Simulation and experiment of air-blowing precision seed-metering device for Panax notoginseng
-
摘要:目的
为了满足三七Panax notoginseng的机械化种植需求,减少机械式清种过程中对种子造成的损伤,设计了一种适用于播种三七种子的气吹式精密排种器。
方法确定了排种器的主要结构参数,并建立了清种过程中的力学模型。通过建立排种器内部流场模型,运用Fluent软件对不同清种风压条件下流场进行仿真分析,验证了清种风压范围。为了检验仿真确定的风压范围的可行性并寻求最佳工作参数组合,选取合格指数、漏播指数和重播指数作为试验指标,作业速度、种层高度、清种风压作为试验影响因素,采用正交试验方法,对排种器进行了台架试验研究。
结果最优参数组合:作业速度为0.6 m/s、种层高度为90 mm、清种风压为0.5 kPa,此时试验合格指数为90.48,漏播指数为4.24,重播指数为5.28。
结论该气吹式排种器能够满足三七的播种要求,为进行排种器的田间试验提供了参考。通过试验结果与之前仿真分析的过程对比,清种风压变化对于排种器充填性能的影响一致,验证了利用Fluent模拟确定清种风压的可行性。
Abstract:ObjectiveA novel kind of air-blowing precision seed-metering device was designed in order to fulfill the mechanized planting needs of Panax notoginseng and reduce seed damage in the process of mechanical seeding.
MethodThe main structural parameters of the seed-metering device were determined. The mechanical model in seed clearing process was established. The internal flow field model of the seed-metering device was established, Fluent software was used to simulate the flow field under different air-blowing pressure, and the range of air-blowing pressure for seed clearing was verified. We used orthogonal design and performed bench test to further examine the feasibility of the range of air-blowing pressure and find out the optimal combination of working parameters. Eligible index, leakage sowing index and repeat sowing index were selected as experimental indexes. Operating speed, seed layer height and air-blowing pressure were selected as the influencing factors in the test.
ResultThe optimal combination of parameters was the operating speed of 0.6 m/s, seed layer height of 90 mm and air-blowing pressure of 0.5 kPa. Under these conditions, the qualified index was 90.48, the leakage sowing index was 4.24, and the repeat sowing index was 5.28.
ConclusionThe air-blowing seed-metering device can meet the requirements of Panax notoginseng seeding. This study provides a theoretical basis for the field experiment of the seed-metering device. Comparison between the test results and the simulation analysis indicates that the influence of air-blowing pressure changes on the filling performance of the seed-metering device is consistent, and Fluent simulation is feasible for determining the air-blowing pressure for seed clearing.
-
-
图 1 三七气吹式排种器结构示意图
1:排种轴,2:排种轮,3:壳体,4:型孔,5:清种气嘴,6:风管接口,7:进种管,8:种层高度调节板,9:充种室,10:投种口
Figure 1. Structure diagram of air-blowing seed-metering device for Panax notoginseng
1:Seeding shaft,2:Seeding wheel,3:Shell,4:Type hole,5:Seed clearing nozzle,6:Duct interface,7:Seed tube,8:Seed height adjustment plate,9:Seed filling room,10:Seeding port
图 4 清种区种子受力简化模型
Fq:种子受到的清种压力,Fl:惯性离心力,FN:型孔侧面对种子的支持力,Ff:种子与型孔侧面的摩擦力,α:压力Fq与x轴的夹角,β:y轴与水平面夹角,δ:摩擦力Ff与y轴的夹角,ε:型孔锥角,ω:排种轮角速度,G:种子的重力,O:排种轮转动中心,1、2:种子
Figure 4. Simplified model of force on the seed in seed clearing zone
Fq: Air-blowing force on the seed, Fl: Inertial centrifugal force, FN: Supporting force on the side of type hole, Ff: Friction force between the seed and the side of type hole, α: Angle between Fq and x-axis, β: Angle between y-axis and the horizontal plane, δ: Angle between Ff and y-axis, ε: Cone angle of the type hole, ω: Angular velocity of the seeding wheel, G: Seed gravity, O: Rotation center of the seeding wheel, 1 and 2: Seed
表 1 排种性能试验因素与水平
Table 1 Factors and levels of seeding performance test
水平
Level作业速度/(m·s–1)
Operating
speed种层高度/mm
Seed layer
height清种风压/kPa
Air-blowing pressure1 0.4 50 0.4 2 0.6 70 0.5 3 0.8 90 0.6 4 1.0 110 0.7 表 2 排种性能试验设计与结果
Table 2 Design and result of seeding performance test
试验序号
Test No.因素 Factor 指标 Index 作业速度
Operating speed (A)种层高度
Seed layer height (B)清种风压
Air-blowing pressure (C)合格指数
Eligible index漏播指数
Leakage sowing index重播指数
Repeat sowing index1 1 1 1 57.23 37.03 5.74 2 1 2 2 76.49 18.52 4.99 3 1 3 3 87.91 3.42 8.67 4 1 4 4 68.63 12.16 19.21 5 2 1 2 79.37 13.56 7.07 6 2 2 1 79.43 14.74 5.83 7 2 3 4 89.34 4.24 6.42 8 2 4 3 82.52 3.53 13.95 9 3 1 3 66.71 28.16 5.13 10 3 2 4 70.45 27.32 2.23 11 3 3 1 76.37 7.95 15.68 12 3 4 2 69.72 3.34 26.94 13 4 1 4 49.67 36.83 13.5 14 4 2 3 67.52 23.95 8.53 15 4 3 2 79.47 3.39 17.14 16 4 4 1 55.45 8.12 36.43 表 3 排种性能试验结果的极差分析1)
Table 3 Range analysis of seeding performance test result
指标
Index项目
ItemA B C 合格指数
Eligible
indexk1 72.565 63.245 67.120 k2 82.665 73.472 76.263 k3 70.813 83.273 76.165 k4 63.028 69.080 69.523 R 19.637 20.028 9.143 漏播指数
Leakage
sowing indexk1 17.782 28.895 16.960 k2 9.018 21.133 9.703 k3 16.693 4.750 14.765 k4 18.073 6.787 20.137 R 9.055 24.145 10.434 重播指数
Repeat
sowing indexk1 9.652 7.860 15.920 k2 8.317 5.395 14.035 k3 12.495 11.977 9.070 k4 18.900 24.133 10.340 R 10.583 18.738 6.850 1) A、B 和 C 分别表示作业速度、种层高度和清种风压
1) A, B and C represent operating speed, seed layer height and air blowing pressure, respectively表 4 排种性能试验结果的方差分析1)
Table 4 Variance analysis of seeding performance test result
指标
Index变异来源
Variation sourceSS DF F 合格指数
Eligible
indexA 782.77 3 61.151** B 856.51 3 66.912** C 260.73 3 20.369** R 25.60 6 漏播指数
Leakage
sowing indexA 220.90 3 5.959* B 1 610.30 3 43.437** C 230.97 3 6.230* R 74.14 6 重播指数
Repeat
sowing indexA 265.84 3 11.454** B 829.99 3 35.762** C 121.53 3 5.236* R 46.42 6 1) A、B、C 和 R 分别表示作业速度、种层高度、清种风压和残差;“*” 和 “**” 分别影响显著和极显著
1) A, B, C and R represent operating speed, seed layer height, air blowing pressure and residual, respectively; “*” and “**” represent significant effects at 0.05 and 0.01 levels, respectively -
[1] 崔秀明. 依靠科技进步促进三七产业创新发展[J]. 中国现代中药, 2018, 20(3): 247-252. [2] 张维. 气吹式大豆精量播种机的设计[J]. 中国农机化学报, 2014, 35(4): 6-8. [3] 李洪昌, 高芳, 赵湛. 国内外精密排种器研究现状与发展趋势[J]. 中国农机化学报, 2014, 35(2): 12-16. [4] 史嵩. 气压组合孔式玉米精量排种器设计与试验研究[D]. 北京: 中国农业大学, 2015. [5] ZULIN Z, UPADHVAVA S K. Hydropneumatic seeder for primed seed[J]. Trans ASABE, 1998, 41(2): 307-314. doi: 10.13031/2013.17175
[6] 张泽平, 马成林. 精播排种器及排种理论研究进展[J]. 吉林工业大学学报, 1995, 25(4): 112-117. [7] 张守勤, 王成和. 气力轮式排种器型孔的流场及作用[J]. 农业机械学报, 1991, 22(4): 26-31. [8] 心男. 基于EDEM-FLUENT耦合的气吹式排种器工作过程仿真分析[D]. 长春: 吉林大学, 2013. [9] 马成林. 气吹排种器充填原理的研究[J]. 农业机械学报, 1981, 12(4): 1-13. [10] 胡树荣, 马成林, 李慧珍, 等. 气吹式排种器的排种频率和气流速度对排种质量影响的研究[J]. 吉林大学学报(工学版), 1981(4): 26-35. [11] 刘佳, 崔涛, 张东兴, 等. 气吹式精密排种器工作压力试验研究[J]. 农业工程学报, 2011, 27(12): 18-22. doi: 10.3969/j.issn.1002-6819.2011.12.004 [12] 崔涛, 韩丹丹, 殷小伟,等. 内充气吹式玉米精量排种器设计与试验[J]. 农业工程学报, 2017, 33(1): 8-16. [13] 孙裕晶, 马成林, 张勇智. 基于均匀设计的精密排种器结构优化方法[J]. 吉林大学学报(工学版), 2004, 34(4): 569-572. [14] 廖庆喜, 杨波, 李旭, 等. 内充气吹式油菜精量排种器气室流场仿真与试验[J]. 农业机械学报, 2012, 43(4): 51-54. doi: 10.6041/j.issn.1000-1298.2012.04.011 [15] 雷小龙, 廖宜涛, 张闻宇, 等. 油麦兼用气送式集排器输种管道气固两相流仿真与试验[J]. 农业机械学报, 2017, 48(3): 57-68. [16] 李成华, 高玉芝. 倾斜圆盘气吹式播种器设计及试验研究[J]. 沈阳农业大学学报, 2007, 38(6): 830-836. doi: 10.3969/j.issn.1000-1700.2007.06.014 [17] 胡靖明. 气吹式小粒种子精量排种器气室仿真[J]. 林业机械与木工设备, 2016, 44(7): 12-14. [18] 张波屏. 播种机械设计原理[M]. 北京: 机械工业出版社, 1982. [19] ORTH R J, MARION S R, GRANGER S, et al. Evaluation of a mechanical seed planter for transplanting Zostera marina (eelgrass) seeds[J]. Aquat Bot, 2009, 90: 204-208. doi: 10.1016/j.aquabot.2008.07.004
[20] 张德文, 李林, 王惠民. 精密播种机械[M]. 北京: 农业出版社, 1982. [21] 胡树荣, 马成林, 李慧珍, 等. 气吹式排种器锥孔的结构参数对排种质量影响的研究[J]. 农业机械学报, 1981, 12(3): 21-31. [22] 任闯, 高筱钧, 苏微, 等. 三七种子的物理机械特性试验[J]. 湖南农业大学学报(自然科学版), 2015, 41(1): 109-112. [23] 左春柽, 马成林, 张守勤, 等. 新型气力精密排种器的空气动力学原理[J]. 农业工程学报, 1997, 13(3): 110-114. doi: 10.3321/j.issn:1002-6819.1997.03.023 [24] 欧阳洁, 李静海, 崔俊芝. 颗粒轨道模型中相间耦合关系及曳力计算的研究[J]. 动力工程, 2004, 24(6): 857-862. doi: 10.3321/j.issn:1000-6761.2004.06.021 [25] 刘素. 气吹式三七精密排种器设计与试验研究[D]. 昆明: 昆明理工大学, 2018. [26] 全国农业机械标准化技术委员会. GB/T6973-2005单粒(精密)播种机试验方法[S]. 北京: 中国标准出版社, 2006. [27] 袁志发, 周静芋. 试验设计与分析[M]. 北京: 高等教育出版社, 2000. -
期刊类型引用(2)
1. 杨帅,唐豪毅,赵晨,徐汉虹. 含有伯酰胺和氰基的苯基噻唑衍生物的设计、合成及杀虫活性评价. 华南农业大学学报. 2024(03): 354-363 . 本站查看
2. 付逸群,于颖敏,马瑞瑶. 农用杀虫化合物种类及其活性探究. 山东化工. 2020(18): 79-80+83 . 百度学术
其他类型引用(4)