• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

孵育对环氧树脂固定化脂肪酶稳定性的影响

徐珊, 李任强, 张继福, 张云, 孙爱君, 胡云峰

徐珊, 李任强, 张继福, 等. 孵育对环氧树脂固定化脂肪酶稳定性的影响[J]. 华南农业大学学报, 2019, 40(3): 61-66. DOI: 10.7671/j.issn.1001-411X.201807037
引用本文: 徐珊, 李任强, 张继福, 等. 孵育对环氧树脂固定化脂肪酶稳定性的影响[J]. 华南农业大学学报, 2019, 40(3): 61-66. DOI: 10.7671/j.issn.1001-411X.201807037
XU Shan, LI Renqiang, ZHANG Jifu, et al. Effect of incubation on stabilization of lipase immobilized by epoxy resin[J]. Journal of South China Agricultural University, 2019, 40(3): 61-66. DOI: 10.7671/j.issn.1001-411X.201807037
Citation: XU Shan, LI Renqiang, ZHANG Jifu, et al. Effect of incubation on stabilization of lipase immobilized by epoxy resin[J]. Journal of South China Agricultural University, 2019, 40(3): 61-66. DOI: 10.7671/j.issn.1001-411X.201807037

孵育对环氧树脂固定化脂肪酶稳定性的影响

基金项目: 广东省海洋渔业科技攻关与研发方向项目(A201701C12);中国科学院战略性先导科技专项(XDA11030404);中国科学院“科学”号高端用户项目(KEXUE2018G05)
详细信息
    作者简介:

    徐珊(1992—),女,硕士研究生,E-mail: 1396525087@qq.com

    通讯作者:

    胡云峰(1980—),男,研究员,博士,E-mail: yunfeng.hu@scsio.ac.cn

  • 中图分类号: Q814.2

Effect of incubation on stabilization of lipase immobilized by epoxy resin

  • 摘要:
    目的 

    研究甘氨酸孵育对LXEP-120环氧树脂固定化脂肪酶稳定性的影响。

    方法 

    使用甘氨酸孵育环氧树脂固定化脂肪酶,消除固定化酶载体上过剩的环氧基团,对孵育的条件进行探索和优化,并且比较孵育前后固定化脂肪酶的酶学性质。

    结果 

    孵育环氧树脂固定化脂肪酶的最佳条件为:选用浓度为2.5 mol/L、pH7.0的甘氨酸溶液,在25 ℃条件下孵育24 h。孵育后的固定化脂肪酶的相对酶活力在80 ℃条件下处理6 h后仍保存60%左右,而相同条件下处理后的未经孵育的固定化脂肪酶的相对酶活力只剩下45%左右;与未孵育的固定化脂肪酶相比较,孵育后的固定化脂肪酶最适反应pH(8.0)、最适反应温度(45 ℃)与孵育前相同,pH耐受性、操作稳定性和储藏稳定性变化趋势在孵育前后基本保持一致。

    结论 

    孵育消除固定化酶载体上剩余的环氧基团是必不可少的一个技术环节,甘氨酸孵育工艺可以较大程度地提高固定化脂肪酶的热稳定性,对反应pH、pH稳定性、操作稳定性和储藏稳定性等性质影响较小。

    Abstract:
    Objective 

    To study the effect of glycine incubation on the stability of lipase immobilized by LXEP-120 epoxy resin.

    Method 

    Glycine solution was used to incubate lipase immobilized by epoxy resin for removing the residual epoxy groups. The incubation conditions were explored and optimized, and the enzymatic properties of the immobilized lipase before and after incubation were compared.

    Result 

    The optimal incubation conditions were 2.5 mol/L and pH 7.0 glycine solution incubating for 24 h at 25 ℃. Following incubation, the immobilized lipase still retained about 60% of the original activity after treatment at 80 ℃ for 6 h, while the unincubated immobilized lipase retained only about 45% of the original activity. The optimal reaction pH (8.0) and optimal reaction temperature (45 ℃) of the immobilized lipase after incubation were the same as those of the unincubated immobilized lipase, and the pH tolerance, operation stability, and storage stability were the same as those before incubation.

    Conclusion 

    Removing residual epoxy groups on immobilized enzyme through incubation is one necessary technical step. Glycine incubation can greatly improve the thermal stability of the immobilized lipase with little influence on reaction pH, pH stability, operation stability and storage stability.

  • 图  1   氨基酸溶液孵育对固定化脂肪酶活力的影响

    Figure  1.   Effect of incubation with amino acid solution on immobilized lipase activity

    图  2   不同浓度甘氨酸溶液孵育对固定化脂肪酶活力的影响

    Figure  2.   Effect of incubation with different concentrations of glycine solution on immobilized lipase activity

    图  3   不同pH甘氨酸溶液孵育对固定化脂肪酶活力的影响

    Figure  3.   Effect of incubation of glycine solution with different pH on immobilized lipase activity

    图  4   孵育温度对固定化脂肪酶活力的影响

    Figure  4.   Effect of incubation temperature on immobilized lipase activity

    图  5   孵育时间对固定化脂肪酶活力的影响

    Figure  5.   Effect of incubation time on immobilized lipase activity

    图  6   固定化脂肪酶的最适反应pH

    Figure  6.   The optimal reaction pH of immobilized lipase

    图  7   固定化脂肪酶的最适反应温度

    Figure  7.   The optimal reaction temperature of immobilized lipase

    图  8   固定化脂肪酶的pH耐受性

    Figure  8.   pH stability of immobilized lipase

    图  9   固定化脂肪酶的温度耐受性

    Figure  9.   Thermal stability of immobilized lipase

    图  10   固定化脂肪酶的操作稳定性

    Figure  10.   Operation stability of immobilized lipase

    图  11   固定化脂肪酶的储存稳定性

    Figure  11.   Storage stability of immobilized lipase

  • [1] 朱珊珊, 邵佩霞, 王永华. LipozymeTL100L脂肪酶的固定化及其性质研究[J]. 食品工业科技, 2010, 31(5): 97-100.
    [2]

    KIM H, CHOI N, OH S W, et al. Synthesis of alpha-linolenic acid-rich triacylglycerol using a newly prepared immobilized lipase[J]. Food Chem, 2017, 237: 654-658.

    [3]

    FARIAS S, MAYER D A, DE OLIVEIRA D, et al. Free and Ca-alginate beads immobilized horseradish peroxidase for the removal of reactive dyes: An experimental and modeling study[J]. Appl Biochem Biotechnol, 2017, 182(4): 1290-1306. doi: 10.1007/s12010-017-2399-2

    [4]

    VAZQUEZ-ORTEGA P G, ALCARAZ-FRUCTUOSO M T, ROJAS-CONTRERAS J A, et al. Stabilization of dimeric beta-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions[J]. Enzyme Microb Technol, 2018, 110: 38-45.

    [5]

    AGHABABAIE M, BEHESHTI M, RAZMJOU A, et al. Covalent immobilization of Candida rugosa lipase on a novel functionalized Fe3O4@SiO2 dip-coated nanocomposite membrane[J]. Food Bioprod Process, 2016, 100: 351-360.

    [6] 刘文涛, 段洪东, 王兴建, 等. 环氧基固定化酶载体的研究进展[J]. 山东轻工业学院学报, 2012, 26(3): 40-44.
    [7] 顾恺, 邹树平, 王志才, 等. 环氧树脂固定化卤醇脱卤酶的研究[J]. 现代化工, 2016, 36(11): 69-74.
    [8]

    SHELDON R A. Enzyme immobilization: The quest for optimum performance[J]. Adv Synth Catal, 2007, 349(8/9): 1289-1307.

    [9]

    BLANCO R M, CALVETE J J, GUISAN J M. Immobilization-stabilization of enzymes : Variables that control the intensity of the trypsin (amine) agarose (aldehyde) multipoint attachment[J]. Enzyme Microb Technol, 1989, 11(6): 353-359. doi: 10.1016/0141-0229(89)90019-7

    [10]

    TORRES P, BATISTA-VIERA F. Immobilized trienzymatic system with enhanced stabilization for the biotransformation of lactose[J]. Molecules, 2017, 22(2): 284. doi: 10.3390/molecules22020284

    [11]

    MATEO C, ABIAN O, FERNANDEZ-LAFUENTE R, et al. Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment[J]. Enzyme Microb Technol, 2000, 26(7): 509-515. doi: 10.1016/S0141-0229(99)00188-X

    [12]

    MATEO C, GRAZU V, PESSELA B C C, et al. Advances in the design of new epoxy supports for enzyme immobilization-stabilization[J]. Biochem Society Trans, 2007, 35(6): 1593-1601. doi: 10.1042/BST0351593

    [13]

    BARBOSA O, ORTIZ C, BERENGUER-MURCIA A, et al. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts[J]. Biotechnol Adv, 2015, 33(5): 435-456. doi: 10.1016/j.biotechadv.2015.03.006

    [14]

    GUISAN, JOSE M. Immobilization-stabilization of enzymes by multipoint covalent attachment on supports activated with epoxy groups[J]. Immobil Enzyme Cell, 2006, 22: 47-54.

    [15]

    TORRES P, BATISTA-VIERA F. Immobilization of β-galactosidase from Bacillus circulans onto epoxy-activated acrylic supports[J]. J Mol Catal B: Enzym, 2012, 74(3/4): 230-235. doi: 10.1016/j.molcatb.2011.11.006

图(11)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-21
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2019-05-09

目录

    Corresponding author: HU Yunfeng, yunfeng.hu@scsio.ac.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回