Test and evaluation for flight quality of aerial spraying ofplant protection UAV
-
摘要:目的
植保无人机的飞行质量是航空喷施作业效果的重要影响因素。探讨不同类型和不同控制方式的植保无人机航空喷施作业的飞行质量和作业效果,为航空喷施作业机型的选择和植保无人机技术的改进提供数据支持和指导。
方法采用微轻型机载北斗导航定位系统,获取半自主飞行控制模式下单旋翼油动植保无人机(So-UAV)、单旋翼电动植保无人机(Se-UAV)和半自动四旋翼电动植保无人机(Saqe-UAV)以及全自主控制模式下四旋翼电动植保无人机(Faqe-UAV)的飞行轨迹和飞行参数,并对飞行质量(包括飞行参数均匀性、航线精度和航线长度均匀性)进行了分析和评价。
结果四旋翼植保无人机飞行质量优于单旋翼植保无人机,且Faqe-UAV飞行质量优于Saqe-UAV;Faqe-UAV在整个作业区域内的飞行参数变化的均匀性最佳,飞行速度和飞行高度参数变化的均匀性分别为3.66%和4.67%;Faqe-UAV的平均飞行航线偏差最小,为0.172 m。飞行方向对Saqe-UAV飞行参数的影响显著,但对Faqe-UAV飞行参数的影响不显著;航线长度对Faqe-UAV飞行参数的影响显著,但对Saqe-UAV飞行速度的影响不显著。
结论在航空喷施作业过程中,全自主控制方式下四旋翼电动植保无人机飞行质量最佳,对药液喷施质量更有保障。
Abstract:ObjectiveFlight quality of plant protection UAV is an important factor affecting the effectiveness of aerial spraying. The objective of this research is to explore flight qualities and operation effects of plant protection UAVs of different types and control models, which can provide data support and guidance for selecting the models and improving the spraying technologies.
MethodFlight paths and parameters of single-rotor oil-powered plant protection UAV(Se-UAV), single-rotor electric plant protection UAV(Se-UAV), semi-automatic-quad-rotor electric plant protection UAV(Saqe-UAV) and full-automatic-quad-rotor electric plant protection UAV(Faqe-UAV) were obtained by micro-light Beidou navigation satellite system, and flight qualities (including path accuracy, variation uniformity of flight parameter and path length) were analyzed and evaluated.
ResultFlight qualities of quad-rotor plant protection UAVs were better than those of single-rotor plant protection UAVs, and flight quality of Faqe-UAVwas better than that of Saqe-UAV. Faqe-UAV had the best uniformity of flight parameters throughout the operating area, and the uniformities of flight speed and flight height were 3.66% and 4.67%, respectively. The average route deviation of Faqe-UAV was the minimum, which was 0.172 m. In addition, the effects of flight direction on flight parameters of plant protection UAVs under full-autonomous and semi-autonomous control modes were insignificant and significant respectively. The effect of route length on flight parameters of plant protection UAV under semi-autonomous control mode was not significant, but route length had a significant effect on flight speed of plant protection UAV under full-autonomous control mode.
ConclusionIn the aerial spraying process, quad-rotor plant protection UAV under full-autonomous control mode has the best flight quality, and gives spraying quality more security.
-
Keywords:
- plant protection UAV /
- aerial spraying /
- flight quality /
- autonomous control /
- quad-rotor
-
-
表 1 被测试的植保无人机机型及参数
Table 1 Types and parameters of tested plant protection UAVs
无人机机型
UAV type作业速度/(m·s–1)
Flight speed有效喷幅/m
Spraying width最大载药量/L
Maximum load单旋翼油动植保无人机(So-UAV)
Single-rotor oil-powered UAV0~15 4~6 12 单旋翼电动植保无人机(Se-UAV)
Single-rotor electric UAV0~8 4~6 15 四旋翼电动植保无人机(Qe-UAV)
Quad-rotor electric UAV0~6 3~5 10 表 2 植保无人机飞行航线对应的飞行参数
Table 2 Flight parameters corresponding to flight paths of plant protection UAVs
航线编号
Route No.作业方向
Flight directionSo-UAV (半自主
Semi-autonomous)Se-UAV (半自主
Semi-autonomous)Qe-UAV (半自主
Semi-autonomous)Qe-UAV (全自主
Full-autonomous)v/(m·s–1) h/m v/(m·s–1) h/m v/(m·s–1) h/m v/(m·s–1) h/m 1 去 Go 3.35 1.29 7.43 0.88 2.74 1.02 3.28 1.57 2 回 Return 3.95 1.26 4.99 0.90 2.38 1.10 3.30 1.65 3 去 Go 3.83 1.22 6.77 0.89 2.77 1.02 3.28 1.59 4 回 Return 4.64 1.42 6.74 1.12 2.84 1.08 3.35 1.62 5 去 Go 4.87 1.35 6.44 0.88 2.73 1.14 3.36 1.60 6 回 Return 5.16 1.45 6.39 1.02 2.30 1.27 3.40 1.69 7 去 Go 3.94 1.23 5.66 0.87 3.18 1.02 3.42 1.67 8 回 Return 4.81 1.75 5.88 1.10 3.12 1.02 3.55 1.61 9 去 Go 3.25 1.26 7.18 0.97 3.13 0.89 3.68 1.66 10 回 Return 4.08 1.41 6.38 0.99 3.06 1.04 3.27 1.68 11 去 Go 6.92 0.77 2.97 1.01 3.32 1.62 12 回 Return 6.16 0.75 2.93 0.93 13 去 Go 7.18 0.71 2.95 0.77 14 回 Return 6.52 0.85 3.07 0.90 15 去 Go 7.06 0.70 2.67 0.72 16 回 Return 5.66 0.72 表 3 不同类型植保无人机轨迹参数
Table 3 Path parameters of different types of plant protection UAVs
机型
Type作业方向
Flight direction平均速度/(m·s–1)
Average velocity速度均匀性/%
Velocity uniformity平均高度/m
Average height高度均匀性/%
Height uniformitySo-UAV(半自主
Semi-autonomous)去 Go 3.85 14.80 1.27 11.06 回 Return 4.53 1.46 Se-UAV(半自主
Semi-autonomous)去 Go 6.83 9.95 0.83 14.53 回 Return 6.09 0.94 Qe-UAV(半自主
Semi-autonomous)去 Go 2.89 8.91 0.95 12.48 回 Return 2.81 1.04 Qe-UAV(全自主
Full-autonomous)去 Go 3.39 3.66 1.60 4.67 回 Return 3.37 1.65 表 4 植保无人机轨迹偏差和航线长度
Table 4 Route deviation and length of flight path for plant protection UAV
m 航线编号
Route No.作业方向
Flight directionSo-UAV (半自主
Semi-autonomous)Se-UAV (半自主
Semi-autonomous)Qe-UAV (半自主
Semi-autonomous)Qe-UAV (全自主
Full-autonomous)偏差 Deviation l航线
Route length偏差 Deviation l航线
Route length偏差 Deviation l航线
Route length偏差 Deviation l航线
Route length1 去 Go 0.128 83.72 0.261 104.01 0.101 76.70 0.374 63.63 2 回 Return 0.183 98.61 0.136 109.84 0.280 78.68 0.184 64.58 3 去 Go 0.285 76.59 0.266 121.94 0.140 80.37 0.075 65.37 4 回 Return 0.225 83.45 0.497 121.34 0.159 85.16 0.200 66.56 5 去 Go 0.206 77.91 0.426 109.39 0.215 79.29 0.158 67.27 6 回 Return 0.497 82.60 0.703 108.64 0.255 80.59 0.223 67.93 7 去 Go 0.162 78.85 0.453 84.87 0.123 76.38 0.166 69.22 8 回 Return 0.678 81.67 0.269 82.33 0.343 71.80 0.098 69.97 9 去 Go 0.304 65.01 0.691 114.86 0.080 71.96 0.115 72.11 10 回 Return 0.339 69.37 0.217 114.76 0.207 73.55 0.125 62.12 11 去 Go 0.412 117.67 0.155 68.30 0.172 59.71 12 回 Return 0.159 117.13 0.277 67.38 13 去 Go 0.303 107.71 0.244 67.81 14 回 Return 0.243 110.76 0.182 70.58 15 去 Go 0.186 98.78 0.144 64.10 16 回 Return 0.193 96.24 平均Average 0.301 0.338 0.193 0.172 -
[1] LAN Y B, CHEN S D, FRITZ B K. Current status and future trends of precision agricultural aviation technologies[J]. Int J Agric & Biol Eng, 2017, 10(3): 1-17.
[2] 张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. doi: 10.6041/j.issn.1000-1298.2014.10.009 [3] 周志艳, 臧英, 罗锡文, 等. 中国农业航空植保产业技术创新发展战略[J]. 农业工程学报, 2013, 29(24): 1-10. doi: 10.3969/j.issn.1002-6819.2013.24.001 [4] CHEN S D, LAN Y B, LI J Y, et al. Effect of wind field below unmanned helicopter on droplet deposition distribution of aerial spraying[J]. Int J Agric & Biol Eng, 2017, 10(3): 67-77.
[5] XUE X Y, LAN Y B, SUN Z, et al. Develop an unmanned aerial vehicle based automatic aerial spraying system[J]. Comput Electron Agric, 2016, 128: 58-66. doi: 10.1016/j.compag.2016.07.022
[6] 陈盛德, 兰玉彬, 李继宇, 等. 航空喷施与人工喷施方式对水稻施药效果比较[J]. 华南农业大学学报, 2017, 38(4): 103-109. [7] 陈盛德, 兰玉彬, 李继宇, 等. 植保无人机航空喷施作业有效喷幅的评定与试验[J]. 农业工程学报, 2017, 33(7): 82-90. [8] XUE X Y, TU K, QIN W C, et al. Drift and deposition of ultra-low altitude and low volume application in paddy field[J]. Int J Agric & Biol Eng, 2014, 7(4): 23-28.
[9] 邱白晶, 王立伟, 蔡东林, 等. 无人直升机飞行高度与速度对喷雾沉积分布的影响[J]. 农业工程学报, 2013, 29(24): 25-32. doi: 10.3969/j.issn.1002-6819.2013.24.004 [10] 秦维彩, 薛新宇, 周立新, 等. 无人直升机喷雾参数对玉米冠层雾滴沉积分布的影响[J]. 农业工程学报, 2014, 30(5): 50-56. doi: 10.3969/j.issn.1002-6819.2014.05.007 [11] 陈盛德, 兰玉彬, 周志艳, 等. 小型植保无人机喷雾参数对橘树冠层雾滴沉积分布的影响[J]. 华南农业大学学报, 2017, 38(5): 97-102. [12] 陈盛德, 兰玉彬, FRITZ B K, 等. 多旋翼无人机旋翼下方风场对航空喷施雾滴沉积的影响[J]. 农业机械学报, 2017, 48(8): 105-113. [13] QIN W C, QIU B J, XUE X Y, et al. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers[J]. Crop Prot, 2016, 85: 79-88. doi: 10.1016/j.cropro.2016.03.018
[14] 王潇楠, 何雄奎, 王昌陵, 等. 油动单旋翼植保无人机雾滴飘移分布特性[J]. 农业工程学报, 2017, 33(1): 117-123. [15] 陈盛德, 兰玉彬, 李继宇, 等. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报, 2016, 32(17): 40-46. doi: 10.11975/j.issn.1002-6819.2016.17.006 [16] 王昌陵, 何雄奎, 王潇楠, 等. 基于空间质量平衡法的植保无人机施药雾滴沉积分布特性测试[J]. 农业工程学报, 2016, 32(24): 89-97. doi: 10.11975/j.issn.1002-6819.2016.24.012 [17] 张宋超, 薛新宇, 秦维彩, 等. N-3型农用无人直升机航空施药雾滴飘移模拟与试验[J]. 农业工程学报, 2015, 31(3): 87-93. doi: 10.3969/j.issn.1002-6819.2015.03.012 [18] 张盼, 吕强, 易时来, 等. 小型无人机对柑橘园的喷雾效果研究[J]. 果树学报, 2016, 33(1): 34-42. [19] 王颉. 试验设计与SPSS应用[M]. 北京: 化学工业出版社, 2006. -
期刊类型引用(3)
1. 杨磊,袁斌,郑锷,叶晨朔,王思行,何贤俊,张潇潇,黄山,胡伟伟,邵敏. 珠江三角洲秋季生物质燃烧对有机气溶胶的贡献. 中国环境科学. 2023(01): 20-28 . 百度学术
2. 黄巧义,于俊红,黄建凤,黄旭,李苹,付弘婷,唐拴虎,刘一锋,徐培智. 广东省主要农作物秸秆养分资源量及替代化肥潜力. 生态环境学报. 2022(02): 297-306 . 百度学术
3. 郭畅,刘剋. 基于MODIS数据京津冀的秸秆焚烧火点监测与分析. 科技风. 2019(31): 125-126 . 百度学术
其他类型引用(4)