• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

瓜类蔬菜体内多环芳烃的分布特征及健康风险评估

张会敏, 龙明华, 乔双雨, 赵体跃, 龙彪, 梁勇生

张会敏, 龙明华, 乔双雨, 等. 瓜类蔬菜体内多环芳烃的分布特征及健康风险评估[J]. 华南农业大学学报, 2019, 40(2): 83-93. DOI: 10.7671/j.issn.1001-411X.201806035
引用本文: 张会敏, 龙明华, 乔双雨, 等. 瓜类蔬菜体内多环芳烃的分布特征及健康风险评估[J]. 华南农业大学学报, 2019, 40(2): 83-93. DOI: 10.7671/j.issn.1001-411X.201806035
ZHANG Huimin, LONG Minghua, QIAO Shuangyu, et al. Distribution characteristics and health risk assessment of polycyclic aromatic hydrocarbons in cucurbitacae vegetables[J]. Journal of South China Agricultural University, 2019, 40(2): 83-93. DOI: 10.7671/j.issn.1001-411X.201806035
Citation: ZHANG Huimin, LONG Minghua, QIAO Shuangyu, et al. Distribution characteristics and health risk assessment of polycyclic aromatic hydrocarbons in cucurbitacae vegetables[J]. Journal of South China Agricultural University, 2019, 40(2): 83-93. DOI: 10.7671/j.issn.1001-411X.201806035

瓜类蔬菜体内多环芳烃的分布特征及健康风险评估

基金项目: 国家自然科学基金(31360479);广西自然科学基金(2014GXNSFAA118100);国家现代农业产业技术体系广西瓜果蔬菜创新团队建设项目(nycytxgxcxtd-10-03)
详细信息
    作者简介:

    张会敏(1994—),女,硕士研究生,E-mail: 936208326@qq.com

    通讯作者:

    龙明华(1961—),男,教授,博士,E-mail: longmhua@163.com

  • 中图分类号: S642

Distribution characteristics and health risk assessment of polycyclic aromatic hydrocarbons in cucurbitacae vegetables

  • 摘要:
    目的 

    探讨多环芳烃(PAHs)在瓜类蔬菜体内的分布特征和积累规律,并对南宁市不同年龄不同性别人群摄食每种瓜类蔬菜果实的健康风险进行评估。

    方法 

    采集黄瓜Cucumis sativus、苦瓜Momordica charantia、丝瓜Luffa cylindrical和节瓜Benincasa hispida var. chieh-qua根系各30株和果实各20个,并分别称取茎1 kg、叶片1 kg和叶柄1 kg,用超声波提取、固相萃取对蔬菜进行前处理,用高效液相色谱法检测各部位中16种PAHs含量。

    结果 

    16种PAHs在4种瓜类蔬菜中均有检出,PAHs的总质量分数为88.44~1 229.85 μg·kg–1,其中各环数PAHs含量顺序为5环>6环>2环>4环>3环。南宁市不同人群食用瓜类果实引起的致癌风险值在1.48×10–6~7.84×10–5范围内,仅摄入可食用部分引起的致癌风险值在2.23×10–7~3.35×10–6范围内。

    结论 

    比较同种瓜类不同部位,4种瓜皆是叶片PAHs含量最高,黄瓜果瓤含量最低,苦瓜和丝瓜果肉含量最低,节瓜叶柄含量最低;比较4种瓜类叶片,节瓜叶片PAHs含量最高,苦瓜叶片含量最低。在目前蔬菜消费量下,南宁市民摄食瓜类蔬菜果实存在潜在致癌风险。

    Abstract:
    Objective 

    To explore the distribution characteristics and accumulation rules of polycyclic aromatic hydrocarbons (PAHs) in cucurbitacae vegetables, and evaluate the health risks of each cucurbitacae vegetable to people in different age groups and genders in Nanning.

    Method 

    The samples of Cucumis sativus, Momordica charantia, Luffa cylindrical and Benincasa hispida var. chieh-qua were collected. For each type of vegetable, we collected roots of 30 plants, 1 kg stems, 1 kg leaves, 1 kg petioles and 20 fruits. The vegetables were pretreated by ultrasonic extraction and solid phase extraction. The contents of 16 different PAHs in different parts of vegetables were detected by high performance liquid chromatography (HPLC).

    Result 

    Sixteen types of PAHs were all detected in four kinds of cucurbitacae vegetables, the contents of total PAHs ranged from 88.44 to 1 229.85 μg.kg–1. The order of detected PAHs amounts in cucurbitacae vegetables was 5-ring PAHs > 6-ring PAHs > 2-ring PAHs > 4-ring PAHs > 3-ring PAHs. The cancer risk levels of diverse population groups in Nanning by ingesting fruit from cucurbitacae vegetables were in the range of 1.48×10 –6 and 7.87×10–5. The cancer risk levels caused by ingesting only edible portions were in the range of 2.23×10–7 and 3.35×10–6.

    Conclusion 

    Comparing different organs of the same cucurbitacae vegetables, leaves had the highest PAH contents for all four vegetables, C. sativus pulp had the lowest PAHs content, M. charantia and L. cylindrical flesh had the lowest PAHs contents, B. hispida var. chieh-qua petious had the lowest PAHs content. Comparing leaves of different cucurbitacae vegetables, PAHs content was the highest in B. hispida var. chieh-qua while the lowest in M. charantia. Under the current consumption amount of vegetables, potential carcinogenic risks exist for Nanning residents by ingesting fruits of cucurbitacae vegetables.

  • 棕榈科是世界上仅次于禾本科的第2大经济植物,具有重要的经济和生态价值。椰心叶甲Brontispa longissima (Gestro)是棕榈科植物上的一种世界性入侵害虫,被很多国家列为检疫性有害生物。2002年椰心叶甲在海南出现并暴发成灾[1],该虫的发生蔓延严重威胁我国椰子、槟榔及整个棕榈产业的健康发展,同时对我国海南等热带亚热带地区的绿色生态安全和景观构成巨大威胁[2]。面对国内外对椰心叶甲防治经验少、防治实践急需技术等突出问题,在国家林业局,海南省林业、科技等部门大力支持下,彭正强项目组承担了多项国家和省部级项目,联合各个优势单位,针对椰心叶甲入侵、发生、危害、控制等展开联合攻关。经过10多年的研究,在阐明该虫生物学、生态学特点及入侵成灾规律的基础上,集成创建了应急防控与持续控制关键技术,并在海南、广东、广西、福建等省区推广应用,取得了显著的经济、生态和社会效益。现将相关研究及应用情况总结如下。

    明确椰心叶甲除了通过棕榈科植物的苗木运输扩散传播外,自身具有一定的飞行扩散能力,特别是借助风力如热带海洋性季风进行远距离传播,导致该害虫在海南岛快速扩散蔓延成灾[1]。系统研究了椰心叶甲生殖发育生物学特点,揭示取食量大、生活周期长和种群增长率高等是导致该害虫猖獗的重要因素[3-4]。通过系统的野外调查和室内评价发现我国虽然有椰心叶甲的捕食性天敌和病原微生物,但未发现专一性有效天敌,揭示缺乏有效天敌抑制因子是椰心叶甲暴发的主要原因之一[5]。室内评价寄主适合性和野外寄主调查结果表明该虫寄主范围较广泛,可取食椰子、槟榔、大王棕等26属36种棕榈科植物,这成为该虫种群快速建立和扩张的基础[6-8]。该虫具有较强的耐高、低温和饥饿能力,入侵种群具有较强的生存张力[9]

    应用化学生态学的方法研究了椰心叶甲对不同寄主、不同部位叶片及其提取物的选择规律,发现椰树受害后心叶挥发性物质(E)–4,8–二甲基–1,3,7–壬三烯、壬酸、2,5,9–三甲基癸烷含量显著增加。测定了多项生理生化指标,揭示了该虫选择寄主的生理生化机制[10]

    系统研究了椰心叶甲各虫态的空间分布规律,提出了林间调查的抽样技术[11]。建立了该虫危害调查等级标准。提出以收获椰果为目的时,椰心叶甲的防治指标为135头/株;以保护景观为目的时,防治指标为幼年椰林1头/株,成年椰林41头/株,老年椰林17头/株。

    椰林的受害指数:

    $$ I = \dfrac{{0 \times {n_0} + 1 \times {n_1} + 2 \times {n_2} + 3 \times {n_3} + 4 \times {n_4} + 5 \times {n_5}}}{{5 \times \displaystyle\sum\limits_{i = 0}^5 {{n_i}} }} $$

    式中,I为受害指数,I = 0,正常;0 < I≤ 0.15,轻度危害;0.15 < I≤ 0.35,中度危害;0.35<I≤ 1,重度危害。0~5为叶片受害级别,指椰树第1片未完全展开叶叶面被取食的比例X,0级,X = 0;1级,0 < X≤ 10%;2级,10% < X≤30%;3级,3级,30% < X≤ 50%;4级,50% < X≤70%;5级,70% < X≤ 100%。n0~n5为0~5级叶片受害级别对应的椰树株数。

    利用磁珠富集法在全球椰心叶甲主要分布区筛选出地理种群的8对多态性微卫星位点,基因序列分析表明种群内及地理种群间的遗传距离较小。明确了椰心叶甲在我国的适生区,发现海南全省、广东和广西南部沿海地区、云南河口零星地区及台湾西部沿海地区是高度风险区,福建部分沿海地区、广东和广西内地零星地区为中度风险区,福建和浙江部分沿海地区为低风险区[12]

    明确了多种杀虫剂对椰心叶甲的控制作用,测定了阿维菌素、高效氯氰菊酯、吡虫啉、灭多威、巴丹、锐劲特、啶虫脒等40多种药剂对椰心叶甲卵、幼虫和成虫的毒杀活性[13-16],筛选结果表明假蒟Piper sarmentosum Roxb.、软枝黄蝉Allemanda cathartica L.、薇甘菊Mikania micrantha Kunth等植物提取物对椰心叶甲都有很好的毒杀作用[17-18]。测试了11种鬼臼毒素衍生物对椰心叶甲5龄幼虫的毒性,明确脱氧鬼臼毒素对该虫幼虫的作用要显著高于其他衍生物。明确了肉豆蔻醚和反式丁香烯是假蒟毒杀椰心叶甲的主要活性成分。

    根据生态位原理,分别从越南、我国台湾成功引进了椰心叶甲幼虫专性寄生性天敌椰甲截脉姬小蜂Asecodes hispinarum和蛹专性寄生性天敌椰心叶甲啮小蜂Tetrastichus brontispae[19]。评估了2种寄生蜂在我国的适生区,认为2种寄生蜂的最适宜分布范围与目前椰心叶甲在我国的实际分布基本吻合[20]。经过系统安全性评估,2种寄生蜂的释放获得国家质量监督检验检疫总局批准[21]

    阐明了温度、湿度、光周期等对2种寄生蜂寄生能力、生长发育等的影响[22-23]。明确了2种寄生蜂对寄主龄期的选择性和适合性,发现寄生椰心叶甲4龄幼虫对椰甲截脉姬小蜂的繁殖最为有利[24],初蛹最适合椰心叶甲啮小蜂生长[25-26]。研究了补充营养对2种天敌寄生蜂寿命、寄生能力及后代品质的影响,发现补充营养可使2种寄生蜂的寿命延长1倍[23-25, 27]。2种寄生蜂可孤雌生殖,但寄生率低,后代皆为雄蜂[28]。评价了气候因子(温度、光照、湿度)和生物因子(寄主数量、寄主大小、配偶比)对寄生蜂种群稳定性的影响。

    明确了2种寄生蜂对椰心叶甲及其寄主植物不同处理叶片挥发物的行为反应,发现受椰心叶甲危害的寄主植物心叶的挥发物对寄生蜂的引诱作用明显强于未受害心叶[20]。研究了2种寄生蜂各虫态的耐寒性,明确寄生蜂不同发育阶段过冷却点变化规律,低温驯化后椰甲截脉姬小蜂、椰心叶甲啮小蜂存活下限分别达到2和–2 ℃[20, 22]。提出了2种寄生蜂的致死高温区,在高温胁迫下2种寄生蜂各虫态的存活率均随着温度上升而降低,符合直线回归模型[29-30],在不同环境条件胁迫下2种寄生蜂体内保护酶系活性增强[31-32]

    系统研究了利用自然寄主大量繁殖椰心叶甲技术,并开发出一套以椰子心叶与完全展开叶混合饲养椰心叶甲的高效、低成本饲养模式。根据椰心叶甲摄食因子和营养成分,研制了一种椰心叶甲幼虫半人工饲料,用该人工饲料饲养,椰心叶甲从初孵幼虫到老熟幼虫的存活率为79.8%,达到了与自然寄主椰子心叶饲养相同的效果[33]

    成功创制了一套规模化繁育寄生蜂的技术与饲养设施,形成完整的生产工艺流程,显著降低了繁蜂成本,生产成本仅为越南、泰国的50%。目前已建成4个繁蜂工厂,日生产寄生蜂能力为200万头,年生产能力达7亿头,其中椰甲截脉姬小蜂5.25亿头,椰心叶甲啮小蜂1.75亿头[21],2004—2010年累计生产寄生蜂35亿头。

    研制了2个新型的寄生性天敌释放器,其结构简单、制作方便、成本低,可以有效遮阴并防止雨水淋入储蜂部位,悬挂稳定性强,简化了天敌释放的过程,节省了人力物力,提高了防效。根据寄生蜂寄生椰心叶甲不同虫态和椰心叶甲世代严重重叠等特点,创立了2种寄生蜂林间大面积混合释放技术。按啮小蜂与姬小蜂为1︰3的比例,在林间混合释放寄生蜂,每667 m2椰林挂放蜂器1个,放蜂量约为椰心叶甲种群数量的2倍(蜂虫比2︰1),每月放蜂1次,连续释放4~6次,寄生蜂可建立自然种群[9]。成片椰子、槟榔等棕榈科植物林或生态环境较好的地区,椰甲截脉姬小蜂对椰心叶甲3~4龄幼虫的平均寄生率为61%,椰心叶甲啮小蜂对椰心叶甲蛹的平均寄生率为52%,最高均可达100%,可长期控制椰心叶甲的发生。零散棕榈科植物、生态环境较差的地区或特别寒冷年份,需要不定期补充放蜂。

    目前,在海南岛大部分地区,引进的寄生蜂成功建立了自然种群,持续控制面积超过7万 hm2。寄生蜂释放防治成本为189元/ hm2,如以5、10、15、20年计算,成本仅为化学防治费用的1.13%、0.57%、0.37%、0.27%,极大地降低了防治成本,节约了社会资源。引进寄生蜂成功控制海南椰心叶甲发生危害,将是我国生物防治史上又一典范。

    测定了啶虫脒、杀虫单、高效氯氰菊酯等常用化学药剂对2种寄生蜂的选择毒性,发现部分药剂对寄生蜂寄生率影响显著,但寄生后2种寄生蜂发育未受到不良影响[34]。在药剂对椰心叶甲致死力即将丧失之际,立即释放寄生蜂对其寄生率会有较大影响,但对成功寄生的寄生蜂发育与存活无明显影响。因此,在施药后1个月即可释放寄生蜂,而椰甲清使用后3个月才能释放寄生蜂。

    测定了啶虫脒、杀虫单、高效氯氰菊酯等常用化学药剂的相容性。常规剂量下相容性差,但杀虫单、吡虫啉等在亚致死浓度下,与绿僵菌配合使用对绿僵菌的致病力具有协同增效作用[35]。因此,在防治过程中绿僵菌与杀虫单、吡虫啉等在低剂量下配合施用,可提高防效。

    研究表明菌、蜂具有协同防治作用。先接菌再接蜂与先接蜂再接菌的防治作用差异不显著,在处理后第10 d的防治效果分别为83.3%和73.45%,比单一使用其中一种措施防治效果要高。啮小蜂、姬小蜂均能携带绿僵菌至椰心叶甲,并能有效感染椰心叶甲,存在协同增效作用。

    在研发椰甲清淋溶性粉剂挂袋法防治椰心叶甲关键技术的基础上,集成创建了椰心叶甲应急防控技术体系[36]。该体系旨在针对疫点或小面积疫区防治封锁与铲除,控制疫区的转移和扩大:1)发现疫点,及时检疫封锁,疫点周边5 km以内禁止一切棕榈科植物及产品调运;2)疫点内逐株检查,受害株去顶(心叶与未完全展开叶)或拔除,集中烧毁;3)疫点内与周边2 km以内所有棕榈科植物逐株挂椰甲清药包或喷药(苗及茎干细高无法挂药包株),挂药包株每3个月换1次药包,喷药株每个月施1次药;4)每月随机抽样检查,抽样样本数不低于20株或总株数的5%,连续12个月,未发现受害株,方可确定疫点已拔除。

    图  1  椰心叶甲应急防控技术体系
    Figure  1.  Brontispa longissima emergency prevention and control technology system

    在研发以上关键技术的基础上,集成创建了椰心叶甲持续控制体系。该体系以释放天敌寄生蜂防治椰心叶甲为核心,在此基础上根据棕榈科分布区域的环境特点及防治要求,整合绿僵菌施用,挂椰甲清药包等防控新技术,形成3种不同类型的子系统:1)棕榈科植物集中分布区或生态环境较好地区,如海南文昌东郊椰林地区,以释放天敌寄生蜂为主,辅以施用绿僵菌等防控措施,遇到特寒年份,开春及时补充天敌寄生蜂;2)棕榈科植物零星分布区或生态环境较差地区,如海南东方八所地区,天敌寄生蜂与绿僵菌并用为主,辅以化学防治等防控措施,遇严重受害株及时补充天敌寄生蜂与绿僵菌或挂椰甲清药包;3)园林景观区,天敌寄生蜂、绿僵菌及化学防治等防治措施同时并用,如琼海博螯地区,主要景观点棕榈科植物逐株长期挂药包,四周释放寄生蜂与绿僵菌,遇到特寒年份,开春及时补充天敌寄生蜂。

    为应对椰心叶甲入侵和成灾问题,本研究阐明了该虫种群动态和灾变规律,揭示了该虫入侵成灾的主要机理;成功引进2种寄生蜂,创建了“扩繁−释放−评价”关键技术体系;筛选出高效安全药剂,集成创建了应急防控与持续治理技术体系。研发的技术成果在海南等省区应用,累计推广近53.4万 hm2,成功控制了椰心叶甲危害,增强了棕榈植物种植户的生物防治理念,保障了我国棕榈植物相关产业从业人员的收入,也保护了我国独特的热带森林旅游景观,巩固了热带南亚热带生态屏障。

  • 图  1   PAHs在4种瓜类蔬菜7个部位的含量

    同种蔬菜柱子上的不同小写字母表示差异显著(P<0.05,Duncan’s法)

    Figure  1.   PAHs contents in seven parts of four cucurbitacae vegetables

    Different lowercase letters on bars of the same vegetable indicate significant difference(P<0.05, Duncan’s test)

    表  1   不同人群对瓜类蔬菜的摄取量

    Table  1   Ingestion amounts of cucurbitacae vegetables for different groups of people g·d–1

    蔬菜种类
    Vegetable type
    蔬菜部位
    Vegebable part
    儿童 Child 青少年 Adolescent 成年人 Adult 老年人 Senior
    男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female
    苦瓜
    Balsam pear
    果实 Fruit 2.19 2.07 3.68 3.22 5.52 5.06 5.29 4.60
    可食用部位 Edible portion 1.79 1.70 3.02 2.64 4.53 4.15 4.34 3.77
    节瓜
    Chieh qua
    果实 Fruit 1.43 1.35 2.40 2.10 3.60 3.30 3.45 3.00
    可食用部位 Edible portion 0.97 0.92 1.63 1.43 2.45 2.24 2.35 2.04
    丝瓜
    Luffa
    果实 Fruit 0.95 0.90 1.60 1.40 2.40 2.20 2.30 2.00
    可食用部位 Edible portion 0.74 1.25 1.25 1.79 1.87 1.72 1.79 1.56
    下载: 导出CSV

    表  2   不同人群对黄瓜的摄取量

    Table  2   Ingestion amounts of Cucumis sativus for different groups of people g·d–1

    黄瓜部位
    Cucumber part
    儿童 Child 青少年 Adolescent 成年人 Adult 老年人 Senior
    男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female
    果实 Fruit 3.99 3.78 6.72 5.88 10.08 9.24 9.66 8.40
    果肉和果瓤 Flesh and pulp 3.47 3.29 5.12 2.64 8.77 8.04 8.44 7.31
    果肉 Flesh 2.63 2.49 4.44 3.88 6.65 6.10 6.38 5.54
    下载: 导出CSV

    表  3   黄瓜各部位中多环芳烃含量1)

    Table  3   PAHs contents in various parts of Cucumis sativus

    苯环数
    Benzene rings
    PAHs w/(μg·kg–1)

    Root

    Stem

    Leaf
    叶柄
    Petious
    果皮
    Peel
    果肉
    Flesh
    果瓤
    Pulp
    2 Nap 42.61±2.02b 30.63±2.04c 128.74±4.68a 21.19±2.32d 18.14±10.47e
    Acy 39.13±0.38b 28.24±5.06c 109.42±11.01a 18.86±0.21d 17.83±1.01d 1.89±0.30e
    Ace 96.83b±7.23b 72.42±10.28c 218.33±27.48a 47.31±1.76d 40.54±3.15d 14.18±0.24e 12.07±1.76e
    Flu 32.23±13.48b 18.02±17.11c 63.65±1.05a 12.94±2.67c 10.56±0.94c 7.56±0.07c 12.30±0.50c
    合计 Total 210.80±24.08b 149.31±22.69bc 520.14±31.55a 100.30±4.07cd 87.07±5.10cd 23.64±3.01d 24.37±2.12d
    3 Phe 20.26±1.56a 13.94±0.45b 13.32±1.77b 8.74±1.17c 7.55±1.86c 19.37±3.87 6.05±2.76
    Ant
    Fla 32.05±0.76a 23.08±0.98ab 43.39±8.58a 13.93±1.33b 8.66±7.51b 13.55±3.65b 8.01±1.70b
    合计 Total 52.31±2.15a 37.02±1.16b 56.71±10.36a 22.67±2.39cd 16.21±9.35d 32.92±7.51bc 14.06±4.39d
    4 Pyr 47.36±4.66a 31.36±4.56ab 27.35±15.9ab 13.92±10.24b 3.60±1.67b 40.17±12.24a 27.56±11.89ab
    BaA 22.63±4.61ab 23.14±18.56a 12.55±23.8abc 3.54±6.13abc 6.34±3.07abc 2.88±3.65bc
    Chr 2.02±3.49b 8.79±1.50a 3.66±0.27ab 3.61±1.14ab
    合计 Total 72.01±5.41a 54.50±21.17ab 53.48±12.94ab 17.46±12.24cd 3.60±1.67d 50.17±14.84ab 34.05±14.11bc
    5 BbF 8.07±0.19b 15.23±0.25a 4.77±2.09bc 1.51±2.02bc 3.80±0.02bc 2.90±0.14bc
    BkF 15.36±5.07b 21.32±10.38b 4.94±1.12b 23.96±17.56b 65.43±31.82a 7.17±2.35b 7.04±5.01b
    BaP 166.63±42.37a 0.05±0.04b
    DBA 182.67±8.12a 164.41±20.54a 17.90±7.06b 34.66±17.68b 22.84±9.08b 0.40±3.72b 1.13±9.27b
    合计 Total 206.10±24.19a 185.73±50.93a 204.70±35.59a 63.39±35.80b 89.78±22.67bc 11.37±2.49c 11.12±4.89c
    6 BPE 24.77±5.16a 2.21±1.99b 4.53±7.84b 11.70±3.67b 10.94±11.92b 4.80±0.04b 3.39±0.17b
    IPY 17.15±1.80e 321.83±15.03b 231.52±29.20c 134.50±14.40d 517.76±71.25a 11.51±0.40e 1.45±1.09e
    合计 Total 41.92±6.81e 324.04±19.11b 236.04±33.37c 146.23±18.06d 528.69±83.16a 16.31±0.36e 4.84±1.12e
     1) 同行数据后的不同小写字母表示差异显著 (P<0.05, Duncan’s 法)
     1) Different lowercase letters in the same row indicate significant difference(P<0.05, Duncan’s test)
    下载: 导出CSV

    表  4   苦瓜各部位中多环芳烃含量1)

    Table  4   PAHs contents in various parts of Momordica charantia

    苯环数
    Benzene rings
    PAHs w/(μg·kg–1)

    Root

    Stem

    Leaf
    叶柄
    Petious
    果皮
    Peel
    果肉
    Flesh
    果瓤
    Pulp
    2 Nap 65.90±1.01b 36.56±19.76cd 92.44±1.14a 31.01±0.81d 13.37±0.44e 13.57±0.20e 45.82±3.25c
    Acy 45.09±4.72b 54.59±2.44a 29.11±1.81c 11.16±0.70d 12.38±1.04d
    Ace 131.82±23.98a 79.58±5.23bc 44.58±5.28c 73.48±0.52b 68.61±1.02b 67.39±1.47bc
    Flu 22.27±19.43a 24.73±11.81a 13.81±1.56ab 11.01±2.19ab 19.61±4.52a 17.31±0.81ab
    合计 Total 2 645.08±10.80a 167.43±14.53b 92.44±1.14e 118.52±16.70cd 109.02±2.27de 114.17±3.41cd 130.52±5.03c
    3 Phe 15.84±1.39a 16.50±0.85a 1.01±0.47e 7.58±0.74c 3.80±0.68d 4.46±0.12d 10.93±0.58b
    Ant
    Fla 26.22±23.13a 36.31±5.59a 15.82±0.47a 16.29±0.94a 21.19±23.77a 39.00±0.31a 20.90±0.24a
    合计 Total 42.06±24.53ab 52.81±14.53a 16.83±0.80b 23.87±16.69b 24.99±24.22b 43.46±0.19ab 31.83±0.81ab
    4 Pyr 16.43±4.87b 18.62±0.99b 12.90±2.18bc 5.98±0.56bc 12.87±0.52bc 23.19±0.88a
    BaA 14.84±9.67b 11.21±9.31b 7.25±7.55b 10.30±0.08b 0.96±1.34b 57.04±19.06a
    Chr 328.73±77.31a 1.64±0.08d 4.44±0.22c 8.29±7.20b
    合计 Total 31.27±9.31cd 29.82±5.64cd 328.73±77.31a 20.15±1.59d 17.92±25.75b 18.26±2.08d 88.51±27.11bc
    5 BbF 3.47±1.87a
    BkF 109.84±12.35a 80.34±7.58a 11.03±9.47b 2.86±0.01b 1.38±0.87b
    BaP 53.98±6.60a
    DBA 78.38±6.67cd 108.43±13.48c 227.15±37.24a 63.4±22.69d 0.26±8.75e 0.75±0.24e 180.23±21.23b
    合计 Total 188.22±11.47a 242.74±8.69a 227.15±37.24a 74.43±9.59b 3.12±0.01b 5.60±2.60b 180.23±21.23a
    6 BPE 0.65±1.10c 21.15±12.03c 199.35±1.93b 3.17±5.49c 28.44±1.11c 0.59±0.47c 241.77±43.53a
    IPY 110.80±13.10a 123.32±42.53a 49.56±35.44b 27.96±2.34bc 2.43±1.46c 12.78±18.08bc
    合计 Total 111.46±13.78c 21.15±12.03d 322.67±43.86a 52.73±31.96d 56.35±2.66d 3.02±1.00d 254.55±40.48b
     1) 同行数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
     1) Different lowercase letters in the same row indicate significant difference(P<0.05, Duncan’s test)
    下载: 导出CSV

    表  5   节瓜各部位中多环芳烃的含量1)

    Table  5   PAHs contents in various parts of Benincasa hispida var. chieh-qua

    苯环数
    Benzene rings
    PAHs w/(μg·kg–1)

    Root

    Stem

    Leaf
    叶柄
    Petious
    果皮
    Peel
    果肉
    Flesh
    果瓤
    Pulp
    2 Nap 11.22±9.71ab 9.55±9.28ab 15.65±4.38a 3.94±6.85b 7.71±2.57ab 3.91±1.57b 4.12±0.53b
    Acy 14.25±24.69a 8.07±13.97a 8.79±15.23a
    Ace 38.55±33.39bc 3.77±6.53c 64.87±4.43b 9.25±8.92c 10.90±15.59c 321.16±9.95a 44.40±23.00c
    Flu 16.66±15.38bc 38.39±8.69a 38.31±5.91ab 5.39±4.76c 19.06±25.19abc
    合计 Total 49.77±43.11cd 29.99±15.49cd 118.91±15.77b 62.43±18.07c 18.62±13.11d 338.83±2.71a 76.37±34.81c
    3 Phe 10.61±9.20bc 14.04±7.33bc 31.23±3.28a 8.44±7.31cd 19.11±4.98b
    Ant 22.52±3.90a 2.83±2.60a 3.13±5.42a 5.84±4.76a 8.15±7.26a 3.41±5.90a
    Fla 63.47±6.91a 30.56±15.68ab 34.07±2.87ab 24.02±14.81ab 30.87±5.89ab 48.29±4.54ab 12.33±0.30b
    合计 Total 96.60±39.19a 47.43±6.54b 68.43±11.32ab 38.30±12.13bc 58.13±15.02b 51.69±7.22b 12.33±0.30c
    4 Pyr 51.29±0.49ab 9.85±17.07b 65.20±35.60a 36.19±12.68ab 23.77±10.86b 7.63±1.50b 8.71±0.34b
    BaA 35.23±1.70a 31.26±0.82a 49.24±9.40ab 23.13±1.11ab 30.45±13.23a 3.22±0.47b 4.26±1.45b
    Chr 32.34±1.36a 14.72±7.90a 17.76±1.69ab 12.41±8.48ab 22.77±4.35a 3.61±0.07b 4.45±3.92b
    合计 Total 118.86±0.31a 55.84±13.75b 132.19±46.19a 71.73±20.00b 77.99±16.87b 14.46±1.82c 17.42±3.49c
    5 BbF 30.14±2.55c 27.65±10.83c 147.29±28.36b 37.84±1.79dc 43.28±11.92c 45.58±47.8c 931.05±36.01a
    BkF 28.84±0.05ab 18.72±4.84abc 38.98±7.80a 15.98±10.61abc 34.26±18.77ab 6.60±2.89c 12.58±8.34bc
    BaP 17.18±14.88a 12.35±8.18a 17.33±1.28a 7.37±12.76a 27.04±10.95a 7.13±4.27a 19.43±14.39a
    DBA 41.14±2.32c 40.61±9.81c 78.39±16.98b 18.50±4.09c 103.08±16.55a 15.75±40.67c 19.86±13.68c
    合计 Total 117.29±14.76cd 99.35±7.10cd 281.98±39.32b 70.41±29.11cd 207.66±39.46c 60.75±34.09d 982.88±33.33a
    6 BPE 15.30±1.08b 19.92±3.09b 154.93±40.35a 27.21±17.89b 30.90±14.67b 21.57±19.68b
    IPY 58.13±4.42c 135.63±34.15b 473.40±24.00a 58.36±24.38c 79.17±26.11c 1.53±0.46d 1.58±0.50d
    合计 Total 73.43±5.49d 155.55±33.34b 628.32±18.61a 85.57±9.17cd 110.08±12.10c 1.53±0.46e 23.14±19.97e
     1) 同行数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
     1) Different lowercase letters in the same row indicate significant difference(P<0.05, Duncan’s test)
    下载: 导出CSV

    表  6   丝瓜各部位中多环芳烃的含量1)

    Table  6   PAHs contents in various parts of Luffa cylindrica

    苯环数
    Benzene
    rings
    PAHs w/(μg·kg–1)

    Root

    Stem

    Leaf
    叶柄
    Petious
    果皮
    Peel
    果肉
    Flesh
    果瓤
    Pulp
    2 Nap 0.77±1.18b 14.40±14.60a 7.18±4.15ab 10.09±11.61ab 10.42±2.88ab 1.86±0.85ab 2.76±1.28ab
    Acy
    Ace 124.23±30.42b 172.12±64.00a 26.68±5.30c 29.56±12.17c 32.18±1.61c
    Flu 12.31±10.67b 40.01±0.10a 15.56±26.95b 6.72±5.82b 20.16±2.35ab 13.09±2.01b 20.61±0.69b
    合计 Total 137.31±35.01b 226.59±51.45a 22.01±31.53c 43.49±4.07c 30.58±2.70c 44.51±14.49c 53.56±1.85c
    3 Phe 20.16±2.55d 23.92±2.60c 33.64±1.69a 15.13±1.13e 13.99±2.05e 35.58±1.78b 49.48±0.54a
    Ant 3.58±3.10b 3.89±3.40b 12.09±0.20a 3.44±3.24b 2.95±2.56b 3.05±0.45b 3.15±0.46b
    Fla 31.73±4.34c 30.46±4.20c 41.94±1.59b 18.97±1.78d 17.01±3.24d 36.12±2.31b 62.88±1.94a
    合计 Total 55.47±3.54d 58.28±5.84d 87.67±3.45b 37.54±5.10e 33.95±2.93e 74.75±0.060c 115.51±3.01a
    4 Pyr 39.88±5.64b 40.37±1.40b 54.34±1.50a 35.11±7.40bcd 15.24±13.31de 23.10±9.49cd 24.05±6.6bc
    BaA 36.36±21.18bc 41.20±1.30bc 55.06±1.30a 30.64±10.92bcd 17.11±6.86de 20.43±5.22cde 6.50±0.54e
    Chr 14.97±4.27b 14.98±2.40b 23.06±0.58a 8.90±1.40b 13.89±9.36b 7.25±0.75b 6.87±0.11b
    合计
    Total
    91.21±16.83b 96.56±5.15b 132.47±3.26a 74.65±13.95c 46.25±16.35c 50.78±10.74c 57.06±7.11c
    5 BbF 14.51±3.14b 15.80±2.50b 147.11±74.77a 10.27±1.49b 21.60±16.27b 6.02±0.80b 5.44±0.20b
    BkF 23.93±2.90bc 42.85±4.30bc 256.64±79.21a 23.92±9.97bc 79.24±3.39b 11.71±4.96c 12.06±18.51c
    BaP 12.43±1.07b 13.50±2.40b 23.16±1.94a 6.18±0.32c 5.44±4.75c 0.93±0.32d 0.84±0.14d
    DBA 17.33±7.21b 32.99±25.30b 134.52±83.90a 37.20±0.86b 30.66±13.15b 1.45±6.64b 1.92±2.38b
    合计 Total 68.20±2.68d 105.14±28.94bc 561.43±33.79a 77.57±9.60cd 136.94±13.02b 20.11±0.15e 20.26±0.78e
    6 BPE 29.98±6.64b 33.22±12.30b 84.97±42.57a 19.03±5.19b 15.49±7.62b 9.28±2.03b 8.56±0.35b
    IPY 34.71±5.64c 330.01±42.60a 248.36±94.32b 48.70±27.62c 37.95±7.52c 21.61±3.35c 6.84±0.09c
    合计 Total 64.68±12.27b 363.24±35.02a 333.34±76.10a 67.73±12.85b 53.44±5.85b 30.89±5.03b 15.40±0.31b
     1) 同行数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
     1) Different lowercase letters in the same row indicate significant difference(P<0.05, Duncan’s test)
    下载: 导出CSV

    表  7   人群摄食瓜类果实产生的PAHs终生致癌风险

    Table  7   Lifetime cancer risks from PAHs for people ingesting fruits of cucurbitacae vegetables

    蔬菜种类
    Vegetable type
    儿童 Child 青少年 Adolescent 成年人 Adult 老年人 Senior
    男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female
    苦瓜 Balsam pear 2.18×10–6 2.16×10–6 1.88×10–6 1.74×10–6 1.31×10–5 1.40×10–5 2.99×10–6 3.03×10–6
    节瓜 Chieh qua 1.22×10–5 1.21×10–5 1.05×10–5 9.77×10–6 7.31×10–5 7.84×10–5 1.67×10–5 1.69×10–5
    丝瓜 Luffa 1.85×10–6 1.84×10–6 1.60×10–6 1.48×10–6 1.11×10–5 1.19×10–5 2.54×10–6 2.58×10–6
    下载: 导出CSV

    表  8   人群摄食瓜类可食用部位产生的PAHs终生致癌风险

    Table  8   Lifetime cancer risks from PAHs for people ingesting edible portions of cucurbitacae vegetables

    蔬菜种类
    Vegetable type
    儿童 Child 青少年 Adolescent 成年人 Adult 老年人 Senior
    男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female
    苦瓜 Balsam pear 3.41×10–7 3.40×10–7 2.95×10–7 2.73×10–7 2.05×10–6 2.20×10–6 4.77×10–7 4.75×10–7
    节瓜 Chieh qua 2.83×10–7 2.81×10–7 2.44×10–7 2.27×10–7 1.70×10–6 1.82×10–6 3.90×10–7 3.94×10–7
    丝瓜 Luffa 1.78×10–7 2.76×10–7 2.41×10–7 2.23×10–7 1.67×10–6 1.80×10–6 3.67×10–7 3.88×10–7
    下载: 导出CSV

    表  9   人群摄食黄瓜产生的PAHs终生致癌风险

    Table  9   Lifetime cancer risk from PAHs for people ingesting Cucumis sativus

    黄瓜部位
    Cucumber part
    儿童 Child 青少年 Adolescent 成年人 Adult 老年人 Senior
    男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female 男性 Male 女性 Female
    果实 Fruit 1.01×10–5 9.99×10–6 8.68×10–6 8.05×10–6 6.02×10–5 6.47×10–5 1.38×10–5 1.40×10–5
    果肉和果瓤 Flesh and pulp 5.21×10–7 5.18×10–7 4.50×10–7 4.18×10–7 3.21×10–6 3.35×10–6 4.70×10–7 4.75×10–7
    果肉 Flesh 2.83×10–7 2.81×10–7 2.44×10–7 2.27×10–7 1.70×10–6 1.82×10–6 3.90×10–7 3.94×10–7
    下载: 导出CSV
  • [1] 李新荣, 赵同科, 于艳新, 等. 北京地区人群对多环芳烃的暴露及健康风险评价[J]. 农业环境科学学报, 2009, 28(8): 1758-1765. doi: 10.3321/j.issn:1672-2043.2009.08.036
    [2] 赵文昌, 程金平. 环境中多环芳烃(PAHs)的来源与监测分析方法[J]. 环境科学与技术, 2006, 29(3): 105-108. doi: 10.3969/j.issn.1003-6504.2006.03.042
    [3] 宋冠群, 林金明. 环境样品中多环芳烃的前处理技术[J]. 环境科学学报, 2005, 25(10): 1287-1296. doi: 10.3321/j.issn:0253-2468.2005.10.001
    [4]

    BUEHLER S, HITES R A. The Great Lakes’ integrated atmospheric deposition network[J]. Environ Sci Technol, 2002, 36(17): 354A-359A. doi: 10.1021/es0224030

    [5] 秦宁, 何伟, 王雁, 等. 巢湖水体和水产品中多环芳烃的含量与健康风险[J]. 环境科学学报, 2013, 33(1): 230-239.
    [6]

    GUILLEN M D, SOPELANA P, PARTEARROYO M A. Food as a source of polycyclic aromatic carcinogens.[J]. Rev Environ Health, 1997, 12(3): 133-146.

    [7]

    ZUO Q, LIN H, ZHANG X L, et al. A two-compartment exposure device for foliar uptake study.[J]. Environ Pollut, 2006, 143(1): 126-128. doi: 10.1016/j.envpol.2005.11.004

    [8]

    LISA M. CAMICHAEL T, RUSSELL F, et al. Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated Soils[J]. Environ Sci Technol, 1997, 31(1): 126-132. doi: 10.1021/es9602105

    [9] 刘永波, 薛瑞芳, 崔磊. 超声波提取−气相色谱−质谱联用法测定城市污水处理厂脱水污泥中16种多环芳烃[J]. 化学分析计量, 2015, 24(6): 77-80. doi: 10.3969/j.issn.1008-6145.2015.06.020
    [10] 刘庆学, 王磊, 安彩秀, 等. 硫酸净化法测定土壤中的六六六、滴滴涕及多环芳烃[J]. 分析试验室, 2009, 28(S2): 116-121.
    [11] 龙明华, 龙彪, 唐璇, 等. 南宁市不同区域五种蔬菜的多环芳烃含量分析[J]. 北方园艺, 2018(5): 7-14.
    [12] 龙彪. 南宁市菜地土壤及蔬菜中多环芳烃的含量及来源分析[D]. 南宁: 广西大学, 2017.
    [13]

    NISBET I C, LAGOY P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs)[J]. Regul Toxicol Pharmacol, 1992, 16(3): 290-300. doi: 10.1016/0273-2300(92)90009-X

    [14]

    MASCLET P, MOUVIER G, Nikolaou K. Relative decay index and sources of polycyclic aromatic hydrocarbons[J]. Atmos Environ, 1986, 20(3): 439-446. doi: 10.1016/0004-6981(86)90083-1

    [15] 翟凤英, 杨晓光. 中国居民营养与健康状况调查报告: 膳食与营养素摄入状况[M]. 北京: 人民卫生出版社, 2006.
    [16] 张珏坪. 广西南宁市蔬菜种子产业发展现状与对策研究[D]. 南宁: 广西大学, 2014.
    [17]

    ZHAO Z, ZHANG L, CAI Y, et al. Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment[J]. Ecotoxicol Environ Saf, 2014, 104(2): 323-331.

    [18]

    XIA Z, DUAN X, QIU W, et al. Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China[J]. Sci Total Environ, 2010, 408(22): 5331-5337. doi: 10.1016/j.scitotenv.2010.08.008

    [19]

    BRUNE H, DEUTSCH-WENZEL R P, HABS M, et al. Investigation of the tumorigenic response to benzo(a)pyrene in aqueous caffeine solution applied orally to Sprague-Dawley rats[J]. J Cancer Res Clin Oncol, 1981, 102(2): 153-157. doi: 10.1007/BF00410666

    [20] 杨晓光, 翟凤英, 朴建华, 等. 中国居民营养状况调查[J]. 中国预防医学杂志, 2010, 11(1): 5-7.
    [21] 赵秀阁, 段小丽. 中国人群暴露参数手册(成人卷)概要[M]. 北京: 中国环境出版社, 2014.
    [22]

    LIAO C M, CHANG K C. Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples[J]. Chemosphere, 2006, 63(9): 1610-1619. doi: 10.1016/j.chemosphere.2005.08.051

    [23] 秦宁, 朱樱, 吴文婧, 等. 多环芳烃在小白洋淀挺水植物中的分布、组成及其影响因素[J]. 湖泊科学, 2010, 22(1): 49-56.
    [24] 程琪琪, 葛蔚, 李敬锁, 等. 辣椒中多环芳烃的累积特征及健康风险评估[J]. 环境化学, 2018(2): 229-238.
    [25] 郭雪. 上海市郊区土壤−蔬菜系统中多环芳烃污染效应研究[D]. 上海: 华东师范大学, 2015.
    [26]

    SINONICH S L, HITES R A. Organic pollutant accumulation in vegetation[J]. Environ Sci Technol, 1995, 29(12): 2905-2914. doi: 10.1021/es00012a004

    [27]

    MOECKEL C, THOMAS G O, BARBER J L, et al. Uptake and storage of PCBs by plant cuticles[J]. Environ Sci Technol, 2008, 42(1): 100-105. doi: 10.1021/es070764f

    [28]

    WINGFORS H, LINDSTROM G, BAVEL B V, et al. Multivariate data evaluation of PCB and dioxin profiles in the general population in Sweden and Spain[J]. Chemosphere, 2000, 40(9/10/11): 1083-1088.

    [29]

    WILD S R, JONES K C. Polynuclear aromatic hydrocarbon uptake by carrots grown in sludge amended soil[J]. J Environ Qual, 1992, 21(2): 217-225.

    [30]

    SOCEANU A, DOBRINAS S, POPESCU V. Polycyclic aromatic hydrocarbons in Romanian body foods and fruits[J]. Polycycl Aromat Comp, 2016, 36(4): 364-375.

    [31] 杨慧仙. 种子大小和海拔对青藏高原东北缘常见植物种子主要营养成分含量的影响[D]. 兰州: 兰州大学, 2016.
    [32] 焦杏春, 介崇禹, 丁力军, 等. 多环芳烃在水稻植株中的分布[J]. 应用与环境生物学报, 2005, 11(6): 657-659. doi: 10.3321/j.issn:1006-687X.2005.06.001
    [33]

    TERZAGHI E, ZACCHELLO G, SCACCHI M, et al. Towards more ecologically realistic scenarios of plant uptake modelling for chemicals: PAHs in a small forest[J]. Sci Total Environ, 2015, 505: 329-337. doi: 10.1016/j.scitotenv.2014.09.108

    [34]

    HOWSAM M, JONES K C, INESON P. PAHs associated with the leaves of three deciduous tree species. I : Concentrations and profiles[J]. Environ Pollut, 2000, 108(3): 413-424. doi: 10.1016/S0269-7491(99)00195-5

    [35] 杨博. 城市典型植物叶片中PAHs的时空分布特征及迁移转化机理[D]. 上海: 华东师范大学, 2017.
    [36] 李艳, 顾华, 黄冠华, 等. 北京东南郊灌区多环芳烃污染风险与人体健康风险评估[J]. 农业机械学报, 2017, 48(9): 237-249.
    [37]

    TAO S, CUI Y H, XU F L, et al. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin[J]. Sci Total Environ, 2004, 320(1): 11-24. doi: 10.1016/S0048-9697(03)00453-4

    [38] 郜红建, 魏俊岭, 马静静, 等. 安徽省典型城市周边土壤−蔬菜中PAHs的污染特征[J]. 农业环境科学学报, 2012, 31(10): 1913-1919.
    [39]

    URBAT M, LEHNDORFF E, SCHWARK L. Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler: Part Ⅰ: Magnetic properties[J]. Atmos Environ, 2004, 38(23): 3781-3792. doi: 10.1016/j.atmosenv.2004.03.061

    [40] 解莹然, 张娟, 李乐, 等. 北京市常用常绿树种冬季叶片多环芳烃含量及其富集特征[J]. 北京林业大学学报, 2017, 39(10): 95-100.
    [41]

    GUNTHER F A, BUZZETTI F, WESTLAKE W E. Residue behavior of polynuclear hydrocarbons on and in oranges[J]. Residue Rev, 1967, 17: 81-104.

    [42] 龙明华, 龙彪, 梁勇生, 等. 南宁市蔬菜基地土壤多环芳烃含量及来源分析[J]. 中国蔬菜, 2017(3): 52-57.
    [43]

    SCHROLL R, BIERLING B, CAO G, et al. Uptake pathways of organic chemicals from soil by agricultural plant[J]. Chemosphere, 1994, 28(2): 297-303. doi: 10.1016/0045-6535(94)90126-0

    [44] 董继元, 刘兴荣, 张本忠, 等. 上海市居民暴露于多环芳烃的健康风险评价[J]. 生态环境学报, 2015, 24(1): 126-132.
    [45] 葛蔚, 程琪琪, 柴超, 等. 青岛市城郊蔬菜中多环芳烃污染特征和健康风险评估[J]. 环境科学学报, 2017, 37(12): 4772-4778.
    [46] 吴敏敏, 夏忠欢, 张倩倩, 等. 南京市蔬菜中多环芳烃污染特征及健康风险分析[J]. 地球与环境, 2017, 45(4): 447-454.
    [47] 殷婧, 夏忠欢, 周彦池, 等. 临汾市售蔬菜中多环芳烃污染特征及致癌风险分析[J]. 生态毒理学报, 2016, 11(3): 265-271.
    [48] 王丽萍, 夏忠欢, 吴敏敏, 等. 徐州市售蔬菜中多环芳烃污染与健康危害[J]. 生态毒理学报, 2017, 12(3): 526-534.
  • 期刊类型引用(7)

    1. 陈灿,陈维林,丁浩,陈兰,张跟喜,谢恺舟,戴国俊,王金玉,张涛. 白羽王鸽胚胎期胸肌肌纤维发育规律及相关基因表达分析. 中国畜牧杂志. 2023(07): 99-104 . 百度学术
    2. 陈秋阳,朱康平,罗毅,沈林園,朱砺,甘麦邻. 猪原代骨骼肌卫星细胞的快速分离、培养和诱导分化研究. 中国畜牧杂志. 2023(08): 118-123 . 百度学术
    3. 张力,许加龙,黄锦钰,许子月,雷昕诺,卢会鹏,朱睿,孙伟翔,曹海月,王安平,朱善元. 鹅骨骼肌卫星细胞的分离培养与鉴定. 畜牧兽医学报. 2023(10): 4186-4195 . 百度学术
    4. 王燕星,张雨时,姬海港,刘阳,牛玉芳,韩瑞丽,刘小军,田亚东,康相涛,李转见. 鸡骨骼肌卫星细胞系的建立及分析. 畜牧兽医学报. 2023(12): 4972-4981 . 百度学术
    5. 戴巍,宋瑞龙,张远浩,邹辉,顾建红,袁燕,卞建春,刘学忠. 鸡骨骼肌卫星细胞的分离培养与鉴定. 畜牧兽医学报. 2021(03): 676-682 . 百度学术
    6. 马思佳,刘媛,汪序忠,李亭亭,段星,杨松柏,宋丹,李向臣. 褪黑素对脂多糖刺激的滩羊骨骼肌卫星细胞炎性因子表达的影响. 中国畜牧兽医. 2021(09): 3378-3386 . 百度学术
    7. 徐小春,赵瑞,陈文娟,马文平,马森. 滩羊骨骼肌卫星细胞体外培养及成肌和成脂诱导分化研究. 家畜生态学报. 2020(12): 32-39 . 百度学术

    其他类型引用(4)

图(1)  /  表(9)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 11
出版历程
  • 收稿日期:  2018-06-29
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2019-03-09

目录

/

返回文章
返回