• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

火力楠林地土壤碳和养分储量垂直分布研究

余明, 郑新颖, 薛立

余明, 郑新颖, 薛立. 火力楠林地土壤碳和养分储量垂直分布研究[J]. 华南农业大学学报, 2019, 40(4): 77-82. DOI: 10.7671/j.issn.1001-411X.201809004
引用本文: 余明, 郑新颖, 薛立. 火力楠林地土壤碳和养分储量垂直分布研究[J]. 华南农业大学学报, 2019, 40(4): 77-82. DOI: 10.7671/j.issn.1001-411X.201809004
YU Ming, ZHENG Xinying, XUE Li. Vertical distribution of soil carbon and nutrient storages under a Michelia macclurei plantation[J]. Journal of South China Agricultural University, 2019, 40(4): 77-82. DOI: 10.7671/j.issn.1001-411X.201809004
Citation: YU Ming, ZHENG Xinying, XUE Li. Vertical distribution of soil carbon and nutrient storages under a Michelia macclurei plantation[J]. Journal of South China Agricultural University, 2019, 40(4): 77-82. DOI: 10.7671/j.issn.1001-411X.201809004

火力楠林地土壤碳和养分储量垂直分布研究

基金项目: 中央财政林业科技推广示范项目“广东省生态公益林培育技术推广”(2015-GDTK-07);广东省林业厅资助项目“韶关市生态公益林碳储量动态估测研究”(粤财农2017-83号)
详细信息
    作者简介:

    余明(1995—),女,硕士研究生,E-mail: 805352412@qq.com

    通讯作者:

    薛 立(1958—),男,教授,博士,E-mail: forxue@scau.edu.cn

  • 中图分类号: S718.52

Vertical distribution of soil carbon and nutrient storages under a Michelia macclurei plantation

  • 摘要:
    目的 

    对10年生火力楠Michelia macclurei人工林不同土层的土壤碳储量及养分储量进行研究,以了解火力楠人工林的固碳能力和土壤养分状况。

    方法 

    在各标准地内用五点取样法,沿土壤剖面按0~20、20~40、40~60、60~80和80~100 cm分层采集土壤样品。用常规方法测定土壤pH以及有机质、全N、全P、全K、碱解N、有效P和速效K的含量,并计算土壤碳储量和养分储量。

    结果 

    林分土壤呈酸性(pH3.54~3.79)。火力楠林地的土壤碳含量随着土壤深度的增加而下降。火力楠林地各层土壤的全P和全K含量差异不显著,全N、碱解N、有效P和速效K含量均随着土层的加深呈现下降的趋势。火力楠林地0~100 cm土壤的碳储量为259.26 t·hm−2,N、P和K储量分别为21.50、7.47和209.42 t·hm−2。此外,随着土壤深度的增加,各层土壤的碳储量以及P、K储量总体呈现增加的趋势。

    结论 

    火力楠林地的土壤碳储量高于全国平均水平,说明火力楠林地土壤具有较好的碳汇潜能和改良土壤的能力。深层土壤的碳储量以及P、K储量大于表层土壤,说明表层土壤的固碳能力较低且淋溶侵蚀较为严重。在今后的经营管理过程中,应注意防治水土流失,增强土壤表层的固碳能力。

    Abstract:
    Objective 

    Carbon and nutrient storages in different soil layers were studied in a 10-years-old Michelia macclurei plantation, in order to understand the soil carbon sequestration capacity and nutrient status of the M. macclurei plantation.

    Method 

    Five-point sampling method was used to collect soil samples from 0−20, 20−40, 40−60, 60−80 and 80−100 cm depth layers. Soil pH, contents of organic matter, total N, total P, total K, alkalized N, available P and rapidly available K were determined by routine methods. Carbon and nutrient storages were calculated.

    Result 

    Soil under M. macclurei plantation was acidic (pH3.54−3.79). Soil carbon content ofM. macclurei plantation decreased with the increase of soil depth. There was no significant difference in total P and K contents among different soil layers, while the contents of total N, alkalized N, available P and rapidly available K decreased with the increase of soil depth. Soil carbon storage of M. macclurei plantation in 0−100 cm depth layer was 259.26 t·hm−2. The storages of soil N, P and K in 0−100 cm depth layer were 21.50, 7.47 and 209.42 t·hm−2, respectively. Soil carbon, P and K storages of each layer increased with increasing soil depth.

    Conclusion 

    Soil carbon storage of M. macclurei plantation is higher than the average level over all the nation, indicating that the soil in this stand has higher carbon sink potential and ability of improving the soil. There are more soil carbon, P and K storages in deeper layer than in soil surface, indicating poor carbon sequestration capacity and severe leaching erosion in surface soil. It is suggested that in the future management, attention should be paid to prevent soil erosion and enhance the carbon sequestration capacity of surface soil.

  • 森林生态系统是陆地生态系统的主体,占有80%的陆地碳储量和40%的地下碳储量,是重要的碳库[1-2],在维护全球气候系统、调节全球碳平衡、减缓大气温室气体浓度上升等方面具有不可替代的作用。世界各国越来越重视对以森林生物量为基础的碳汇计量监测[3],国家和区域尺度精准估计森林在乔木生命周期中产生的地上部分和地下部分的生物量、碳储量成为了重要需求[4-6]。近年来,全国范围内已经建立了一些基于林木胸径和树高不同树种的通用性立木生物量模型,然而,由于树木异速生长受到特定立地条件(如树种密度、土壤、光照和地形等)的影响,在具体区域或地块使用通用模型时可能会产生不同程度的误差或不确定性[7-10]。此外,在我国碳汇造林项目实施和计量监测的实际生产中,建立更适合具体区域的单木生物量生长模型,对指导碳汇造林、评价碳汇潜力和分析碳汇动态变化规律,并准确监测和估计碳汇是十分必要的。

    森林生物量的估计方法有很多种,回归模型方法可以利用常用的测树因子(如胸径和树高)估算森林中单木和林分以及区域的地上生物量[11]。在树木的生命周期中,各组分(干材、树皮、树枝和树叶)生物量在全株总生物量中的分配会发生变化[712-15]。有研究表明,立木生物量的增长随着树木年龄而变化的关系会使以胸径和树高为自变量的模型产生的误差更小[16]。然而,由于树木年龄(特别是天然林)在森林调查中较难获得,很少有研究关注生物量随立木年龄的变化趋势。对于人工林,特别是我国大量的碳汇造林而言,由于其年龄能准确判断,所以可以利用生物量与年龄建立的关系比较准确和直接地获取森林生物量或碳储量及其变化趋势,为森林碳汇交易提供便捷和可靠的依据。因此,探索碳汇造林树种各组分生物量的异速分配,建立以立木年龄为变量的生物量生长模型,具有现实意义。为了研究森林立木各组分生物量随着年龄的变化分布,需要了解树干、树冠的生物量以及占总量的比例,在地上生物量估计的基础上,进一步对干材、树皮、树枝、树叶等各项分量进行估计是十分必要的[17]。在构建地上总生物量模型和各分项生物量模型时,地上生物量总量必须满足同各分项之和相等,因此,构建地上各分量单木生物量相容性模型也一直为林业工作者所重视[18]

    此外,立木地下生物量生长数据仍然缺乏。由于树根难以挖取,很少有研究关注地下生物量变化[619]。树根中的地下生物量占森林总生物量的很大一部分,是森林的另一个重要碳库,准确估计树木根系生物量也是乔木生物量估计的重要工作[51620-21]。树根生物量通常采用根茎比方法进行估计,这种方法具有物种和生物学特性[20]。树木生物量各组分在生命周期中的异速生长变化也可能影响根系生物量和生物量根茎比方程。因此,建立立木地下生物量增长随年龄变化的关系,也是精准估计立木生物量及碳汇潜力的需求。

    本研究的目的主要有以下2个方面:1)建立生物量随立木年龄变化(以立木年龄为自变量)的地上和地下生物量生长模型;2)建立地上生物量各组分(干材、树皮、树枝和树叶)随立木年龄变化的相容性生长模型。本研究以广东省域3个主要乡土阔叶树种为例,通过实测伐倒木地上、地下部分及地上各组分生物量和树干解析木年轮数据,建立立木生物量随年龄变化的关系,以期为估计森林生物量和碳储量年变化规律提供理论支撑和技术支持。

    广东省地处中国大陆最南部(20°13′~25°31′N,109°39′~117°19′E)。全省陆地面积17.98万km2,其中,林地10.87万km2。北依南岭,南濒南海,地势北高南低,形成北部山地、中部丘陵、南部平原台地为主的地貌格局,地带性土壤为红壤、赤红壤和砖红壤。广东省属于东亚季风区,从北向南分别为中亚热带、南亚热带和热带气候,降水充沛,年平均降水量1 300~2 500 mm,年平均气温22.3 ℃。樟树Cinnamomum camphora、木荷Schima superba、枫香Liquidambar formosana等,既是广东山地植被中重要的建群树种,也是主要碳汇造林工程项目树种。

    建模样本数据来自2013及2016年的广东省樟树、木荷、枫香3个树种的采样和解析木数据。每个树种采伐90株样木,3个树种共270株。每个树种取样按2、4、6、8、12、16、20、26、32和38 cm及以上10个径阶均匀分配,样木伐倒前实测胸径(DBH)、地径和冠幅,将样木伐倒后,测量其树干长度(树高H)和活冠长度,分干材、树皮、树枝、树叶称取鲜质量。每个树种按各径阶分配选择40株样木挖取树根,按根茎(主根)、粗根(直径≥10 mm)、细根(直径<10 mm)分别称取鲜质量。分别抽取样品在85 ℃条件下烘干至恒质量,根据样品干、鲜质量比推算样木地上各组分及地下干质量。

    3个树种按照起源分为天然林和人工林2类,分别建立生物量生长模型,数据统计结果见1

    续表 1 Continued table 1
    树种
    Species
    起源
    Origin
    变量
    Variable
    最小值
    Min.
    最大值
    Max.
    平均值
    Mean
    标准差
    SD
    样木株数
    No. of trees
    樟树
    Cinnamomum camphora
    人工林
    Planted forest
    干皮生物量/kg Bark biomass 0.09 65.24 8.99 14.26 30
    树枝生物量/kg Branch biomass 0.10 553.75 46.93 111.00 30
    树叶生物量/kg Leaf biomass 0.06 22.84 4.30 6.16 30
    地上生物量/kg Aboveground biomass 0.87 948.38 117.11 206.06 30
    地下生物量/kg Underground biomass 0.38 330.29 48.19 96.82 11
    木荷 天然林 DBH/cm 1.70 51.50 15.73 12.05 47
    Schima Natural forest H/m 3.02 23.10 10.25 4.78 47
    superba T 4.00 45.00 18.21 11.10 47
    干材生物量/kg Stem wood biomass 0.28 570.65 85.49 132.23 47
    干皮生物量/kg Bark biomass 0.07 89.02 14.87 22.24 47
    树枝生物量/kg Branch biomass 0.10 267.12 40.25 63.80 47
    树叶生物量/kg Leaf biomass 0.14 35.83 6.76 8.63 47
    地上生物量/kg Aboveground biomass 0.61 897.40 147.36 211.59 47
    地下生物量/kg Underground biomass 0.43 173.30 30.41 42.59 20
    人工林 DBH/cm 2.10 38.90 12.87 9.10 43
    Planted forest H/m 2.50 18.70 10.15 4.21 43
    T 4.00 31.00 15.14 7.83 43
    干材生物量/kg Stem wood biomass 0.30 360.66 51.43 75.61 43
    干皮生物量/kg Bark biomass 0.06 65.92 10.19 15.54 43
    树枝生物量/kg Branch biomass 0.25 371.04 31.95 68.52 43
    树叶生物量/kg Leaf biomass 0.17 45.70 4.57 8.69 43
    地上生物量/kg Aboveground biomass 0.89 834.05 98.13 164.15 43
    地下生物量/kg Underground biomass 0.20 670.84 46.40 148.22 20
    枫香 天然林
    DBH/cm 1.80 43.50 14.64 10.28 57
    Liquidambar Natural forest H/m 3.00 26.60 11.78 5.13 57
    formosana T 1.00 61.00 17.02 11.37 57
    干材生物量/kg Stem wood biomass 0.21 569.88 80.48 120.15 57
    干皮生物量/kg Bark biomass 0.06 121.59 13.61 20.26 57
    树枝生物量/kg Branch biomass 0.06 147.26 25.74 38.78 57
    树叶生物量/kg Leaf biomass 0.01 46.38 4.13 8.87 57
    地上生物量/kg Aboveground biomass 0.35 884.61 123.96 177.36 57
    地下生物量/kg Underground biomass 0.20 161.38 37.77 45.68 25
    人工林 DBH/cm 2.20 39.60 14.09 11.14 33
    Planted forest H/m 3.20 21.00 11.54 5.66 33
    T 2.00 81.00 16.73 14.62 33
    干材生物量/kg Stem wood biomass 0.45 426.45 83.16 140.32 33
    干皮生物量/kg Bark biomass 0.09 78.97 12.31 20.89 33
    树枝生物量/kg Branch biomass 0.15 468.70 37.31 89.96 33
    树叶生物量/kg Leaf biomass 0.02 46.04 5.39 10.77 33
    地上生物量/kg Aboveground biomass 0.71 955.54 138.17 249.06 33
    地下生物量/kg Underground biomass 0.31 574.90 47.05 146.39 15
    下载: 导出CSV 
    | 显示表格
    表  1  3个树种生物量建模数据统计
    Table  1.  Statistics of biomass modeling data for three tree species
    树种
    Species
    起源
    Origin
    变量
    Variable
    最小值
    Min.
    最大值
    Max.
    平均值
    Mean
    标准差
    SD
    样木株数
    No. of trees
    樟树
    Cinnamomum camphora
    天然林
    Natural forest
    胸径/cm Diameter at breast height (DBH) 1.90 41.00 14.62 10.12 60
    树高/m Height (H) 1.86 16.60 9.58 3.70 60
    年龄 Tree age (T) 3.00 58.00 18.41 12.13 60
    干材生物量/kg Stem wood biomass 0.22 519.66 65.07 105.70 60
    干皮生物量/kg Bark biomass 0.05 75.54 11.28 16.87 60
    树枝生物量/kg Branch biomass 0.20 499.48 47.80 110.06 60
    树叶生物量/kg Leaf biomass 0.03 89.77 6.47 14.70 60
    地上生物量/kg Aboveground biomass 0.43 1 022.66 129.75 236.57 60
    地下生物量/kg Underground biomass 0.14 304.55 45.63 80.08 29
    人工林
    Planted forest
    DBH/cm 2.00 40.00 14.32 11.11 30
    H/m 1.70 17.60 8.42 4.03 30
    T 2.00 51.00 14.77 10.90 30
    干材生物量/kg Stem wood biomass 0.44 360.82 56.02 87.61 30
    下载: 导出CSV 
    | 显示表格

    解析木年龄(T)数据由年轮估测数据和经验估测数据2部分组成。每个树种中选择40株解析木,并按0.3(0号盘)、1.3(1号盘)和3.3 m以上(2号盘)以2 m为长度分段,以此类推直至尾端长度不足2 m但大于1 m时,以1 m加以分段,各取一圆盘,选取0号圆盘按照东西南北4个方向读取年轮,推测解析木年龄。其余样木根据调查种植年限及观测伐桩年轮(0.3 m)推测树木年龄。

    研究数据采用Office Excel进行处理,并用R软件进行计算,联立方程组计算采用Systemfit包估计模型参数。

    选择应用广泛的Schumacher生长方程、Chapman-Richards生长方程、Logistic生长方程及Korf生长方程分别建立3个树种地上和地下部分生物量随立木年龄变化的模型,其公式如下:

    Schumacher方程:

    $$ B = {\alpha _{_1}} {{\rm{e}}^{ - {\alpha _{_2}}/T}} + \varepsilon , $$ (1)

    Chapman-Richards方程:

    $$ B = {\beta _{_1}} {(1 - {{\rm{e}}^{ - {\beta _{_2}} \cdot T}})^{{\beta _{_3}}}} + \varepsilon, $$ (2)

    Logistic方程:

    $$ B = {\lambda _1}/(1 + {{\rm{e}}^{{\lambda _2} - {\lambda _3} \cdot T}}) + \varepsilon, $$ (3)

    Korf方程:

    $$B = {\theta _1} {{\rm{e}}^{ - {\theta _2}/{T^{{\theta _3}}}}} + \varepsilon, $$ (4)

    式中: $B$ 为单木地上或地下生物量,T为立木年龄, ${\alpha _1}$ ${\alpha _2}$ ${\beta _1}$ ${\beta _2}$ ${\beta _3}$ ${\lambda _1}$ ${\lambda _2}$ ${\lambda _3}$ ${\theta _1}$ ${\theta _2}$ ${\theta _3}$ 为估计参数, $\varepsilon $ 为残差。

    把地上总生物量分成干材、树皮、树枝、树叶4个组分,为确保各组分生物量之和等于总生物量,采用非线性联立方程组的总量控制法求解地上各组分生物量[22]。假设干材占地上总生物量的相对比例函数为1,树皮、树枝和树叶占地上总生物量的相对比例函数分别为 ${g_1}(x)$ ${g_2}(x)$ ${g_3}(x)$ ,地上总生物量生长模型为 ${g_0}(x)$ ,则地上生物量各组分干材生物量( ${B_1}$ )、树皮生物量( ${B_2}$ )、树枝生物量( ${B_3}$ )、树叶生物量( ${B_4}$ )相容性生物量方程组为:

    $$\left\{ \begin{gathered} {B_1} = \frac{1}{{1 + {g_1}(x) + {g_2}(x) + {g_3}(x)}} \times {g_0}(x), \\ {B_2} = \frac{{{g_1}(x)}}{{1 + {g_1}(x) + {g_2}(x) + {g_3}(x)}} \times {g_0}(x), \\ {B_3} = \frac{{{g_2}(x)}}{{1 + {g_1}(x) + {g_2}(x) + {g_3}(x)}} \times {g_0}(x), \\ {B_4} = \frac{{{g_3}(x)}}{{1 + {g_1}(x) + {g_2}(x) + {g_3}(x)}} \times {g_0}(x), \end{gathered} \right.$$ (5)

    式(5)中,以立木年龄为自变量,则各组分比例函数形式为 ${g_i}(T) = {a_i} {T^{{b_i}}}, i = 0, 1, 2, 3$ ,其中, ${g_i}(x)$ 代表第 $i$ 个地上生物量组分的比例函数, ${g_0}(x)$ 为从式(1)~(4)中选择的最优模型独立估计的结果, ${g_i}(T)$ 中的 ${a_i}$ ${b_i}$ 表示第 $i$ 个组分比例函数的参数。

    由于生物量数据普遍存在异方差性,必须选用适当的权函数进行加权回归估计或者将模型转换为对数形式消除异方差。本文采用加权方法消除模型的异方差性[22]。对于式(1)~(4),采用原函数 $W = 1/f{(x)^2}$ 作为权函数,目的是消除异方差。由于式(5)形式较为复杂,假设观测值残差的方差与自变量相关,根据普通最小二乘回归结果的残差平方( ${\varepsilon ^2}$ )拟合与立木年龄(T)的关系:

    $${\varepsilon ^2} = {\beta _1} {T^{{\beta _2}}},$$ (6)

    则权函数为 $W = 1/{T^{{\beta _2}}}$

    为了检验地上、地下生物量生长模型以及地上各组分相容性生物量生长模型的拟合效果,采用估计值的平均偏差(ME)、标准误(SE)、平均预估误差(MPE)、总相对误差(TRE)和调整后决定系数( ${{R}}_{\rm adj}^2$ )5项指标对模型拟合效果进行评价。具体公式如下:

    $${\rm{ME}} = \sum\limits_{i = 1}^n {({{\hat y}_i} - {y_i})} /n,$$ (7)
    $${\rm{SE}} = \sqrt {\sum\limits_{i = 1}^n {{{({{\hat y}_i} - {y_i})}^2}/(n - p)} }, $$ (8)
    $${\rm{MPE}} = \frac{1}{n}{t_\alpha }({\rm{SE}}/\overline y ) \times 100,$$ (9)
    $${\rm{TRE}} = \sum\limits_{i = 1}^n {({y_i} - {{\hat y}_i})} /\sum\limits_{i = 1}^n {{{\hat y}_i}} \times 100,$$ (10)
    $${{R}}_{\rm{adj}}^2 = 1 - \frac{{n - 1}}{{n - p}}\left( {1 - \frac{{\displaystyle\sum\limits_{i = 1}^n {{{({{\hat y}_i} - {y_i})}^2}} }}{{\displaystyle\sum\limits_{i = 1}^n {{{({y_i} - \bar y)}^2}} }}} \right),$$ (11)

    式中: ${y_i}$ 为样本某因子的实测值; ${\hat y_i}$ ${y_i}$ 的无偏估计值; $n$ 为样本数量; $p$ 为参数的个数; ${t_\alpha }$ 为置信水平 $\alpha $ 时的 $t$ 值; $\bar y$ 为样本实测值的平均值。

    ${{R}}_{\rm adj}^2$ 和SE反映了模型的拟合优度,ME是反映拟合效果的绝对误差指标,TRE是反映拟合效果的相对误差指标,MPE是反映平均估计值的精度指标,是评判所建模型是否达到预定精度要求的核心指标[22]

    表2列出了广东省3个主要乡土阔叶树种地上、地下生物量各模型的参数估计结果。Korf方程在本文所提供的样本中均不收敛,因此表格中只列出了Schumacher、Chapman-Richards和Logistic方程的参数估计结果。Shumacher方程的参数 ${\alpha _1}$ 代表生物量增长所能达到的最大值,参数 ${\alpha _2}$ 与林分立地指数和立木密度相关。当立木年龄达到参数 ${\alpha _2}$ 的一半时方程具有拐点,也就是说,参数 ${\alpha _2}$ 值越大,立木生物量达到最大增长速率的年龄越大。Chapman-Richards模型的参数 ${\beta _1}$ 代表着生物量增长所能达到的最大值, ${\beta _2}$ 与生长速度有关, ${\beta _3}$ 决定曲线形状和拐点位置,方程拐点为 $T = \ln {\beta _3}/{\beta _2}$ 。Logistic模型中参数 ${\lambda _1}$ 表示生物量增长上限, ${\lambda _2}$ 为与样本初值有关的参数, ${\lambda _3}$ 为内禀增长率,方程拐点为 $T = {\lambda _2}/{\lambda _3}$ 。结合表2分析可知,樟树天然林的地上、地下生物量上限值均比樟树人工林的大,拐点年龄也更大;木荷的人工林地上、地下生物量上限值和拐点年龄均比木荷天然林的大。枫香天然林的地上生物量上限值和拐点年龄大于人工林,而地下生物量上限和拐点年龄均小于人工林。各方程表示的生物量上限和拐点年龄差异明显:Shumacher方程的生物量上限值大于Chapman-Richards方程的生物量上限值,最小的是Logistic方程。拐点年龄Shumacher方程最大,Chapman-Richards和Logistic方程较相近。从拐点年龄和立木生物量增长上限相比较可以看出,Logistic模型更接近于树种的实际生长特性。

    表  2  以立木年龄为变量的生物量生长模型参数1)
    Table  2.  Parameters of biomass growth models with tree age as the independent variable
    树种
    Species
    起源
    Origin
    组分
    Component
    Shumacher 模型
    Shumacher model
    Chapman-Richards 模型
    Chapman-Richards model
    Logistics 模型
    Logistics model
    ${\alpha _1}$ ${\alpha _2}$ ${\beta _1}$ ${\beta _2}$ ${\beta _3}$ ${\lambda _1}$ ${\lambda _2}$ ${\lambda _3}$
    樟树Cinnamomum camphora 天然林
    Natural
    forest
    地上
    Aboveground
    5.007×103 9.224×101 1.296×104 8.985×10–3 2.770 1.205×103 5.258 0.124
    地下
    Underground
    1.349×104 1.686×102
    人工林
    Planted
    forest
    地上
    Aboveground
    1.519×103 4.445×101 8.071×102 5.545×10–2 4.051 5.706×102 4.538 0.168
    地下
    Underground
    5.180×102 3.209×101 2.335×102 7.419 0.407
    木荷
    Schima
    superba
    天然林
    Natural
    forest
    地上
    Aboveground
    1.412×103 4.351×101 5.292×102 1.136×10–1 11.340 4.735×102 5.241 0.220
    地下
    Underground
    1.938×102 3.329×101 8.874×101 7.096 0.310
    人工林
    Planted
    forest
    地上
    Aboveground
    6.030×103 7.935×101 1.183×103 5.792 0.176
    地下
    Underground
    2.155×109 4.495×102
    枫香
    Liquidambar formosana
    天然林
    Natural
    forest
    地上
    Aboveground
    2.051×103 5.690×101 1.726×103 2.462×10–2 2.737 9.198×102 4.089 0.109
    地下
    Underground
    3.334×102 4.008×101 9.478×101 16.460 0.739
    人工林
    Planted
    forest
    地上
    Aboveground
    1.391×103 3.832×101 7.807×102 1.079×10–1 12.460 7.820×102 5.265 0.189
    地下
    Underground
    1.777×107 4.239×102
     1) “−” 表示模型不收敛
     1) “−” indicates non-convergence of the model
    下载: 导出CSV 
    | 显示表格

    表3是3个树种不同起源的地上、地下生物量Schumacher、Chapman-Richards、Logistic方程参数估计评价结果。通过比较评价指标可以看出,在估计地上生物量时,3个树种在不同起源下的最优方程不同。樟树的天然林和人工林均是Logistic方程最优;木荷天然林中Chapman-Richards方程最优,人工林中Logistic方程最好;枫香天然林中Chapman-Richards方程最优,人工林中Logistic方程最好。再结合参数来看,Logistic方程可以作为3个树种在不同起源下的地上生物量最优方程。此外Chapman-Richards方程在模拟3个树种的地下生物量时无法收敛,Logistic方程在部分地下生物量模型模拟中也无法收敛,在建立地下生物量生长模型时,Shumacher方程的适用性更好。

    表  3  以立木年龄为变量的生物量生长模型评价1)
    Table  3.  Evaluation of biomass growth models with tree age as the independent variable
    树种
    Species
    起源
    Origin
    组分
    Component
    模型
    Model
    $R_{\rm adj}^2$ 平均偏差/kg
    ME
    标准误/kg
    SE
    平均预估
    误差/%
    MPE
    总相对
    误差/%
    TRE
    樟树
    Cinnamomum camphora
    天然林
    Natural
    forest
    地上
    Aboveground
    Schumacher 0.607 17.31 149.49 3.84 –15.39
    Chapman-Richards 0.621 3.62 146.97 3.78 –2.87
    Logistic 0.634 4.82 144.41 3.71 –3.86
    地下
    Underground
    Schumacher 0.625 10.21 49.92 7.71 –28.81
    Chapman-Richards
    Logistic
    人工林
    Planted
    forest
    地上
    Aboveground
    Schumacher 0.551 3.87 142.91 8.31 –3.42
    Chapman-Richards 0.553 1.20 142.50 8.28 –1.04
    Logistic 0.558 –1.44 141.71 8.24 1.21
    地下
    Underground
    Schumacher 0.757 –2.59 52.69 21.88 5.09
    Chapman-Richards
    Logistic 0.814 1.58 46.15 19.16 –3.39
    木荷
    Schima
    superba
    天然林
    Natural
    forest
    地上
    Aboveground
    Schumacher 0.582 –0.76 139.71 4.06 0.51
    Chapman-Richards 0.588 3.63 138.81 4.03 –2.52
    Logistic 0.584 –1.66 139.36 4.05 1.11
    地下
    Underground
    Schumacher 0.449 0.08 33.30 11.42 –0.28
    Chapman-Richards
    Logistic 0.536 2.75 30.57 10.48 –9.94
    人工林
    Planted
    forest
    地上
    Aboveground
    Schumacher 0.603 6.78 104.63 5.00 –7.42
    Chapman-Richards
    Logistic 0.611 –1.18 103.58 4.95 1.19
    地下
    Underground
    Schumacher 0.978 10.03 22.69 5.10 –27.57
    Chapman-Richards
    Logistic
    枫香
    Liquidambar formosana
    天然林
    Natural
    forest
    地上
    Aboveground
    Schumacher 0.809 6.10 78.81 2.23 –5.18
    Chapman-Richards 0.815 –2.02 77.59 2.20 1.61
    Logistic 0.794 –7.77 81.92 2.32 5.90
    地下
    Underground
    Schumacher 0.677 –0.30 27.06 5.91 0.80
    Chapman-Richards
    Logistic 0.725 3.44 24.95 5.44 –10.03
    人工林
    Planted
    forest
    地上
    Aboveground
    Schumacher 0.635 –9.28 152.91 6.82 6.29
    Chapman-Richards 0.695 4.64 139.83 6.24 –3.47
    Logistic 0.706 –1.98 137.28 6.13 1.41
    地下
    Underground
    Schumacher 0.995 5.04 10.69 3.23 –12.01
    Chapman-Richards
    Logistic
     1) “−” 表示模型不收敛
     1) “−” indicates non-convergence of the model
    下载: 导出CSV 
    | 显示表格

    3个树种生物量各组分占地上总生物量的比例与立木年龄的关系如图1所示。由图1可以看出,樟树天然林的干材、树枝生物量占地上总生物量的比例随着立木年龄增加而增大,而树皮和树叶的该生物量占比随着立木年龄的增大而减小,樟树人工林与天然林结果相似。木荷天然林和人工林的干材、树皮和树枝生物量所占地上总生物量的比例随着立木年龄的增加而增大,树叶的该生物量占比随着立木年龄的增加而减小。枫香的结果和樟树的相似。由此可见,各组分生物量在立木生长的周期中占地上总生物量的比例是随着立木年龄的增长而不断变化的,各组分所占比例随立木年龄的增长而升高或降低的趋势因树种而异,因此本研究的各组分相容性模型中将干材部分比例看成1。

    图  1  3个树种地上各组分生物量占地上总生物量的比例与立木年龄(T)的关系
    Figure  1.  Relationship between the proportion of each aboveground component in total aboveground biomass and the age (T) of three tree species

    选择Logistic方程作为最优方程,采用式(5)拟合的地上各组分生物量生长模型的参数估计结果见表4,各组分方程的评价结果见表5。从各组分评价指标可以看出,干材和树皮的生物量方程拟合效果相对于树枝和树叶更好一些。3个树种干材生物量方程的 ${{R}}_{\rm adj}^2$ 在0.560~0.768,MPE在3.05%~6.73%;树皮生物量方程的 ${{R}}_{\rm adj}^2$ 在0.552~0.866,MPE在2.02%~6.27%;树枝生物量方程的 ${{R}}_{\rm adj}^2$ 在0.309~0.706,MPE在3.01%~14.33%;树叶生物量方程的 ${{R}}_{\rm adj}^2$ 在0.495~0.767,MPE在4.16%~7.14%不同起源林木(天然林和人工林)地上各组分(干材、树皮、树枝和树叶)生物量生长模型的权函数结果见表6

    表  4  以立木年龄为自变量的地上各组分生物量相容性生长模型参数1)
    Table  4.  Parameters of the compatibility growth models for biomass of different aboveground components with tree age as the independent variable ×10–2
    树种 Species 起源 Origin a1 b1 a2 b2 a3 b3
    樟树
    Cinnamomum camphora
    天然林 Natural forest 7.26 23.13 55.10 8.17 10.41 –0.68
    人工林 Planted forest 6.98 23.89 63.91 7.46 7.44 –1.39
    木荷
    Schima superba
    天然林 Natural forest 7.37 24.69 33.30 8.01 7.73 –1.17
    人工林 Planted forest 8.73 26.30 38.57 17.05 9.81 –1.72
    枫香
    Liquidambar formosana
    天然林 Natural forest 7.28 24.50 24.66 7.46 5.47 –0.88
    人工林 Planted forest 3.92 3.54 3.72 75.33 1.01 –258.50
     1) a1、b1、a2、b2、a3、b3:模型参数
     1) a1,b1,a2,b2,a3,b3: Parameters of models
    下载: 导出CSV 
    | 显示表格
    表  5  以立木年龄为自变量的地上各组分生物量相容性生长模型评价
    Table  5.  Evaluation of the compatibility growth models for biomass of different aboveground components with tree age as the independent variable
    树种
    Species
    起源
    Origin
    组分
    Component
    $R_{\rm adj}^2$ 平均偏差/kg
    ME
    标准误/kg
    SE
    平均预估误差/%
    MPE
    总相对误差/%
    TRE
    樟树
    Cinnamomum camphora
    天然林
    Natural
    forest
    干材 Stem wood 0.622 2.44 67.92 3.48 0.04
    树皮 Bark 0.552 1.12 11.80 3.49 0.11
    树枝 Branch 0.519 1.15 80.51 5.72 0.03
    树叶 Leaf 0.510 0.11 10.75 5.54 0.02
    人工林
    Planted
    forest
    干材 Stem wood 0.768 –2.17 47.22 5.74 –0.04
    树皮 Bark 0.730 0.13 8.27 6.27 0.01
    树枝 Branch 0.309 0.43 100.61 14.33 0.01
    树叶 Leaf 0.571 0.16 4.51 7.14 0.04
    木荷
    Schima superba
    天然林
    Natural
    forest
    干材 Stem wood 0.560 –3.37 93.84 4.70 –0.04
    树皮 Bark 0.619 –0.06 14.69 4.23 0.00
    树枝 Branch 0.373 1.62 53.52 5.69 0.04
    树叶 Leaf 0.495 0.15 6.57 4.16 0.02
    人工林
    Planted
    forest
    干材 Stem wood 0.614 0.48 50.07 4.57 0.01
    树皮 Bark 0.657 0.05 9.70 4.46 0.00
    树枝 Branch 0.519 –1.54 50.61 7.43 –0.05
    树叶 Leaf 0.577 –0.16 6.02 6.18 –0.03
    枫香
    Liquidambar formosana
    天然林
    Natural
    forest
    干材 Stem wood 0.696 –5.63 69.98 3.05 –0.07
    树皮 Bark 0.866 –0.38 7.84 2.02 –0.03
    树枝 Branch 0.706 –1.31 22.03 3.01 –0.05
    树叶 Leaf 0.544 –0.45 6.33 5.38 –0.10
    人工林
    Planted
    forest
    干材 Stem wood 0.647 0.04 90.75 6.73 0.00
    树皮 Bark 0.768 0.20 10.96 5.49 0.02
    树枝 Branch 0.567 –1.83 64.43 10.65 –0.05
    树叶 Leaf 0.767 –0.38 5.66 6.48 –0.07
    下载: 导出CSV 
    | 显示表格
    表  6  各组分生物量生长模型的权函数估计结果
    Table  6.  Estimates of weight functions for biomass growth models of different components
    树种 Species 起源 Origin 各组分权函数 Weight function estimate of each component
    干材 Stem wood 树皮 Bark 树枝 Branch 树叶 Leaf
    樟树 Cinnamomum
    camphora
    天然林 Natural forest g(T)=1/T 0.829 2 g(T)=1/T 3.235 6 g(T)=1/T 1.776 4 g(T)=1/T 1.787 9
    人工林 Planted forest g(T)=1/T 1.414 5 g(T)=1/T 2.579 3 g(T)=1/T 2.184 0 g(T)=1/T 2.437 1
    木荷 Schima
    superba
    天然林 Natural forest g(T)=1/T 1.941 8 g(T)=1/T 1.828 5 g(T)=1/T 0.977 5 g(T)=1/T 0.946 4
    人工林 Planted forest g(T)=1/T 4.029 9 g(T)=1/T 4.262 4 g(T)=1/T 5.148 7 g(T)=1/T 2.708 0
    枫香 Liquidambar
    formosana
    天然林 Natural forest g(T)=1/T 1.030 5 g(T)=1/T 1.444 1 g(T)=1/T 1.219 0 g(T)=1/T 2.007 0
    人工林 Planted forest g(T)=1/T 0.608 1 g(T)=1/T 0.637 6 g(T)=1/T 1.057 4 g(T)=1/T 0.847 3
    下载: 导出CSV 
    | 显示表格

    本研究分天然和人工起源建立了广东省域3个主要乡土阔叶树种随年龄变化(以年龄为自变量)的地上、地下生物量生长模型,通过联立方程组建立了地上各组分生物量相容性生长模型。比较了4种模型,包括Shumacher方程、Chapman-Richards方程、Logistic方程及Korf方程的参数及评价指标,得到地上生物量最优模型为Logistic方程,地下生物量最优模型为Shumacher方程。选择Logistic方程对3个树种地上各组分生物量联立方程组建立相容性生长模型,干材和树皮的生物量方程拟合效果相对于树枝和树叶更好。

    在天然林或人工林不同起源条件下,相同树种在同一生物量生长模型形式下生物量增长的上限值和最大增速年龄均有差异。通常情况下,人为抚育经营过的人工林的最大增速年龄比天然林小。本文中的木荷样本的地上生物量生长模型估计结果则刚好相反。除了可能的样本取样不够典型以外,由于模型中包含有与林分立地水平和立木密度等条件有关的参数,出现这种现象也是有可能的。因此,也不能确定相同树种、同一模型在不同起源条件下参数估计产生差异的原因是来自起源。曾伟生等[23]曾用非线性混合模型和哑变量模型方法对杉木Cunninghamia lanceolata和马尾松Pinus massoniana,建立了包含林分起源的立木地上生物量和地下生物量模型,认为不同起源的立木地上生物量模型没有明显差异,而地下生物量模型则存在显著差异。在今后的研究中,可以参考利用胸径或树高等表示立木尺寸的因子在相近的立地条件下分起源建立生物量地上、地下及地上各组分其他模型形式的相容性生长模型,以确定起源对3个树种的生长模型影响。

    具有相同的立木年龄时,由于立地条件的差异,立木生物量的差异很大。生物量解析木数据的离散程度也会因此变大,相较于以常用的胸径和树高等反映林木大小尺度的因子建立的模型,以立木年龄为自变量的模型的拟合效果和预估效果相对差一些。对于天然林而言,年龄的测定较为复杂费力,胸径和树高仍是建立生物量模型优先选择的自变量。但对于人工林或碳汇造林项目的碳储量估计,由于年龄已知,建立以年龄为自变量的生物量生长模型,则可以省去测量立木尺寸的人力和物力而直接得到估计结果,为估算和监测森林碳汇潜力和碳汇动态的变化提供了便捷的方法。在胸径和树高已知时,首先建立一元和二元立木生物量模型,这是碳汇计量的基础。之后可以利用年龄信息,建立胸径和树高的平均生长模型,供宏观估计平均碳汇潜力提供参考依据[24]

    本研究还讨论了广东省3个主要树种地上、地下生物量及地上生物量各组分所占比例随着立木年龄的变化。本研究的3个树种均为阔叶树,与曾伟生等[22]对马尾松的研究相比,干材的比例随着立木年龄增大变化幅度更小,而马尾松的树枝比例随着胸径的增长表现得更稳定。由于天然林立木年龄测量复杂,很少有研究关注立木年龄对地上各组分在树木生命周期中占全株分配变化的影响。Zavitkovski[25]比较了与文献中不同立木年龄样本建立的方程后,认为年龄会显著影响地上、地下及地上各组分生物量与树木尺寸的关系。Peichl等[16]讨论了4个不同年龄的北美乔松Pinus strobus地上和地下生物量各组分占比的变化情况,认为年龄影响着立木各组分生物量在生长过程中的分配,在不考虑树木年龄的情况下,仅仅考虑以胸径和树高等变量建立的异速模型,在估计不同年龄的样木生物量时误差较大。Sprizza[13]认为在以胸径和胸径–树高为自变量的地上各组分异速生长方程中加入年龄因子可以改善模型的估计效果,减小误差。从广东省3个主要乡土阔叶树种建立的以立木年龄为自变量的生物量生长模型来看,地上生物量各组分在立木生长的周期中占地上总生物量的比例是随着年龄的增长而不断变化的,各组分占比变化的趋势具有树种特异性。在今后的研究中,仍需要根据树种的不同生长特性进一步分析。

  • 图  1   不同土层的土壤pH和碳含量

    各图中,柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’s法)

    Figure  1.   Soil pH and carbon content in different soil layers

    In each figure, different lowercase letters on the bars indicate significant difference(P<0.05, Duncan’s test)

    图  2   不同土层的土壤全量养分含量

    各图中,柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’s法)

    Figure  2.   Contents of soil total nutrients in different soil layers

    In each figure, different lowercase letters on the bars indicate significant difference(P<0.05, Duncan’s test)

    图  3   不同土层的土壤速效养分含量

    各图中,柱子上方的不同小写字母表示差异显著(P<0.05,Duncan’s法)

    Figure  3.   Contents of soil available nutrients in different soil layers

    In each figure, different lowercase letters on the bars indicate significant difference(P<0.05, Duncan’s test)

    表  1   各土层土壤的碳储量和营养元素储量

    Table  1   Soil carbon storage and nutrient storage in different soil layers t·hm−2

    土层/cm
    Soil layers
    碳储量
    C storage
    N 储量
    N storage
    P 储量
    P storage
    K 储量
    K storage
    0~20 50.82 4.31 1.39 37.69
    20~40 51.47 4.17 1.43 40.17
    40~60 51.43 4.31 1.49 41.80
    60~80 51.99 4.30 1.52 42.84
    80~100 53.55 4.40 1.63 46.91
    合计 Total 259.26 21.50 7.47 209.42
    下载: 导出CSV
  • [1] 薛立, 薛晔, 吴敏, 等. 不同坡位火力楠林土壤肥力变化特征[J]. 水土保持通报, 2011, 31(6): 51-54.
    [2] 薛立, 李燕, 屈明, 等. 火力楠、荷木和黎蒴林的土壤特性及涵养水源的研究[J]. 应用生态学报, 2005, 16(9): 1623-1627. doi: 10.3321/j.issn:1001-9332.2005.09.009
    [3] 谢腾芳, 薛立, 王相娥, 等. 火力楠和红苞木幼林的土壤肥力研究[J]. 水土保持通报, 2009, 29(6): 84-86.
    [4] 覃林, 马雪珍, 吴水荣, 等. 南亚热带典型乡土阔叶人工林与桉树人工林土壤微生物量氮及可溶性氮特征[J]. 应用与环境生物学报, 2017, 23(4): 678-684.
    [5] 董喜光, 张越, 薛立, 等. 火力楠林的土壤特性对外源性N和P的响应[J]. 中南林业科技大学学报, 2016, 36(9): 104-108.
    [6] 郑路, 蔡道雄, 卢立华, 等. 南亚热带不同树种人工林生态系统碳库特征[J]. 中南林业科技大学学报, 2014, 34(12): 110-116. doi: 10.3969/j.issn.1673-923X.2014.12.021
    [7] 侯晓娟, 李志, 崔诚, 等. 武功山芒根系垂直分布及其与土壤养分的关系[J]. 草业科学, 2017, 34(12): 2428-2436. doi: 10.11829/j.issn.1001-0629.2017-0135
    [8] 郑文辉, 林开敏, 徐昪, 等. 7种不同树种凋落叶对模拟酸雨缓冲性能的研究[J]. 水土保持学报, 2014, 28(3): 104-108.
    [9] 汪凤林, 张月全, 陈爱玲, 等. 不同配比的杉木、火力楠凋落物中土壤酶活性的变化及其对凋落物分解的影响[J]. 福建农林大学学报(自然科学版), 2017, 46(5): 576-583.
    [10] 徐华勤, 章家恩, 冯丽芳, 等. 广东省典型土壤类型和土地利用方式对土壤酶活性的影响[J]. 植物营养与肥料学报, 2010, 16(6): 1464-1471.
    [11] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-106.
    [12] 葛露露, 孟庆权, 林宇, 等. 滨海沙地不同树种人工林的碳储量及其分配格局[J]. 应用与环境生物学报, 2018, 24(4): 723-728.
    [13] 方怡然, 李洁, 薛立. 加勒比松林分改造对土壤化学性质和酶活性的影响[J]. 华南农业大学学报, 2018, 39(1): 91-97.
    [14] 杨丹, 项文化, 方晰, 等. 石栎−青冈常绿阔叶林土壤有机碳和全氮空间变异特征[J]. 生态学报, 2014, 34(12): 3452-3462.
    [15] 贺志龙, 张芸香, 郭跃东, 等. 不同密度华北落叶松林天然林土壤养分特征研究[J]. 生态环境学报, 2017, 26(1): 43-48.
    [16] 李婷, 邓强, 袁志友, 等. 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征[J]. 环境科学, 2015, 36(8): 2988-2996.
    [17] 桑巴叶, 朱玉伟, 陈启民, 等. 准噶尔盆地主要农田防护林的生物量及养分分布特征[J]. 西北林学院学报, 2016, 31(4): 147-152. doi: 10.3969/j.issn.1001-7461.2016.04.25
    [18] 文丽, 雷丕锋, 戴凌. 不同林龄樟树林土壤碳氮贮量及分布特征[J]. 中南林业科技大学学报, 2014, 34(6): 106-111. doi: 10.3969/j.issn.1673-923X.2014.06.021
    [19] 周永斌, 郭鑫炜, 魏亚伟, 等. 辽西北半干旱区典型人工林土壤C、N、P的垂直分布特征[J]. 沈阳农业大学学报, 2016, 47(4): 418-424.
    [20] 秦娟, 孔海燕, 刘华. 马尾松不同林型土壤C、N、P、K的化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2): 68-76.
    [21]

    WANG C, HAN G, JIA Y, et al. Insight into the temperature sensitivity of forest litter decomposition and soil enzymes in subtropical forest in China[J]. J Plant Ecol, 2012, 5(3): 279-286. doi: 10.1093/jpe/rtr013

    [22] 申家朋, 张文辉. 黄土丘陵区退耕还林地刺槐人工林碳储量及分配规律[J]. 生态学报, 2014, 34(10): 2746-2754.
    [23] 周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000, 24(5): 518-522. doi: 10.3321/j.issn:1005-264X.2000.05.002
    [24]

    HE Y, QIN L, LI Z, et al. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China[J]. Forest Ecol Manag, 2013, 295(5): 193-198.

    [25] 季波, 许浩, 何建龙, 等. 宁夏贺兰山青海云杉林土壤碳储量研究[J]. 生态科学, 2014, 33(5): 920-925.
    [26]

    XIAO Y H, TONG F C, LIU S R, et al. Response of soil labile organic carbon fractions to forest conversions in subtropical China[J]. Trop Ecol, 2016, 57(4): 691-699.

    [27] 王棣, 耿增超, 佘雕, 等. 秦岭典型林分土壤有机碳储量及碳氮垂直分布[J]. 生态学报, 2015, 35(16): 5421-5429.
    [28]

    RUMPEL C, KÖGEL-KNABNER I. Deep soil organic matter: A key but poorly understood component of terrestrial C cycle[J]. Plant Soil, 2011, 338(1/2): 143-158.

    [29]

    HICKS P C, CASTANHA C, PORRAS R, et al. The whole-soil carbon flux in response to warming[J]. Science, 2017, 355(6332): 1420. doi: 10.1126/science.aal1319

    [30] 李斌, 方晰, 李岩, 等. 湖南省森林土壤有机碳密度及碳库储量动态[J]. 生态学报, 2015, 35(13): 4265-4278.
    [31] 杜宝红, 高翠萍, 哈达朝鲁. 不同放牧强度对锡林郭勒典型草原生产力及碳储量的影响[J]. 水土保持研究, 2018(1): 140-146, 152.
    [32]

    MCNEILL A, UNKOVICH M. The nitrogen cycle in terrestrial ecosystems[M]. Berlin: Springer, 2007: 37-64.

    [33] 杨晓梅, 程积民, 孟蕾, 等. 子午岭不同林地土壤有机碳及养分储量特征分析[J]. 水土保持研究, 2010, 17(3): 130-134.
    [34] 胡亚林, 曾德慧, 姜涛. 科尔沁沙地退耕杨树人工林生态系统C、N、P储量和分配格局[J]. 生态学报, 2009, 29(8): 4206-4214. doi: 10.3321/j.issn:1000-0933.2009.08.023
  • 期刊类型引用(4)

    1. 邓文林. 乡土阔叶树种示范林建设——以韶关市国有仁化林场为例. 农村科学实验. 2024(18): 133-135 . 百度学术
    2. 何潇,雷相东,段光爽,丰庆荣,张逸如,冯林艳. 气候变化对落叶松人工林生物量生长的影响模拟. 南京林业大学学报(自然科学版). 2023(03): 120-128 . 百度学术
    3. 康梓杭,倪苗,邓晶,吴庆书. 海口市10种行道树最优生长模型研究. 热带生物学报. 2020(01): 79-83 . 百度学术
    4. 曹磊,刘晓彤,李海奎,雷渊才. 广东省常绿阔叶林生物量生长模型. 林业科学研究. 2020(05): 61-67 . 百度学术

    其他类型引用(9)

图(3)  /  表(1)
计量
  • 文章访问数:  1271
  • HTML全文浏览量:  13
  • PDF下载量:  1011
  • 被引次数: 13
出版历程
  • 收稿日期:  2018-09-03
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2019-07-09

目录

/

返回文章
返回