analyzed by SDS-PAGE. The specific molecular band was visible with relative molecular mass of 22 000. Western blot results showed that the expression product specifically bound to the primary antibody, demonstrating that the protein was a PtpA protein. In the double luciferase assay, the ratios of the relative fluorescence intensities of firefly luciferase and Renilla luciferase in the test group and the control group were significantly different from 2 to 24 h after transfection (P<0.05). The relative fluorescence values of firefly luciferase and Renilla luciferase in the control group were 2.93 times higher than those in the experimental group 2 h after transfection, indicating that PtpA protein had a significant inhibitory effect on the early activation of NF-κB signaling pathway. qPCR results showed that the expression levels of IL-6, GM-CSF, BIRC-2 and BIRC-3 in the control group were 3.93, 3.42, 2.17 and 2.30 times respectively of those in the test group 2 h after transfection(P<0.01), and were 4.26, 3.93, 2.36 and 2.50 times respectively of those in the test group 4 h after transfection(P<0.01). These results indicated that PtpA protein had a significant inhibitory effect on NF-κB signaling pathway-associated cytokines (IL-6, GM-CSF, BIRC-2 and BIRC-3) in the early stage of immunization.

      Conclusion 

      qPCR results are consistent with the results of dual luciferase assay, indicating that the effect of M. bovis PtpA on NF-κB signaling pathway mainly occurs in the early stage. This study provides a theoretical basis for the follow-up study of effective tuberculosis prevention and control drugs.

    • 图  1   PtpA基因的PCR扩增

      1:PtpA基因的PCR扩增产物;M:DL2000 DNA marker;2:阴性对照

      Figure  1.   PCR amplification of the PtpA gene

      1: PCR product of PtpA gene; M: DL2000 DNA marker;2: Negative control

      图  2   FLAG-PtpA重组质粒中PtpA基因的PCR扩增

      1:阴性对照;M:DL2000 DNA marker;2:PtpA基因的PCR扩增产物

      Figure  2.   PCR amplification of PtpA gene in FLAG-PtpA recombinant plasmid

      1: Negative control; M: DL2000 DNA marker; 2: PCR product of PtpA gene

      图  3   真核表达载体转染293T细胞

      A1:293T未转染质粒(白镜);A2:293T未转染质粒(荧光);B1:293T转染FLAG-PtpA载体质粒+pEGFP-N1质粒(白镜);B2:293T转染FLAG-PtpA载体质粒+pEGFP-N1质粒(荧光)

      Figure  3.   Eukaryotic expression vector transfected 293T cells

      A1: 293T untransfected plasmid (white mirror); A2: 293T untransfected plasmid (fluorescent); B1: 293T transfected FLAG-PtpA plasmid and pEGFP-N1 plasmid (white mirror); B2: 293T transfected FLAG-PtpA plasmid and pEGFP-N1 plasmid (fluorescence)

      图  4   HEK293T细胞中FLAG-PtpA表达产物鉴定

      M:低相对分子质量蛋白质标准;1:空白对照;2:HEK293T细胞中转染p3×FLAG-CMV-10质粒;3:HEK293T细胞中转染FLAG-PtpA质粒

      Figure  4.   Identification of FLAG-PtpA expression product in HEK293T cells

      M: Low molecular weight protein standard; 1: Blank control; 2: p3×FLAG-CMV-10 plasmid transfected into HEK293T cells; 3: FLAG-PtpA plasmid transfected into HEK293T cells

      图  5   HEK293T表达FLAG-PtpA蛋白特异性分析

      M:低相对分子质量蛋白质标准;1:HEK293T表达的FLAG-PtpA蛋白

      Figure  5.   HEK293T expression FLAG-PtpA protein specificity analysis

      M: Low molecular weight protein standard; 1: FLAG-PtpA protein expressed by HEK293T

      图  6   PtpA蛋白对NF-κB信号通路激活的影响

      “*”、“**”和“***”分别表示差异达到0.05、0.01和0.001的显著水平(t检验)

      Figure  6.   Effect of PtpA protein on activation of NF-κB signaling pathway

      “*”, “**” and “***” indicate the difference reaches 0.05, 0.01 and 0.001 significance levels respectively (t test)

      图  7   细胞因子的mRNA表达量

      “*”、“**”和“***”分别表示差异达到0.05、0.01和 0.001的显著水平(t检验)

      Figure  7.   mRNA expression of cell factors

      “*”,“**” and “***” indicate the difference reaches 0.05,0.01 and 0.001 significance levels respectively (t test)

      表  1   引物名称及序列

      Table  1   Primer name and sequence

      引物名称
      Primer name
      引物序列(5′→3′)1)
      Primer sequence
      产物大小/bp
      Product size
      FLAG-PtpA-F AAGGAAAAAA GCGGCCGCGGTGTCTGATCCGCTGCACG 492
      FLAG-PtpA-R CTAG TCTAGATCAACTCGGTCCGTT
      IL-6-F GGTGTTGCCTGCTGCCTTCC 100
      IL-6-R GTTCTGAAGAGGTGAGTGGCTGTC
      GM-CSF-F TCCTGAACCTGAGTAGAGACACTGC 100
      GM-CSF-R CAGGTCGGCTCCTGGAGGTC
      BIRC-2-F AGACACATGCAGCTCGAATGAGAAC 100
      BIRC-2-R AACACCTCAAGCCACCATCACAAC
      BIRC-3-F CTGTGATGGTGGACTCAGGTGTTG 100
      BIRC-3-R TGGCTTGAACTTGACGGATGAACTC
       1) 有下划线的序列为Not I、Xba I酶切位点
       1) Sequences with underlines are Not I and Xba I restriction sites
      下载: 导出CSV
    • [1]

      SMITH N H, GORDON S V, DE LA RUA-DOMENECH R, et al. Ecotypes of the Mycobacterium tuberculosis complex[J]. J Theor Biol, 2006, 239(2): 220-225. doi: 10.1016/j.jtbi.2005.08.036

      [2]

      DELAHAY R J, DE LEEUW A N, BARLOW A M, et al. The status of Mycobacterium bovisinfection in UK wild mammals: A review[J]. Vet J, 2002, 164(2): 90-105. doi: 10.1053/tvjl.2001.0667

      [3]

      MACIEL A, LOIKO M R, BUENO T S, et al. Tuberculosis in Southern Brazilian wild boars (Sus scrofa): First epidemiological findings[J]. Transbound Emerg Dis, 2018, 65(2): 518-526. doi: 10.1111/tbed.2018.65.issue-2

      [4]

      PHILLIPS C J C, FOSTER C R W, MORRIS P A, et al. The transmission of Mycobacterium bovis infection to cattle[J]. Res Vet Sci, 2003, 74(2): 1-15.

      [5]

      PUCKEN V B, KNUBBEN-SCHWEIZER G, DOPFER D, et al. Evaluating diagnostic tests for bovine tuberculosis in the southern part of Germany: A latent class analysis[J]. PLoS One, 2017, 12(6): e0179847. doi: 10.1371/journal.pone.0179847

      [6]

      DE KANTOR I N and RITACCO V. An update on bovine tuberculosis programmes in Latin American and Caribbean countries[J]. Vet Microbiol, 2006, 112(2/3/4): 111-118. doi: 10.1016/j.vetmic.2005.11.033

      [7]

      STONE M J, BROWN T J and DROBNIEWSKI F A. Human Mycobacterium bovis infections in London and Southeast England[J]. J Clin Microbiol, 2012, 50(1): 164-165. doi: 10.1128/JCM.05692-11

      [8]

      COWLEY S C, BABAKAIFF R and AV-GAY Y. Expression and localization of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA[J]. Res Microbiol, 2002, 153(4): 233-241. doi: 10.1016/S0923-2508(02)01309-8

      [9]

      CHAO Y, XING Y, CHEN Y, et al. Structure and mechanism of the phosphotyrosyl phosphatase activator[J]. Mol Cell, 2006, 23(4): 535-546. doi: 10.1016/j.molcel.2006.07.027

      [10]

      WANG J, LI B X, GE P P, et al. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system[J]. Nat Immunol, 2015, 16(3): 237-245. doi: 10.1038/ni.3096

      [11]

      PFAFFI M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Res, 2001, 29(9): e45. doi: 10.1093/nar/29.9.e45

      [12]

      TONKS N K. Protein tyrosine phosphatases: From genes, to function, to disease[J]. Nat Rev Mol Cell Biol, 2006, 11(7): 833-846.

      [13]

      FU Y and GALAN J E. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton[J]. Mol Microbiol, 1998, 27(2): 359-368. doi: 10.1046/j.1365-2958.1998.00684.x

      [14]

      GOEBEL-GOODY S M, WILSON-WALLIS E D, ROYSTON S, et al. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model[J]. Genes Brain Behav, 2012, 11(5): 586-600. doi: 10.1111/j.1601-183X.2012.00781.x

      [15]

      SHI L, POTTS M and KENNELLY P J. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: A family portrait[J]. FEMS Microbiol Rev, 1998, 22(4): 229-253. doi: 10.1111/j.1574-6976.1998.tb00369.x

      [16]

      YONGFANG Z, KURUP P, JIAN X, et al. Genetic reduction of striatal-enriched tyrosine phosphatase (STEP) reverses cognitive and cellular deficits in an Alzheimer's disease mouse model[J]. Proc Natl Acad Sci USA, 2010, 107(44): 19014-19019. doi: 10.1073/pnas.1013543107

      [17]

      WONG D, BACH H, SUN J, et al. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification[J]. Proc Natl Acad Sci USA, 2011, 108(48): 19371-19376. doi: 10.1073/pnas.1109201108

      [18]

      WANG J, GE P, QIANG L, et al. The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation[J]. Nat Commun, 2017, 8(1): 244. doi: 10.1038/s41467-017-00279-z

      [19] 孟露萍, 史梦婷, 包海洋, 等. 结核分枝杆菌Rv2626c蛋白对RAW264.7细胞凋亡的影响[J]. 中国畜牧兽医, 2016, 43(4): 892-898.
      [20]

      VOLKMAN H E, POZOS T C, ZHENG J, et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium[J]. Science, 2010, 327(5964): 466-469. doi: 10.1126/science.1179663

    图(7)  /  表(1)
    计量
    • 文章访问数:  1377
    • HTML全文浏览量:  3
    • PDF下载量:  1363
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-09-14
    • 网络出版日期:  2023-05-17
    • 刊出日期:  2019-07-09

    目录

      /

      返回文章
      返回